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Devising a deep neural network 
based mammography phantom 
image filtering algorithm using 
images obtained under mAs 
and kVp control
Sung Soo Park 1,5, Young Mi Ku 2,5, Kyung Jin Seo 3, In Yong Whang 2*, Yun Sup Hwang 2, 
Min Ji Kim 2 & Na Young Jung 4

We study whether deep neural network based algorithm can filter out mammography phantom 
images that will pass or fail. With 543 phantom images generated from a mammography unit, we 
created VGG16 based phantom shape scoring models (multi-and binary-class classifiers). Using 
these models we designed filtering algorithms that can filter failed or passed phantom images. 61 
phantom images obtained from two different medical institutions were used for external validation. 
The performances of the scoring models show an F1-score of 0.69 (95% confidence interval (CI) 
0.65, 0.72) for multi-class classifiers and an F1-score of 0.93 (95% CI 0.92, 0.95) and area under the 
receiver operating characteristic curve of 0.97 (95% CI 0.96, 0.98) for binary-class classifiers. A total 
of 42 of the 61 phantom images (69%) were filtered by the filtering algorithms without further 
need for assessment from a human observer. This study demonstrated the potential to reduce the 
human workload from mammographic phantom interpretation using the deep neural network based 
algorithm.

Screening out definite passed or failed mammography phantom images ahead of visual scoring would reduce the 
radiologist’s workload for quality assessment. The purpose of this study was to develop a Deep Neural Network 
(DNN) based filtering algorithm for screening mammography phantom images and to evaluate its feasibility.

In Korea, the phantom image evaluation should be performed every 6 months; it has been included in the 
annual and 3-year cycle inspection by accrediting agencies. Considering that, as of 2016, there are 3138 mam-
mography units in operation in Korea, approximately 6000 evaluations are being conducted annually by accred-
iting agencies. Furthermore, most hospitals are actually managing phantom mammography more frequently 
according to their manufacturers’ quality control manual, so that countless tests are being conducted every day 
nationwide. The Mammography Quality Standards Act requires weekly tests as the minimum frequency, hence 
more tests are expected if quality control improves to the level of that in the United States. In short, the numerous 
phantom mammography performed on a regular basis place a workload on the radiology personnel, and these 
examinations will increase in the future. Therefore, the authors designed a filtering algorithm using a DNN to 
interpret the phantom images, with the aim of reducing the workload of the radiology personnel.

Many attempts have been made to perform automated analysis of phantom  images1–5. Generally, these stud-
ies consist of two steps. First, the image preprocessing step is a process of localization of target wax inserts 
and enhancing target visibility using mathematical formulas and digital image processing techniques such as 
Fourier-domain template matching, discrete wavelet transform, and Sobel filter. Next, the image evaluation 
step is a process in which measurement and classification of localized objects are performed. Bayesian classifier, 
Mahalanobis distance, and cross-correlation methods were used. By demonstrating reliable agreement between 
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computerized scoring and human scoring, the authors proved automated phantom scoring is also possible. Pre-
vious studies just calculated the quantitative values of designated key features (length, number, roundness, and 
so on) related to the phantom shape scoring through mathematical methods. However, a phantom image is a 
sort of a complex radiographic image composed of various densities and contrasts. Thus, defining only selected 
features is not sufficient to interpret a phantom image. The current method of a DNN greatly differs from such 
conventional analysis. Extracting higher-level features necessary for scoring would happen if trained through a 
DNN. Thus, a more sophisticated phantom interpretation would be possible in the end. This is the background 
of the present machine learning-based approach.

Recently, there have been two studies of American College of Radiology (ACR) phantom image quality 
assurance using DNN. Oh et al.6 developed and validated an interpretable deep learning model using a large 
and diverse dataset to objectively evaluate the quality of standard phantom image. Recognition of fiber, speck, 
and mass evaluation models showed high performance and reasonable object scoring. Therefore, the proposed 
model can serve as an assistant tool for evaluating mammography phantom images. Ho et al.7 designed an image 
quality evaluation architecture that accurately predicts human evaluations. The minimum training sample size for 
the model’s complexity and the most influential feature were also determined. However, no attempt was made to 
reduce the reader’s workload. Unlike previous studies that attempted to assist the visual scoring, our aim was to 
reduce the overall workload by eliminating passed or failed films using a specific algorithm (Table 1). Our attempt 
is something new that no one has ever done before. Our study will show the possibility that phantom studies 
using DNNs are not limited to implementing scoring accuracy but can be extended to other clinical applications.

Materials and methods
Mammographic phantoms are used to monitor the ability of the mammography unit to image small detailed 
structures similar to those found clinically and ultimately to assure that the image acquisition chain is consist-
ently producing adequate image quality at optimum levels. Changes in the phantom image is a signal that one or 
more of the components in the imaging chain are below the quality standards. The source of the problem should 
be identified and corrective action needs to be taken before any further examinations are performed (Fig. 1).

This study does not involve human subjects. Our research was not subjected to deliberation by the participat-
ing institutional review boards.

Table 1.  Comparison with the previous ACR phantom studies. ACR, American College of Radiology; YOLO 
v2, You Only Look Once version 2; SVM, Support Vector Machine; VGG16, Visual Geometry Group 16.

Oh et al.6 Ho et al.7 Current study

Purpose Objective evaluation of phantom images Objective evaluation of phantom images Reducing workload by filtering phantom images

Dataset 2,208 images (from 1,755 institutions) 461 images (10 mammographic system, 1 ACR phan-
tom) 640 images (1 mammographic system, 1 ACR phantom)

Model YOLO v2 SVM VGG16

Accuracy fiber:specks:mass = 0.995:0.993:0.998 overall, 0.995 fiber:specks:mass = 0.902:0.982:0.889 overall, 0.924
fiber:specks:mass = 0.877:0.951:0.751 overall, 0.861 
(multi-class classifier) fiber:specks:mass = 0.893:0.951:0.
908 overall, 0.916 (binary-class classifier)

Note Large and diverse dataset
Minimum sample size experiment for model complex-
ity (30% of the total data set) Most influential feature 
(position feature)

Phantom image filtering trial with threshold controlled 
algorithm (69% of filtering rate)

Figure 1.  Mammographic accreditation phantom, phantom image, and diagram. American College of 
Radiology (ACR) phantom (1999 version) containing simulated lesions of 6 fibers, 5 speck groups, and 5 masses.
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Study concept and outline. If there was a DNN-based algorithm that could filter out passed or failed 
phantom images in advance, the number of images for direct visual scoring could be reduced (Fig. 2). Therefore, 
based on a DNN, we created a model that allows for scoring of each shape shown in the phantom image. We then 
designed an algorithm that can filter a passed or failed phantom image based on that model. Finally, by apply-
ing the proposed filtering algorithm to phantom images obtained in quality control, we examined whether the 
number of images for visual scoring could actually be decreased.

Phantom shape scoring models. Data collection. Phantom images, generated from a mammography 
unit (Selenia® Dimensions® Mammography System, Hologic, USA) and a mammographic accreditation phan-
tom (Mammo 156 ™ Phantom, Gammex, USA) used in our institution, are usually taken at approximately 130–
150 mAs and 28 kVp. Phantom images are more formalized than clinical radiography. However, in order to 
obtain as wide a variety of phantom images as possible from the current equipment, we have used a full range 
of mAs (60–220)/kVp (22–32) capable of image generation. By step-wise adjustment of radiation exposure fac-
tors (mAs, kVp), phantom images were obtained within all mAs (60–220) and kVp (22–32) intervals. In our 
mammography unit, we can manually adjust the mAs in two-unit intervals and the kVp in one-unit intervals. 
Theoretically, we can obtain 880 images [(16 × 5) mAs × 11 kVp]. However, similar units would then produce 
nearly identical images. Therefore, except where possible, only 2–4 images (not every 5 images) were obtained 
from the combinations of mAs and kVp in each section. The mammography phantom is made of a rigid, non-
compressible 4.5 cm thick acrylic material (4.5 × 10.2 × 10.8 cm). Therefore, the compression pressure is always 
constant and the thickness cannot be changed. In our equipment, a compression paddle with a size of 18 × 24 cm 
is always used for phantom imaging, and the field of view is always constant at 18 × 24 cm (2560 × 3328 pixel). In 
phantom imaging, auto-filter mode (rhodium or silver) is basically applied, but rhodium filter is always adopted 
due to the constant phantom thickness (4.5 cm). The target of the X-ray tube is only the tungsten. For mam-
mographic accreditation phantom imaging, the automatic exposure control sensor (AEC) is placed under the 
phantom model. The accreditation phantom is also constant, but the kVp and mAs regulated by the AEC vary 
slightly each time it is shot. Therefore, phantom images were obtained by varying only two factors. We have 
excluded the phantom images which were too white or black due to a combination of too low or high exposure 
factors. A total of 640 phantom images remained for use in our study (Supplementary Table S1). As we intended 
to generate as many images as possible for the training, the phantom images were generated regardless of the 
adequacy of the background optical density.

One radiologist was able to review 640 phantom images, where some that were not deemed suitable for scor-
ing were excluded, such as those with the phantom shape (fiber, speck, and mass) being severely distorted or 
being in an incorrect position. Finally, 543 phantom images [3,258 (543 × 6) fibers, 2715 (543 × 5) specks, and 
2715 masses] were included in the development set of our study.

Each phantom image was displayed on a 5-megapixel, dedicated mammography monitor and was adjusted to 
the most readable window/width level based on a consensus of two radiologists (among IY Whang, YS Hwang, 
MJ Kim and NY Jung). Each phantom shape from the 543 phantom images was displayed on a monitor and was 
scored simultaneously by the two radiologists according to the ACR phantom scoring  method8. Brief scoring 
criteria and actual phantom scoring examples are provided (Supplementary Table S2, Fig. 3). If the scores dif-
fered, a consensus score was assigned to one shape. Scoring all 16 shapes in a single phantom image took less 
than 1 min, but we did not score more than 25 phantom images per session.

Training of the models. When a phantom image was received, we set a reference point, and the shape of a 
224 × 224 pixel was automatically cropped and extracted at the region of interest where the shape was located. 
Then, the intensity of the image was rescaled to improve the contrast. The partitioning of development data was 
performed for each shape (3258 fibers, 2715 specks, and 2715 masses). All of the extracted shapes were then 
mixed and randomly assigned into three data sets, which will be used for training, validation, and holdout. A 
component used in one data set was not used in another data set, for example, one fiber is used once for one 
of each data set. The development data set was divided into training/holdout (80:20), and the training data was 
further divided into training/validation (80:20). As a result, the ratio of training/validation/holdout sets was 
2084:522:652 (fibers) and 1,737:435:543 (specks, masses), showing 64%:16%:20% (Table 2).

Figure 2.  Study concept for reducing the phantom scoring workload. The thickness of the arrow indicates the 
volume of the image to interpret.
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Before designing the DNN model, performance comparisons between several models (VGG16 vs. ResNet50 
vs. MobileNet) were conducted. VGG16 has a total of 138 million trainable parameters (vs. ResNet50, 23 mil-
lion vs. MobileNet, 13 million). The complexity of VGG16 is higher, but it was used for its accuracy (Supple-
mentary Table S3). A DNN model was constructed using the basic model of VGG16. VGG16 was used as it is 
in the feature extraction part of the model architecture, and multi (0 or 0.5 or 1)- and binary (0 or not)-class 
classifications were applied to the output layer to be suitable for phantom scoring. For one shape, two models 
with different output layers were constructed respectively. The pre-training of a DNN model on more than one 
million images from ImageNet was conducted. Pretraining was slightly better than training from scratch (reset 
weight) (Supplementary Table S4). The generalizability was improved by using weights (transfer learning) that 
were previously learned in about 1 million image classification tasks and the number of samples was increased 
by performing data augmentation (horizontal and vertical flip). A dropout layer was used to secure model 
overfitting when constructing the model. DNN-based phantom shape scoring (DPS) models [multi-class clas-
sifier (MCC) and binary-class classifier (BCC)] were defined and the training set was used for MCC and BCC 
learning, and the validation set was used for those classifiers’ tuning. The relative loss and accuracy curves of 
training and validation according to all phantom shapes (fiber, speck, and mass) and DPS models (BCC, MCC) 
have been provided (supplementary Figure S1). The MCC has been identified as a three-class model in which 
each shape is directly assigned a score of 0, 0.5, or 1. When prediction is performed, the probability value for 
each class is finally obtained through the Softmax layer of the model, and the class having the highest probability 
is determined as the prediction score. For this reason, there is no threshold when performing prediction. The 
BCC has been identified as an additional model to more optimally match the 0.5 score class. BCC recognizes 
the 0.5 and 1 scores together as a class and further implements a binary classification model between this and 
the 0 score class. A probability value for a class with a score of 0.5 or 1 is obtained through the Sigmoid layer of 
the model. A probability value of 0.5 is considered the threshold corresponding to this class. A detailed network 
architecture and the whole training process has been provided (Fig. 4).

Figure 3.  Examples of American College of Radiology (ACR) phantom scoring. At a minimum, the four largest 
fibers, the three largest speck groups, and the three largest masses must be visible.

Table 2.  Development data set status and score.

543 Phantom images

No

Score Fibers Specks Masses

Development set 3258 2715 2715

Training

2084 1737 1737

0 528 (25%) 430 (25%) 541 (31%)

0.5 156 (3%) 60 (3%) 472 (27%)

1 1400 (67%) 1247 (72%) 724 (42%)

Validation

522 435 435

0 135 (26%) 99 (23%) 130 (30%)

0.5 36 (7%) 13 (3%) 119 (27%)

1 351 (67%) 323 (74%) 186 (43%)

Holdout

652 543 543

0 176 (27%) 126 (23%) 167 (31%)

0.5 50 (8%) 23 (4%) 154 (28%)

1 426 (65%) 394 (73%) 222 (41%)
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Statistical analysis of the models. The performance of the DPS models was evaluated using the holdout test set, 
which was the part of the development data set not used for training and validation. Additional performance was 
verified for the robustness of the model using an external validation set collected between May 1, 2018, and Mar 
25, 2019, at two of our university-affiliated hospitals. We collected 70 phantom images (43 images for 10 months 
from hospital 1, 27 images for 7 months from hospital 2 with the identical mammography unit and phantom 
model), which were obtained for routine weekly phantom quality control. Nine phantom images, with acrylic 
discs obscuring details in the phantom, were excluded. Finally, the remaining 61 phantom images were scored in 
the same way as the development data set (Table 3).

Accuracy was obtained from all combinations of scores and shapes for intuitive evaluation in each instance. 
The F1-score was calculated to evaluate and compare MCC and BCC performances. Area under receiver operat-
ing characteristic curve (AUC) analyses were additionally performed in order to evaluate BCC performances. The 
F1-score and AUC value were obtained through the classification_report API of the Python package scikit-learn 
v0.19.2. A 95% confidence interval (CI) was calculated by exact (Clopper-Pearson) confidence limits method 
using SAS v9.3 (SAS Institute, Cary, NC).

Figure 4.  The whole process and the architecture of the deep neural network based phantom shape scoring 
models. In the preprocessing, only the part of the shape to be scored is cut out. Then, adjust the intensity to take 
advantage of the features of the shape. A deep neural network model was then modified using a VGG16 model 
based on the 2D Convolutional Neural Network. After loading the model weights learned in ImageNet 1 million 
images, the phantom shape image is fine-tuned. Binary-class classifiers (BCC) and multi-class classifiers (MCC) 
models are finally learned for each shape according to the outcome labeling. The BCC model predicts whether 
the shape will or will not be scored. The MCC model predicts a score of 0 or 0.5 or 1 for the shape.

Table 3.  External validation set data status and score.

Score

61 Phantom images

No

Fibers Specks Masses

366 305 305

0 156 (43%) 104 (34%) 117 (38%)

0.5 30 (8%) 9 (3%) 80 (27%)

1 180 (49%) 192 (63%) 108 (35%)
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Phantom image filtering using the models. Phantom image filtering algorithm (PFA). The filtering 
algorithms were structured with two steps. When scoring a phantom shape, we selected a score of 0 or a score 
of (0.5 or 1) based on the specific threshold using a BCC probability of score (0.5 or 1). Second, in case the 
phantom shape was scored as (0.5 or 1), we selected a score of 0.5 or a score of 1 based on the specific threshold 
using an MCC probability of score 1. This was the clearest and simplest of the combinations that could be cre-
ated using both BCC and MCC. We designed two types of algorithms based on this step. The lenient algorithm 
(LA) filters out phantom images expected to be a failure even with generous scoring. The strict algorithm (SA) 
filters out phantom images expected to pass even with strict scoring. We anticipated that these algorithms could 
safely reduce the need for assessment by a human observer by filtering out images that show the same result in 
any reading (Fig. 5).

Threshold for PFA and its application. In the case of the LA, the threshold was used in the expected lower range 
of 0.3–0.4 (BCC)/0.3–0.5 (MCC) for generous scoring. In the case of the SA, the threshold was implemented 
in the expected higher range of 0.6–0.7 (BCC)/0.4–0.6 (MCC) for strict scoring. After performing PFA with 
various combinations of threshold values with the 543 phantom images, the number of filtered images and the 
predictive value (hit/prediction ratio) were taken into consideration when selecting. Passing or failure of the 
phantom images was interpreted according to the ACR phantom scoring  method8. If there is no longer a need 
for a human observer to assess a filtered image, accurate filtering should be considered more valuable than the 
number of filtered images. In order to meet this filtering purpose, we have chosen a threshold with excellent 
predictive value [LA 0.3 (BCC)/0.3(MCC), SA 0.7/0.5], even though the number of filtered images was reduced. 
Finally, while 277 out of 543 images were filtered with the selected threshold, 250 out of 277 images (90%) were 
ground-truth pass or fail results (Supplementary Table S5). Selected final algorithms are provided in Fig. 6. We 
applied the 61 phantom images for external validation to the final PFA in order to calculate how much filtering 
is actually possible.

Results
The performances of the DPS model in our holdout set had an F1-score of 0.77 (95% CI 0.75, 0.80) for MCC and 
an F1-score of 0.95 (95% CI 0.94, 0.96) for BCC and an AUC of 0.98 (95% CI 0.97, 0.99) for BCC. For external 
validation, the DPS model showed slightly lower performance than the holdout set, i.e., F1-score of 0.69 (95% 
CI 0.65, 0.72) for MCC and F1-score of 0.93 (95% CI 0.92, 0.95) for BCC and AUC of 0.97 (95% CI 0.96, 0.98) 
for BCC (Table 4).

Figure 5.  The phantom image filtering using the deep neural network based phantom shape scoring (DPS) 
models. The phantom images are filtered using two types of algorithms based on DPS models. The lenient 
algorithm filters phantoms that are to be determined as failed. The strict algorithm filters phantoms that are to 
be determined as passed.
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Of the total 61 phantom images, 32 of the 38 failed images (84%) were filtered out using LA and 10 of the 23 
passed images (43%) were filtered out by the SA. At the end, 42 of the 61 phantom images (69%) were filtered out 
by PFA. All of the phantom images predicted by failure through the LA produced a result of ground-truth failure, 
and all of the phantom images predicted by the pass through the SA showed ground-truth pass results (Table 5).

Discussion
Machine learning and mammography phantom image. A considerable number of studies that have 
applied machine learning algorithms to full-field digital mammography are available. It can be broadly classified 
into computer-aided detection (CAD) systems, mammographic density assessment, and screening mammog-
raphy triaging. In previous applications, large-scale data that can include the full range of findings (including 
various sizes, locations, and imaging findings) that can be seen in mammography is required to secure a high 

Figure 6.  The final lenient algorithm (LA) and strict algorithm (SA) based on deep neural network based 
phantom shape scoring (DPS) models. Specific thresholds for LA and SA are selected after trying various 
combinations of threshold values.

Table 4.  Performance of the DPS models in the holdout and external validation set. DPS, deep neural network 
based phantom shape scoring; MCC, multi-class classifier; BCC, binary-class classifier; PPV, positive predictive 
value, N/A, not applicable; AUC, area under receiver operating characteristic curve.

Performance

Holdout External validation

MCC BCC MCC BCC

Score Fibers Specks Masses Score Fibers Specks Masses Score Fibers Specks Masses Score Fibers Specks Masses

Accuracy (%)
(95% CI)

0
90.91 
(85.66,
94.71)

88.1
(81.13,
93.18)

89.22 
(83.5,
93.49)

0
88.64
(83,
92.92)

84.13 
(76.56,
90.03)

88.62 
(82.8,
93.01)

0
96.15 
(91.82,
98.58)

94.23 
(87.87,
97.85)

100
(96.9,
100)

0
85.9
(79.43,
90.95)

86.54
(78.45,
92.44)

99.15
(95.33,
99.98)

0.5
30
(17.86,
44.61)

0
(0,
14.82)

61.69 
(53.52,
69.4)

0.5 or 1
96.43 
(94.34,
97.91)

98.08 
(96.25,
99.17)

94.15 
(91.28,
96.3)

0.5
0
(0,
11.57)

0
(0,
33.63)

23.75 
(14.95,
34.58)

0.5
or 1

91.9
(87.36,
95.21)

99.5
(97.26,
99.99)

85.64
(79.8,
90.32)

1
94.37
(91.73,
96.36)

99.24
(97.79,
99.84)

80.18 
(74.32,
85.21)

1
95
(90.72,
97.69)

100
(98.1,
100)

86.11 
(78.13,
92.01)

Sensitivity, 
Recall
(95% CI)

0.77
(0.74,
0.79)

0.93
(0.90,
0.95)

0.69
(0.66,
0.71)

0.90
(0.87,
0.92)

PPV, Precision
(95% CI)

0.79
(0.76,
0.81)

0.98
(0.96,
0.98)

0.85
(0.79,
0.90)

0.97
(0.95,
0.98)

AUC 
(95% CI) N/A

0.98
(0.97,
0.99)

N/A
0.97
(0.96,
0.98)

F1-score
(95% CI)

0.77
(0.75,
0.80)

0.95
(0.94,
0.96)

0.69
(0.65,
0.72)

0.93
(0.92,
0.95)
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level of accuracy. In addition, these data should have included a wide variety of equipment, hospitals, age groups, 
and races. For the CAD system study, a “reader study” that proves the improvement of the radiologist’s reading 
accuracy using the CAD system (improving breast cancer detection rate and reducing the recall rate in screen-
ing tests) is required in addition to evaluating the algorithm performance. Thus, performance evaluation in the 
actual breast cancer screening cohort must be made. For prospective cohort studies, it takes 1–2 years to recruit 
study subjects and a follow-up period of 1–2 years to evaluate interval cancer. Thus, it takes 3–4 years to obtain 
actual results. The application of machine learning algorithms to phantom images has several advantages. It is 
possible to create large-scale data by using a standardized phantom without any ethical problems. The size and 
position of the shape in the image are determined, and the image findings are relatively simple compared with 
the actual mammography. Furthermore, artificially matching various equipment (mammography unit/phan-
tom) is possible. Age and race are irrelevant in all cases. Evaluating the reduction of manpower and time in 
actual clinical circumstances is necessary in addition to evaluating the algorithm performance, however, it will 
be very easy compared to a mammography study. Due to these advantages, if more machine learning approaches 
on phantom images can be made, it will be a field of machine learning research that is expected to have very 
satisfying results.

Reliability of deep learning model and filtering algorithm. Several computerized assessment meth-
ods were published for the mammographic phantom image  analysis1–5. We scored a phantom using a DNN, 
after learning the results of human observers as ground-truth. Considering that machine learning is a special-
ized sub-field of artificial intelligence, capable of learning and improving by studying high volumes of data for 
improved results, our attempt seems to be another suitable choice. The studies of Oh et al.6 and Ho et al.7 were 
also conducted based on this. A comparison with our study is provided (Table 1).

In our DPS model, proper training for a shape with a score of 0.5 was not performed due to relatively small 
number of samples with a score of 0.5. Consequently, MCC does not show enough performance (F1-score of 
0.69, 95% CI 0.65, 0.72) in our external validation. We supplemented this weakness by creating a BCC (F1-score 
of 0.93, 95% CI 0.92, 0.95, AUC of 0.97, 95% CI 0.96, 0.98). If a sufficient number of a shape showing a score of 
0.5 could be obtained, a high performance DPS model consisting only of an MCC would have been possible. 
The highest possible value of an F1-score is 1, indicating perfect precision and recall, and the AUC result is con-
sidered excellent for AUC values between 0.9 and 1. The performance of our BCC was very good, both in the 
holdout and the external validation set. Although binary classification, this high BCC performance means that 
only hundreds of phantom images (543 images) can make a high-performance DPS model. This also shows that 
DNN is highy promising as a computerized assessment method of the phantom shape. Although the F1-score 
of MCC was not as high as that of BCC, since our end goal was to filter the phantom images based on both BCC 
and MCC, the score was acceptable.

A PFA was developed using both BCC and MCC. Even if we could have high-enough performance, it is differ-
ent from a perfect (meaning always correct) performance. There will be possible discordant results between the 
DPS models and ground-truth. Therefore, if pass/fail filtering is performed only by relying on high-performance 
DPS models, images of pass/fail that radiologists cannot agree on may be filtered. If there are many such results, 
a DNN-based scoring becomes unreliable. This is the reason we introduced PFA instead of simple DPS-based 
elimination. When we applied our PFA to our set of external validation images, the PFA was able to accurately 
exclude 69% of the phantom images by correctly identifying them as being either very likely to pass or very 
likely to fail a direct visual scoring by a radiologist. After filtering by the PFA, only less than one-third (31%) of 
the phantom images remained for direct visual scoring by radiologists. For all of the images that were filtered 
out by the PFA, there was 100% agreement between the algorithm-based pass/fail designation and the actual 
radiologist pass/fail interpretation. This result demonstrated that the PFA of our method is highly reliable. Even 
after multi-vendor/multi-reader study could be performed, DPS models with perfect performance would be 
impossible, so filtering through threshold-controlled algorithms as ours is more realistic.

In our study, ground-truth score of a phantom shape for machine learning was determined through consensus 
by two radiologists. Finding an accurate score as a ground-truth is not a problem that can be solved by many 
readers or majority decision; an accurate score may not be given by all of the readers. Therefore, judging the con-
sensus scoring of two radiologists with their years of phantom scoring experience (17 and 9 years, respectively) 
is most realistic under our given conditions.

Table 5.  Results after application of PFA in the external validation set. PFA, phantom image filtering 
algorithm.

PFA

61 Phantom images

Passed 23 Failed 38

Lenient algorithm Failure hit/ Failure predict 32/32 (100%)

Strict algorithm Pass hit/Pass predict 10/10 (100%)

Total images filtered
10/23 (43%) 32/38 (84%)

42/61 (69%)
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Limitations and future considerations. Our study has several limitations. First, images were obtained 
from a single vendor’s mammography unit and phantom model. Hence, future studies should assess the gener-
alizability of our results using multiple vendors’ mammography units and phantom models. Second, the sample 
size selected for the design of the study and the external validation was “convenience sampling”. However, we 
tried to obtain as much sample data as possible within a given set of circumstances. Future studies are expected 
to better solve the overfitting problem that can occur with small amounts of data by applying a learning algo-
rithm such as stochastic weight averaging. In future studies, careful consideration should be given to the deter-
mination of unbiased training and validation set size. We could perhaps examine whether learning curves (accu-
racy versus size of training data) would suggest whether more data would help. Third, further studies require 
steps that measure the optical density and detect the artifact prior to scoring the phantom shape. This will help 
improve the ability to exclude more images.

In spite of the limitations, our trial shows that it is possible to exclude a sufficient number of images through 
the threshold-controlled algorithm based on a DNN. For people who are not fluent in phantom reading, this 
can be a reference standard to maintain the objectivity of the results, and a double reading effect can also be 
anticipated. When a PFA is developed with an easy-to-use software that works with a picture archiving com-
munication system, our algorithm may reduce the workload of the radiology department and would ultimately 
be beneficial for providing more quality hospital services. Our final goal is to develop phantom filtering software 
and to confirm the effect (reduction of time or manpower) that appears when it is used in actual clinical situa-
tion. The development of an algorithm that reduces staff workload by filtering a passed or failed phantom image 
based on a DNN has not been attempted until now.

The VGG16 is a model of image data for image recognition and is well known for its good image feature 
extractor. However, a study of other architectures and training procedures plus ideally “ablation study” indicat-
ing what choices impact the result the most will likely be useful as we move beyond a single hospital study into 
a multi-center trial. We used the Softmax / Sigmoid output of the model as a measure of certainty. However, this 
may not be an ideal way to filter the data, as it does not properly capture model uncertainty. In future studies, 
adding more robust measures, such as dropout-based uncertainty measures, will be helpful.

According to the method we proposed, each shape must be cropped out of a phantom image, and the cropped 
shape must be further preprocessed before passing through PFA. In its current state, it takes much more time than 
does actual visual scoring. In the future, even if we make software that can perform all tasks automatically in a 
given phantom image, it is not easy to exceed the speed of visual scoring. However, our goal is not to reduce the 
scoring time per image. Our goal is to filter out definite passed or failed phantom images ahead of visual scoring, 
thereby ultimately reducing human effort. The automated software should operate without time constraints, so 
radiologists will have a reduced number of images to score. This will be more useful in accrediting agencies that 
conduct a large number of phantom scoring.

Conclusions
We developed a reliable DNN-based algorithm to reduce the workload in mammographic phantom interpretation 
and demonstrated its feasibility. Further studies are necessary to determine the efficacy and feasibility of applying 
the automated DNN-based algorithm to the mammographic phantom interpretation in clinical practice. In the 
future, a specific DNN model using VGG16 as the foundational base could be developed.
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