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Intelligent modeling of hydrogen 
sulfide solubility in various types 
of single and multicomponent 
solvents
M. A. Moradkhani 1, S. H. Hosseini 1*, K. Ranjbar 1 & M. Moradi 2

This study aims to study the solubility of acid gas, i.e., hydrogen sulfide  (H2S) in different solvents. 
Three intelligent approaches, including Multilayer Perceptron (MLP), Gaussian Process Regression 
(GPR) and Radial Basis Function (RBF) were used to construct reliable models based on an extensive 
databank comprising 5148 measured samples from 54 published sources. The analyzed data cover 95 
single and multicomponent solvents such as amines, ionic liquids, electrolytes, organics, etc., in broad 
pressure and temperature ranges. The proposed models require just three simple input variables, i.e., 
pressure, temperature and the equivalent molecular weight of solvent to determine the solubility. 
A competitive examination of the novel models implied that the GPR-based one gives the most 
appropriate estimations with excellent AARE,  R2 and RRMSE values of 4.73%, 99.75% and 4.83%, 
respectively for the tested data. The mentioned intelligent model also performed well in describing 
the physical behaviors of  H2S solubility at various operating conditions. Furthermore, analyzing the 
William’s plot for the GPR-based model affirmed the high reliability of the analyzed databank, as 
the outlying data points comprise just 2.04% of entire data. In contrast to the literature models, the 
newly presented approaches proved to be applicable for different types of single and multicomponent 
 H2S absorbers with AAREs less than 7%. Eventually, a sensitivity analysis based on the GPR model 
reflected the fact that the solvent equivalent molecular weight is the most influential factor in 
controlling  H2S solubility.

List of symbols
AARE  Average absolute relative error
Mw  Molecular weight of solvent, gr  mol−1

P  Pressure, kPa
R2  Coefficient of determination
Ri  Relative error of ith data from the actual value
RRMSE  Relative root mean squared error
T  Temperature, ◦C
Wi  Mass fraction of ith component in the solvent
xH2S  H2S mole fraction

Subscripts
H2S  Related to  H2S gas
eq  Equivalent

Hydrogen sulfide  (H2S), as the most common acid gases, is produced in several industries, such as wastewater 
treatment, coal synthesis, and oil and gas  production1–8. In almost all these industries,  H2S removal is a vital step 
due to its high corrosion, resulting in equipment and pipeline  damage9–11. Moreover,  H2S is one of the major 
sources of air pollution and acid  rain12. On the other hand, the high toxicity of  H2S poses serious health risks to 
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humans, plants, and other  creatures13–16. Accordingly, various technologies have been developed for  H2S removal 
from gas  mixtures17–21. Among them, chemical absorption is broadly used in various units as it is inexpensive 
and highly  flexible22. Since the solubility of  H2S in various types of solvents is critical in industrial simulation 
and design, it is imperative to develop comprehensive and exact predictive models applicable for a wide range 
of solvents and operating conditions.

Several experimental investigations are available in the literature on the  H2S solubility in various types 
of solvents. The most commonly used solvents involved in numerous industries are aqueous solutions of 
 alkanolamines23–33. These solvents can be divided into three main categories, namely, primary, secondary and 
ternary amines. While alkanolamines show high capabilities during  H2S removal process, their disadvantages 
such as, amine loss during regeneration, corrosion caused by degradation, water transfer into gas steam, and 
high cost of the process restrict their applications in some industrial  units34–37. Accordingly, various alternative 
solvents have been developed to resolve such disadvantages. The ionic liquids can be considered as the most 
capable solvents because of their high stability, recyclability, flexibility, and also their low vapor  pressure38–45. 
Moreover, they do not cause pollution, which makes them less hazardous for the  environment42,44,46–48. The 
performances of several types of chemical absorbents, including organic liquids, electrolytes, etc. have also been 
investigated for  H2S removal from sour  gas47,49–54.

There are several empirical and thermodynamic-based models for estimating the  H2S solubility in different 
types of solvents. However, they are mostly applicable for special  conditions5,26,55–62. Also, these models are much 
more complex to calculate solubility, which limits their usage. Haghtalab and  Mazloumi63 utilized electrolyte 
cubic square-well equation of  state64 to predict the  H2S solubility in aqueous solutions of MDEA. The model 
showed the AARE of 11.4% for 189 data points for  H2S–H2O–MDEA systems. Al-Rashed and  Ali65 developed 
a model for predicting the acid gases  (CO2 and  H2S) loading in MDEA and DEA aqueous solutions based on 
electrolyte–UNIQUAC method. The model provided satisfactory agreements with 2854 experimental data. Sol-
tani  Panah66 employed the CPA equation of state to model the  H2S solubility in ionic liquids, and determined 
the pure parameters of ionic liquids based on experimental data for density and vapor pressure. The established 
model exhibited an average deviation less than 10% for all analyzed ionic liquids. Yazdi et al.67 suggested a model 
based on PC-SAFT equation of state for  H2S-H2O-MDEA systems and 295 experimental data, which resulted the 
average relative error of 0.0001% in estimation the bubble pressure. In another study, it was shown that RETM 
equation of state can predict  H2S solubility in various ionic  liquids68,69.

Since the thermodynamic equations of state for  H2S solubility in solvents need extra fluids information, 
machine learning algorithms can be chosen as alternative predictive approaches in the  field70,71. In most of earlier 
studies in the field, the experimental data for solubility of  H2S in ionic liquids have been used for developing 
the  models35,46,72–74. An extended review in this regard was presented by Yusuf et al.75. Ahmadi et al.76 utilized 
genetic programming approach to develop an explicit correlation for  H2S solubility in 11 different ionic liquids. 
The correlation showed a total AARE of 4.38% for all 465 analyzed data. Amedi et al.77 evaluated different types 
of machine learning algorithms to model the  H2S solubility in ionic liquids based on 664 experimental data. 
Among them, the MLP approach provided the most reliable predictions with AARE and  R2 values of 11.68% and 
99.51%, respectively for test data. In another related work, the extreme learning machine (ELM) approach was 
employed by Zhao et al.37 to predict  H2S solubility in ionic liquids. This model was established based on 1282 
experimental data for 27 ionic liquids, utilizing pressure, temperature and number of fragments as input factors. 
It should be noted that the AARE of 5.78% was obtained by ELM-based model during test stage. Barati-Harooni 
et al.78 proposed various intelligent methods to approximate  H2S absorption in in 14 ionic liquids. Beside the 
temperature, pressure and molecular weight of ionic liquids, 9 structural-related factors were also defined as 
models’ inputs. It was found that the least square support vector machine (LSSVM) has the superior predictions 
with total AARE of 0.13% for 664 experimental data. A similar observation about the ability of LSSVM in the 
field was reported by Baghban et al.36. Kang et al.79 utilized the ELM methods to estimate the  H2S mole fraction in 
28 different ionic liquids, considering the electrostatic potential surface of molecules as one of the model inputs. 
The analyzed database included 1318 experimental data, and the ELM method showed an AARE of 5.07% for 
the tested data. Amar et al.80 provided a competitive evaluation of machine learning algorithms to model the 
 H2S solubility based on 1243 data points for 33 ionic liquids. The models’ inputs were pressure, temperature, 
acentric factor, critical pressure and critical temperatures of ionic liquids. It was found that the results of advanced 
committed machine intelligent system (CMIS) are much better than those of the conventional methods such as 
multilayer perceptron. More recently, Mousavi et al.81 examined the application of deep learning algorithms for 
estimating the  H2S solubility in ionic liquids based on 1516 data points, and considered the chemical structural 
of molecules as an adjusted parameter. All deep learning-based methods had satisfactory results with AAREs 
between 3.20% and 7.15% for test data.

From the above literature survey, it is evident that the earlier models developed for  H2S solubility have been 
validated with data for limited types of solvents, particularly ionic liquids. Also, none of them are well verified 
for multi-component solvents. On the other hand, the application of machine learning algorithms to design 
universal models applicable for various operating conditions and  H2S absorbers has not been investigated so 
far. Therefore, to address the above deficiencies, in the present communication, an immense set of experimental 
data, including 5148 samples is gathered from 54 published sources, which is the widest  H2S solubility databank 
analyzed to date. The solubility data for 95 single and multicomponent solvents such as amines, ionic liquids, 
electrolytes, organics, etc. are covered by the current data. To build robust models, three well-known intelligent 
approaches of MLP, GPR and RBF are used, among which the GPR approach is used in practice for the first 
time. In order to clarify the predictive ability of the newly established models, their accuracy for different types 
of solvents, both single and multi-component solvents, is evaluated using statistical criteria. The reliability of 
the experimental data used to design the new model is also examined through the William’s plot. Furthermore, 
the influences of operating conditions on  H2S solubility are studied using the models’ outcomes, then the most 
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effective factors are introduced. A comparative assessment between the performances of the novel intelligent 
models and those proposed in the earlier studies is also carried out.

Materials and methods
Machine learning algorithms. In this study, three well-known intelligent schemes, namely, MLP, GPR 
and RBF were used to design predictive models for  H2S solubility for various single and multicomponent sol-
vents. According to our previous  studies82–85, these approaches have high capabilities for accurate modeling of 
engineering systems with nonlinear and complicated behaviors.

RBF. The unique advantages of RBF networks, such as quick training process, uncomplicated structure and 
high precision modeling had made them widely used in various engineering fields. This network contains three 
independent layers, namely, input layer, a single hidden layer and output layer. A schematic of the RBF network 
employed to model the  H2S solubility is shown in Fig.  1. As seen, the input variables are introduced to the 
network via the input layer. The second layer, i.e., hidden layer includes various neurons, the number of which 
is equal to the number of data used for training the network. These neurons have the ability to use a variety of 
activation functions such as Gaussian, multi-quadric, and cubic radius, etc. These functions contribute to build 
complex mappings between network inputs and outputs. In other words, they enable the model to adjust to the 
complex and nonlinear system characteristics. The Gaussian function, Eq. (1), was chosen for this study as it 
offered the best fit between the experimental and predicted values among a variety of activation functions. Such 
a result was observed in our earlier works for different  systems82,83,85–88,

where σ denotes the gaussian function’s standard deviation, and d is the Euclidean distance between the input data 
and the center of network. Ultimately, the weighted sum of activation functions is presented by the output layer,

It should be noted that wk is the weight of kth neuron in the hidden  layer89.

GPR. The gaussian process regression (GPR) is known as a non-parametric and supervised machine learning 
algorithm which uses the concept of  probability91,92. It should be noted that this method provides reasonable 
outcomes even for limited numbers of data samples. Accordingly, it is utilized for a broad range of problems with 
nonlinear behaviors. GPR includes a collection of random variables which they have the multivariate normal 
 distributions93–95. If the outputs of h(x) are estimated as i(x) =
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 . Accordingly, there is a multivariate gaussian distribution for h(x) . It should be noted 
that, P

(

xi , xj
)

 represents the prior probability distribution of h(x) . Once a new set of input data to be applied, the 
GPR probability model is updated and a posterior probability function for h(x) is calculated.

MLP. MLP networks are the most common types of feed-forward neural networks, which have been designed 
based on nervous system of  humans96. The main applications of these networks include pattern recognition, 
classification and  estimation97,98. A schematic diagram of the MLP network used for modeling of  H2S solubility is 
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Figure 1.  The structure of the RBF network employed for modeling of  H2S solubility (created by Grapholite 
4.0.190).
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presented in Fig. 2. As seen, the network includes an input layer corresponding to input factors ( T , P and Mweq ), 
another layer associated with output factors ( xH2S ), and one or more layers between them as hidden layer(s). 
Each of these layers has a number of neurons, which are directly connected to the neurons in the next layer 
through biases and weights. The numbers of neurons in input and output layers equal to the numbers of input 
and output variables, respectively. However, the number of hidden layers and their corresponding neurons are 
adjustable. Since the MLP network is usually used for modeling of nonlinear systems, various activation func-
tions, such as log-sigmoid, threshold and tan-sigmoid may be included in the neurons of hidden layers in order 
to introduce the nonlinearity to the established network. For measuring the deviation of model’s outcomes from 
the actual data, the MLP network uses the cost function defined as follow,

The back-propagation algorithm propagates the value of cost function values via the network, then the synap-
tic weights are accordingly tuned to minimize this value. Several training methods such as gradient descent (GD), 
Levenberg–Marquardt (LM) and Bayesian regularization (BR) could be employed in the back-propagation algo-
rithm. In this study, a number of MLP network topologies were tested in order to attain the desired values of error 
metrics, such as AARE, RRMSE and R2. Finally, a network containing five hidden layers with [30–25–20–15–10] 
neurons’ structure yielded the best predictions for the  H2S solubility in solvents. In addition, the capable method 
of Bayesian regularization was utilized to minimize the cost function. More details about the configuration details 
of MLP network utilized for modeling of  H2S solubility are summarized in Table 1.

It should be noted that prior to estimating, the hyperparameters of an algorithm that define the construction 
of a data-driven model, such as those reported in Table 1, need to be optimized. Therefore, hyperparameters are 
randomly tested at different values in order to determine which ones produce accurate predictions or reduce 
loss functions.

Experimental data collection. In the current study, an immense experimental databank of  H2S solubility, 
containing 5148 samples were collected from 54 independent sources. The operating ranges of analyzed sources 
are presented in Table 2. As seen, the current database covers 95 single and multicomponent solvents including 
amines, ionic liquids, electrolytes, organics, etc. over broad ranges of operating conditions. Therefore, it can 
properly satisfy the need for comprehensive experimental data in order to development of robust models.

(3)� =
1

2

(

xH2S,pre − xH2S,exp

)2

Figure 2.  The structure of the MLP network employed for modeling of  H2S solubility (created by Grapholite 
4.0.190).

Table 1.  Configuration details of the MLP network utilized for modeling of  H2S solubility.

Parameter Type/value

Number of neurons in the input layer 3

Number of neurons in the output layer 1

Number of hidden layers 5

Neurons’ structure in hidden layer [30–25–20–15–10]

Number of weights 1800

Number of biases 101

Total number of parameters 1901

Learning role Bayesian regularization

Train function Trainbr

Transfer function Tansig
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Table 2.  Operating ranges of analyzed sources for  H2S solubility in solvents.

Reference Solvent Temperature, (◦C) Pressure, (kPa) xH2S , (%) Number of data
99 MEA–sulfolane 30–100 9.3–1390.6 3.4–52 35
100 DEA–NMP, MEA–NMP 25–100 20.1–1301.3 2.7–65.3 43
101 DEA–sulfolane 30–100 14.3–1439.7 2.1–53.2 56
102 Dodecane 40–161 524–5675 6.69–90.2 33
103 Methanol, benzene 25–50 61–1180.5 1.52–48.79 41

26 Piperazine–water, piperazine–AMP–water, MDEA–AMP–water, MDEA–piperazine–AMP–
water 40–70 202–2047 1.58–12.08 142

104 MDEA–water 10–15 1.06–12.72 1.05–5.54 20
50 DIPA–water–sulfolane 40–100 4.6–3862.3 1.57–48.77 25
105 [emim][EtSO4] 30–80 113.7–1270.4 1.2–11.8 36
41 [C2mim][eFAP] 30–80 58.2–1941.5 2.2–59.26 79
106 MDEA–water 40–80 1.09–313 0.98–7.49 24
107 2-Piperidineethanol–water 40–100 0.25–5550 1.66–38.21 37
108 DEA–water 37.8–148.9 0.98–3820.9 1.03–7.87 74
109 Methanol 25–175 63.86–8974 1.15–99.38 47
110 MEA, MDEA, MEA–MDEA, 40–100 0.96–445.7 0.98–9.16 164
111 AMP, AMP–MEA 40–100 0.53–181.6 1.01–8.47 141
112 MDEA–sulfolane–water 40–100 4.22–3210 0.98–10.41 32
113 DGA–water 50–100 2.52–1890 1.15–18.23 40
114 [C2mim][OTf] 30–80 64.3–2455.3 2.91–56.72 36
39 [hmim][PF6],  [hmim][PF4],  [hmim][Tf2N] 30–70 97.4–1100 2.9–53.3 97
115 MDEA–DEA–AMP–water, MDEA–DEA–water 40–120 2.5–1036.8 1–13.4 73
28 MIPA–water 40–120 51.4–1467.6 1–15.9 69
116 AMP–sulfolane–water 40–100 7.09–2200 0.98–3.13 18
117 [C8mim][PF6] 30–80 84.5–1958.4 4.63–69.72 48
38 [emim][PF6],  [emim][Tf2N] 30–90 107.7–1933 3.2–60.9 82
3 [HOemim][PF6], [HOemim][OTF] 30–80 105.9–1839 3.62–57.95 129
34 [bmim][MeSO4] 25 10.8–750.9 2.2–52.1 8
29 MDEA–water 40–70 11–1065 1.76–11.42 27
26 MDEA–AMP–water 40–80 18.5–1441.5 4.46–11.03 31
31 MDEA–piperazine–water 40–120 1.26–5472.32 1.16–12.27 64
118 CH3COOH–water 40–120 1010–9708 1.12–6.68 77
53 NaNO3–water,  NH4NO3–water, NaOH–water 40–120 15.1–9393 1.08–7.21 146
119 Na2SO4–water,  (NH4)2SO4–water, NaCl–water,  NH4Cl–water 40–120 1260–9784 0.99–5.57 139
120 Piperazine–water, MDEA–Piperazine–water 40–120 136.3–8748 2.02–13.64 103
121 Isooctane, N-decane, N-tridecane, N-hexadecane, squalane 50–250 192–1658 1.81–41.27 117
52 Propylene carbonate, dimethyl carbonate, diethyl carbonate, diethyl succinate 25–55 23–1013 1.09–54.96 465
47 Propylene carbonate,  [Bmim][BF4],  [Hmim][BF4],  [Omim][BF4],  [Omim][BF4]-PC 30–60 27–1030 1.27–57.35 557
33 MDEA–water, MDEA–AEEA–water 40–85 6.9–1398.8 1.11–9.51 131
23 MDEA–H2SO4–water 40–120 32.7–3866 1.01–6.58 45
122 DGA–water, MDEA–water 40–115 11.1–1762.64 1.05–18.45 77
123 DEA–water, MDEA–water, MDEA–DEA–water 40–100 7.97–1337.60 0.99–11.62 79
124 MDEA–water 40–120 147.9–2763 1.90–15.24 26
125 MDEA–water 40–140 165.2–4895.9 1.65–9.85 71
49 Hexane, cyclohexane, benzene 50–150 400–11,210 2.3–93.6 81
126 DIPA–water, DIPA–piperazine–water 40–80 19–1554 2.84–9.31 74
127 Propylene carbonate, sulfolane, N-methyl pyrrolidone 25–100 55.2–1654.6 2.67–70.57 66
128 TDG 30–50 90–1040 2.7–18.76 18
25 GBL, NMI 30–80 162–1356 5.7–37.5 73
129 NMP–water 30–80 68–1478 1–31.42 280
130 MDEA–piperazine–sulfolane–water, MDEA–piperazine–water, MDEA–sulfolane–water 30–80 10.3–2064.3 3.23–11.45 317
131 [Bzmim][Tf2N] 30–70 52.9–1596.2 2.47–65.12 53
44 [2-HEA][Ace], [B-2-HEA][Ace] 25–45 100.9–102.37 6.8–12.2 10
132 [emim][Ace], [emim][Pro], [emim][Lac], [bmim][Ace] 20–60 1.73–341.73 7.3–63.75 238
68 [DMEAH][Ac], [DMEAH][For], [MDMEAH][Ac], [MDMEAH][For] 30–60 4.62–139.51 1.03–20.91 154

Total 95 different solvents 10–250 0.25–11,210 0.98–99.38 5148
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Models’ input factors. According to experimental investigations, the solubility of  H2S in solvents mainly 
depends on pressure, temperature and solvents characterizations. Although the critical temperature, critical 
pressure, and acentric factor of solvents have been extensively utilized to assess the influence of absorber type on 
 H2S solubility, these factors have not been experimentally determined for some of the solvents analyzed in this 
study. Additionally, using of numerical methods, such as group contribution approaches requires complicated 
calculations, particularly when a multicomponent absorber is used. On the other hand, some researchers have 
used the chemical structure of solvents to discriminate between different absorbers. This methodology extremely 
increases the number of input factors required to approximate  solubility37,81,133. Since the current study aims to 
present simple models for  H2S solubility, the equivalent molecular weight, which takes into account the molecu-
lar weights of all components as well as their mass fractions, has been used to consider the differences between 
various solvents,

where Wi and Mwi stand for the mass fraction and molecular weight of ith component, respectively. Also, m 
denotes the number of the absorber components.

In fact, the value of equivalent molecular weight is a function of concentration and solution type. The capabil-
ity of this factor to satisfy the influence of solvents characterizations has been proven in several  studies134,135. It 
should be noted that each of  H2S absorbers analyzed in this study has its unique Mweq value, hence, this factor 
is capable to discriminate between various solvents, as well. Accordingly, the novel models have been established 
based on the following form,

Error analysis. In order to examining the precisions of various models to predict the  H2S solubility in sol-
vents, the statistical factors of average absolute relative error (AARE), relative root mean squared error (RRMSE) 
and coefficient of determination ( R2 ) were  calculated93,136–142,

where n is the total number of data. Moreover, the relative error, Ri can be determined by the following equation,

Results and discussions
Development of the novel predictive approaches. Utilizing the collected experimental data, the 
intelligent approaches of MLP, GPR and RBF were implemented to develop novel predictive models for  H2S 
solubility based on the form presented in Eq. (2). The models were firstly trained using 4118 data points, which 
cover 80% of entire databank. Then, the performances of the trained models were tested by the remaining 1030 
experimental data. Table 3 lists the error metrics corresponding to the novel  H2S solubility models during train-
ing and testing steps. It is clear that the model established by the GPR approach is the only model with excellent 
accuracy for both train and test databases with AAREs of 4.78% and 4.73%, respectively. Moreover, its R2 and 
RRMSE values during test stage are 99.75% and 4.83%, respectively, which acknowledges its high reliability in 
predicting  H2S solubility in solvents. According to classifications provided by Zendehboudi et al.143,144, the GPR-
based model can be known as an approach with excellent prediction capability, as its RRMSE for test data is less 
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1

∑m
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Wi
Mwi
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)
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∑
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Table 3.  Error metrics of the novel intelligent models for predicting  H2S solubility in solvents.

Error metrics

Train, (4118 data) Test, (1030 data) Total, (5148 data)

MLP GPR RBF MLP GPR RBF MLP GPR RBF

AARE (%) 16.74 4.78 0.02 19.66 4.73 28.41 17.33 4.77 5.70

R2(%) 99.37 99.88 100 94.61 99.75 90.91 98.41 99.85 98.16

RRMSE (%) 8.21 3.61 0.14 22.46 4.83 29.17 12.88 3.92 13.84
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than 10%. These results also imply the fact that the selected input variables are capable to satisfy the influences 
of various factors on solubility of  H2S. The MLP-based model provides relatively good results, and has the R2 
value of 98.41% for entire data. However, its deviations during both training and testing processes are much 
higher than the GPR-based model, with AARE of 16.74% and 19.66%, respectively. While the model developed 
by RBF approach presents the best performances during train stage, its precision for test data is unsatisfactory 
with AARE of 28.41%. Therefore, this model cannot be considered as a reliable predictive method. Overall, the 
current statistical examination shows that the GPR-based model has remarkably higher precisions in estimation 
of  H2S solubility in solvents. To visualize the accuracy of the new models, their results are plotted against the 
actual values in Fig. 3. It is obvious that the  H2S solubility values calculated by GPR-based approach are much 

Figure 3.  Comparison between actual values of  H2S solubility and those predicted by the novel intelligent 
models (created by GraphPad 8.4.3.686145).
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closer to the best-fit line. For these reasons, it is selected as the most capable predictive model for  H2S solubility, 
and the further evaluations are conducted based on this model.

Figure 4 depicts the distribution of relative errors obtained by the GPR model in various ranges. As observed, 
78.69% of  H2S solubility values predicted by this model have relative errors less than 5% from the experimental 
data. Moreover, 9.01% of data fall in relative errors between 5 and 10%. So, it can be concluded that the novel 
model predicts more than 87% of experimental data with excellent accuracy. On the other hand, 6.84% of remain-
ing data have also been predicted satisfactorily, as their relative errors are between 10 and 20%. This figure also 
reveals that just a limited number of data predicted by GPR approach (5.46% of the whole data) are beyond the 
± 20% error bounds. This fact is visible from the results provided in Fig. 3. As a result, the GPR model, which has 
been established based on a huge number of experimental data, is an extremely high reliable predictive approach 
for  H2S solubility in solvents.

Detection of suspected data. Credibility of a predictive approach is highly dependent on precision of 
data employed for modeling. Suspected data are defined as those with remarkable deviations from the bulk 
of analyzed databank. Errors occurred during experimental measurements are the main sources of such data 
points. Existence of some suspected data is unavoidable when analyzing a large number experimental data from 
various  sources135,146–148. In this study, the graphical technique of William’s plot was employed to detect the prob-
able suspected data. This method uses the statistical parameters of standardized residual (SR) and hat values  (hi) 
to determine the mentioned data. It should be noted that the hat values are the diagonal elements of the follow-
ing matrix, i.e., hat matrix,

where X is an S × P matrix, in which S is the number of analyzed data samples, and P indicates the number of 
model’s input parameter. In William’s plot, the data in the ranges of −3 < SR < 3 and hi < H∗ = 3(P + 1)/S are 
considered as valid data points. In addition, the points with SR > 3 or SR < −3 are suspected data, regardless of 
their hat values. Ultimately, when the conditions of −3 < SR < 3 and hi > H∗ are satisfied, the corresponding 
data are named as ‘Good high Leverage’  points36. This means that while the operating conditions of these data 
are much deviated from the bulk of dataset, the model is capable to predicts them, precisely.

Figure 5 demonstrates the William’s plot for the model developed by GPR approach. As is clear, a huge number 
of points (92.87% of entire databank) are placed in the valid range. Moreover, 5.09% of data can be considered as 
good high Leverage points. In contrast, the suspected data cover just 2.04% of the analyzed dataset. Accordingly, 
it can be found that the current databank for  H2S solubility is highly reliable, and the model proposed based on 
them provides exact and reasonable predictions.

Prediction capabilities of the novel model. Various types of solvents. Based on discussions provided 
in section “Introduction”, the earlier  H2S solubility models have been recommended just for specific types of sol-
vents. In contrast, the database analyzed in this study covers various types of  H2S absorbers. Hence, the predic-
tion capabilities of the novel model for each type of solvents should be clarified. The AARE values of GPR model 
for predicting  H2S solubility in different types of solvents are exhibited in Fig. 6. As seen, the most accurate 
results of GPR model belong to organic solutions and ionic liquids with AAREs of 2.49% and 2.87%, respectively. 
In addition, it also predicts the data analyzed for  H2S solubility in electrolyte and amine solutions with excellent 
AAREs of 5.19% and 6.91%, respectively, which fully acknowledges its high capability for these types of solvents. 
For all other types of solvents, the GPR model represents a total AARE of 5.73% from the corresponding experi-
mental data. Overall, it can be concluded that the novel intelligent model is applicable for precise estimation of 
 H2S solubility in various types of absorbers, as its AARE values in all cases do not exceed 7%.

(10)H = X
(

XTX
)−1

XT

Figure 4.  Distribution of relative error values for GPR model in various ranges (created by GraphPad 
8.4.3.686145).
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Single and multicomponent solvents. As can be seen in Table 2, the analyzed databank includes experimental 
data for single-component solvents as well as those for binary, ternary and quaternary mixtures. Given the use of 
equivalent molecular weight as an input factor, the novel model is expected to be capable for accurate prediction 
of  H2S solubility in different single and multicomponent solvents. Figure 7 illustrates the AAREs of GPR model 
for all analyzed cases. It is clear that the lowest deviation is related to single-component solvents with an AARE 
of 2.88%. Furthermore, the experimental data for binary and quaternary mixtures are also predicted, excellently, 
with AAREs of 4.69% and 5.39%, respectively. The highest deviation of GPR model belongs to ternary mixtures 
of  H2S absorbers with AARE of 6.45%, which is highly reasonable for a predictive approach. From the current 
assessment, it can be found that the novel model is capable to accurately describe the  H2S solubility in various 
single and multicomponent solvents. Therefore, it can be reliably utilized in scientific and engineering applica-
tions.

Physical trends of  H2S solubility. In order to demonstrate the potency of the novel model for describing the 
physical trends of  H2S solubility, the impacts of pressure, temperature, mass fraction of components in the sol-
vent and the type of solvent have been studied based on the outcomes of GPR model.

Figure 5.  William’s plot for the model proposed based on GPR method (created by GraphPad 8.4.3.686145).

Figure 6.  AARE values corresponding to GPR model for predicting  H2S solubility in various types of solvents 
(created by GraphPad 8.4.3.686145).
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Figure 8 shows the influence of pressure and temperature on solubility of  H2S in N-methylimidazole. As 
expected, the  H2S solubility is enhanced by increasing of pressure. This stems from the fact that the collision 
frequency and kinetic energy are increased at higher pressures, which results in higher solubility of gas. In addi-
tion, raising of temperature may reduce the  H2S solubility in N-methylimidazole. It should be noted that a higher 
temperature leads to increasing the heat of system. Based on Le Chatelier’s principle, the system overcomes this 
excess energy by inhibiting the reaction of dissolution, resulting in reduce of  solubility149. It is clear that the novel 
model properly describes the impact of temperature and pressure on  H2S solubility, and there are excellent fit-
tings between its outcomes and experimental data.

Figure 9 illustrates the values of  H2S solubility in the mixed solvents of  [Omim][BF4]-PC at various mass frac-
tions. It is seen that, existence of  [Omim][BF4] ionic liquid in the solvent can significantly enhance the solubility 
of  H2S. In addition, the pure  [Omim][BF4] performs much better than pure PC in absorption of  H2S gas. This fact 
is more obvious at the higher pressures. As can be seen, the GPR model precisely predicts the  H2S solubility in the 
solvents with different mass fraction of components, and its outcomes are in close agreements with actual values.

A comparison between the solubility values of  H2S in various types of solvents, including an ionic liquid 
 ([Hmim][BF4]), an amine solution (MDEA-PZ-Water) and an organic solution (PC) is provided in Fig. 10. It is 

Figure 7.  AARE values corresponding to GPR model for predicting  H2S solubility in single and 
multicomponent solvents (created by GraphPad 8.4.3.686145).

Figure 8.  Comparison between experimental values of  H2S solubility and those predicted by the novel model at 
various pressures and temperatures (created by GraphPad 8.4.3.686145).
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clear that under a same operating condition, the solubility of  H2S in  [Hmim][BF4] is much higher than that in 
other aforementioned solvents. Furthermore, the value of solubility in PC as solvent is higher than MDEA-PZ-
Water ternary system. On the other hand, this figure reveals that while the solubility values in  [Hmim][BF4] and 
PC strongly depend on pressure, there is no obvious relationship between pressure and solubility in MDEA-PZ-
Water system. As seen, all these physical trends are excellently described by the novel model.

Comparison with earlier machine learning based models. As discussed previously, the earlier 
machine learning based models for  H2S solubility have been developed based on data for limited conditions and 
absorbers. A comparison between the performances and applicability ranges of the earlier models and the one 
established in this study is presented in Table 4. As seen, most of previous models have been suggested for single-
component ionic liquids. Only that developed by Hamzehie et al.71 includes some data for binary and ternary 
mixtures of amines. In contrast, the databank analyzed in the current study covers enough experimental data for 
various types of solvents, such as amines, ionic liquids, electrolytes, organics, etc. Moreover, unlike the earlier 
studies, the data for single-component as well as binary, ternary and quaternary mixtures of solvents have been 
analyzed. On the other hand, while the number of data used for development of the novel model is extremely 
higher than the previous ones, its AARE of 4.73% for test data is still much reasonable. All these points reflect 
the fact that the model proposed by the novel approach of GPR can outperform all earlier ones in terms of uni-
versality, applicability and reliability.

Sensitivity analysis. To clarify how each input factor affects the predictions of the novel model, a sensi-
tivity analysis is performed in this section. Accordingly, the Pearson’s correlation coefficients between the  H2S 
solubility values calculated by GPR model and the input variables, i.e., temperature, pressure and equivalent 
molecular weight were calculated. It should be noted that the value of this index between two given variables, 
i.e., X and Y can be calculated using the following equation,

(11)R(X,Y) =

∑n
i=1

(

Xi − Xi

)(

Yi − Yi

)

√

∑n
i=1

(

Xi − Xi

)2 ∑n
i=1

(

Yi − Yi

)2

Figure 9.  Comparison between experimental values of  H2S solubility and those predicted by the novel model at 
various mass fractions of solvent components (created by GraphPad 8.4.3.686145).

Figure 10.  Comparison between experimental values of  H2S solubility and those predicted by the novel model 
when using various types of solvents (created by GraphPad 8.4.3.686145).
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where n is the number of analyzed samples. In addition, Xi  and Yi  are the averages values of X and Y, respectively. 
The values of − 1 and + 1 for this coefficient show the maximum levels of reverse and direct relationships between 
the corresponding variables, respectively. In contrast, when this value tends to zero, it can be found that there is 
no remarkable correlation between the variables.

Figure 11 depicts the Pearson’s correlation coefficients between the input parameters and the outcomes of the 
GPR model. As observed, the operating pressure and equivalent molecular weight of solvent directly affect the 
 H2S solubility. While, there is an inverse relationship between  H2S solubility and temperature. The same results 
were also observed in section “Physical trends of  H2S solubility”, based on experimental data and the outcomes 
of GPR model. On the other hand, Fig. 11 reveals that the equivalent molecular weight of solvent, which simul-
taneously involves both components’ molecular weight and their mass fractions, is the most effective factor in 
controlling of  H2S solubility. Moreover, operating temperature and pressure rank second and third, respectively 
in term of importance. Based on Fan et al.42 study, molecular weight has a significant impact on the ionic con-
ductivity and the mechanism of ion transport. This fact can justify the great influence of equivalent molecular 
weight on solubility as observed here.

A contour plot of the correlation between the input variables and  H2S solubility is shown in Fig. 12. Dark red 
to purple spectral colors indicate solubility changes from less than 5% to greater than 30%. The red and dark red 
areas are most commonly observed at high temperatures and low pressures when the molecular weight of the 
solvent is less than 100 g/mol. This means that the composition of  H2S in the solvent is often less than 10% under 
these operating conditions. As the pressure increases and the temperature decreases, the solubility of  H2S gradu-
ally increases and the yellow or blue areas become more prominent. The majority of the dark blue and purple 
colors are distributed in the area with high values for the molecular weight of solvent, which further exhibits 
that the molecular weight of the solvent has a much greater impact on controlling solubility than the other two 
factors. It should be mentioned that a solvent with a higher molecular weight can increase the efficiency of  H2S 
abruption even in low pressure and high temperature environments. Overall, the findings of the current analysis 
are consistent with those of the prior sections.

Conclusions
In the current study, robust approaches for predicting  H2S solubility in solvents were developed based on machine 
learning algorithms of MLP, GPR and RBF. 5148 data points from 54 publications, enveloping broad pressure 
and temperature ranges, were used to establish and validate the novel models, which is the biggest databank 
analyzed to date. The analyzed databank covered 95 single and multicomponent solvents such as amines, ionic 
liquids, electrolytes, organics, etc. The main findings of this study are listed as:

Table 4.  Comparison between the analyzed conditions as well as the performances of the previous models and 
the one developed by GPR approach.

Model Machine learning method Number of analyzed data Number of solvents Types of solvents
Number of components 
in analyzed solvents

Performance of the 
model

72 PSO-ANN 465 11 Ionic liquids Single AARE of 4.58% for all data

76 GP 465 11 Ionic liquids Single AARE of 3.93% for test 
data

73 GA-LSSVM 465 11 Ionic liquids Single AARE of 2.3% for all data

71 MLP 513 27 Amines, ionic liquids Single, binary and ternary AARE of 3.10% for test 
data

46 MLP 496 12 Ionic liquids Single AARE of 1.9% for all data

37 ELM 1134 27 Ionic liquids Single AARE of 5.78% for test 
data

77 MLP 664 13 Ionic liquids Single AARE of 11.68% for test 
data

78 CSA-LSSVM 664 14 Ionic liquids Single AARE of 0.15% for test 
data

35 SGB 465 11 Ionic liquids Single AARE of 7.54% for test 
data

79 ELM 1318 28 Ionic liquids Single AARE of 5.07% for test 
data

36 LSSVM 1298 27 Ionic liquids Single AARE of 2.74% for test 
data

74 MLP 1243 33 Ionic liquids Single AARE of 3.51% for test 
data

80 CMIS-GMDH 1243 33 Ionic liquids Single AARE of 2.77% for test 
data

81 CNN 1516 37 Ionic liquids Single AARE of 3.21% for test 
data

This study GPR 5148 95 Amines, Ionic liquids, elec-
trolytes, organics, etc.

Single, binary, ternary and 
quaternary

AARE of 4.73% for test 
data
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Figure 11.  Relevancy factors between different input variables and the outcomes of GPR model for  H2S 
solubility (created by GraphPad 8.4.3.686145).

Figure 12.  Contour plot of the alternation of  H2S solubility over various ranges of pressures, temperatures and 
the molecular weights of solvents (created by Minitab  19150).
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• Among all machine learning based predictive approaches, GPR based model outperformed the others in 
predicting  H2S solubility with AARE, R2 and RRMSE values of 4.73%, 99.75% and 4.83%, respectively, during 
the test process. This model predicted more than 87% of data in ± 10% error bounds. In contrast, the MLP 
and RBF models exhibited extremely larger deviations for the tested data samples with AAREs of 19.66% 
and 28.41%, and R2 values of 94.61% and 90.91%, respectively.

• Based on the William’s plot for GPR, it was determined that the experimental data analyzed in this study are 
highly reliable for developing new models, as the valid, good high leverage and doubtful data points covered 
92.87%, 5.09% and 2.04% of the entire databank.

• The novel GPR model predicted the solubility data in organic solvents, ionic liquids, electrolytes, and amines 
with excellent AAREs of 2.49%, 2.87%, 5.19% and 6.91%, respectively. For other types of solvents, a total 
AARE of 5.73% was obtained by this approach. The GPR model also provided appropriate results for single-
component, binary, ternary, and quaternary mixtures of solvents with AARE values of 2.88%, 5.39%, 6.45% 
and 4.69%, respectively. Moreover, this model was properly able to describe the physical trends of  H2S solu-
bility under various operating conditions.

• A comparison of the previous and the novel models implied that the GPR-based model was the preferable 
choice for estimating  H2S solubility in terms of universality, applicability, and reliability.

• A sensitivity analysis based on the GPR model showed that equivalent molecular weight and operating pres-
sure directly affect the  H2S solubility, whereas the solubility is inversely related to temperature. Moreover, 
the equivalent molecular weight of solvent was known as the most influential factor with a relevancy factor 
of 0.46 with  H2S solubility. Moreover, temperature and pressure ranked in second and third with relevance 
factors of − 0.18 and 0.14, respectively, with respect to  H2S mole fraction. These results were also in line with 
the findings of the contour plot analysis.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author on 
reasonable request.
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