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Root cause prediction for failures 
in semiconductor industry, 
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learning approach
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Failure analysis has become an important part of guaranteeing good quality in the electronic 
component manufacturing process. The conclusions of a failure analysis can be used to identify a 
component’s flaws and to better understand the mechanisms and causes of failure, allowing for the 
implementation of remedial steps to improve the product’s quality and reliability. A failure reporting, 
analysis, and corrective action system is a method for organizations to report, classify, and evaluate 
failures, as well as plan corrective actions. These text feature datasets must first be preprocessed 
by Natural Language Processing techniques and converted to numeric by vectorization methods 
before starting the process of information extraction and building predictive models to predict 
failure conclusions of a given failure description. However, not all‑textual information is useful for 
building predictive models suitable for failure analysis. Feature selection has been approached by 
several variable selection methods. Some of them have not been adapted for use in large data sets 
or are difficult to tune and others are not applicable to textual data. This article aims to develop a 
predictive model able to predict the failure conclusions using the discriminating features of the failure 
descriptions. For this, we propose to combine a Genetic Algorithm with supervised learning methods 
for an optimal prediction of the conclusions of failure in terms of the discriminant features of failure 
descriptions. Since we have an unbalanced dataset, we propose to apply an F1 score as a fitness 
function of supervised classification methods such as Decision Tree Classifier and Support Vector 
Machine. The suggested algorithms are called GA‑DT and GA‑SVM. Experiments on failure analysis 
textual datasets demonstrate the effectiveness of the proposed GA‑DT method in creating a better 
predictive model of failure conclusion compared to using the information of the entire textual features 
or limited features selected by a genetic algorithm based on a SVM. Quantitative performances such 
as BLEU score and cosine similarity are used to compare the prediction performance of the different 
approaches.

The development of microelectronic technologies provides new opportunities to improve the maintenance of 
production equipment from both the technical and managerial perspective. To establish this improvement in 
production, it is necessary to focus on an important step that is the failure analysis. This process is a technical 
procedure for studying how materials and products fail. It is important to understand how and why a component 
fails when it no longer performs its intended  function1. The main goal of failure analysis is to find the underlying 
root cause of the failure, ideally with a view to removing it and identifying ways to prevent it from happening 
again. Objective failure analysis can have a number of good outcomes such as obtaining an information database 
that can be put to good use in preventing future failures, enhancing the quality and extending the life of products 
and services, and making the most of the economic  aspects2. To meet these principal fundamental challenges 
in our digital world, it is important to build an information database to describe failures and their conclusions, 
allowing to ensure that increasingly complex electronic systems operate reliably and securely.

Many organizations use the Failure Reporting, Analysis, and Corrective Action System (FRACAS) to keep 
track of product problems. The FRACAS technique’s main tasks  are3: recording and capturing information about 
failures and problems, provide new information to support future reliability analyses, provide report summaries 
of incident counts and provide failure dataset and metrics to measure quality parameters. Developing a novel 
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technique based on artificial intelligence (AI) to swiftly assess and discover faults during the development and 
manufacture of electronic components and systems, using the final report generated by FRACAS, is one of the 
key difficulties facing our digital world. The incorporation of AI and multi-structured data sources is critical to 
the success of data-driven maintenance. When an AI-enhanced technique is introduced and integrated into a 
reliability-centered maintenance analysis of complex production systems, failure rates are reduced, and avail-
ability is  improved4.

Text mining is an artificial intelligence (AI) technique that applies natural language processing (NLP) to 
convert unstructured text in documents and databases into normalized, structured data that can be analyzed or 
used to train machine learning (ML)  algorithms5. Text mining is also a technique for extracting information from 
unstructured documents and identifying novel and previously unknown patterns. Then, the next step is feature 
or attribute selection. This step focuses on deleting elements that are not significant to the mining  process6. In 
addition, this step has several advantages: reduce computational complexity; get fewer noises in the decision 
space and reduce the dimension to have more consistent and homogeneous  dataset7.

In our study, we have a textual dataset that consists of the description of the failure analysis and the failure 
conclusion for microelectronic technologies’ products. Our objective is to construct a model able to predict the 
failure conclusion features from the failure analysis description features. However, not all textual information’s 
are valuable for the construction of predictive model, while the use of limited number of a priori features may be 
tricky. Feature selection reduces dimensionality by selecting a subset of original input textual variables. In other 
words, the textual variable selection strategy decreases the dimension of textual features that may be relevant to 
a specific phenomenon by identifying the best minimum subset without transforming the data into a new  set8. 
In order to achieve complicated models for prediction and classification algorithms, we implement the selection 
of relevant textual variables while excluding non-informative variables.

Various mathematical techniques have been used to select optimal subsets of variables: successive projections 
 algorithm9, backward/forward selection  algorithm10, reweighted adaptive competitive sampling, importance of 
variables for projection, elimination of non-informative  variables11, interval partial least squares  regression12, 
Monte Carlo-elimination of non-informative  variables13, Particle Swarm Optimization and Deep Learning 
 Approach14, feature learning enhanced convolutional neural network (FLE-CNN)15, competitive adaptive 
reweighted sampling partial least  squares12, etc. However, most of these techniques are not well suited to textual 
datasets. On the other hand, the application of these methods leads to the loss of a lot of information during 
the analysis.

The genetic algorithm (GA) belongs to research techniques that emulate the principle of natural selection. GA 
performs a search in complex, large and multimode landscapes, and provides near-optimal solutions for objec-
tive or fitness function of an optimization  problem16. However, the cost of computational time is high because 
its long string representation evolves in high dimensional space typical for textual data. A genetic algorithm is a 
bottom-up strategy that chooses the best features subset based on the “survival of the fittest” principle, with each 
chromosome competing with the  others16. That is, the quality of chromosomes is assessed using a predetermined 
fitness function. The fitness function is arguably the most important part of a GA having the role to measure 
the quality of the chromosome in the population according to the given optimization objective. Supervised 
learning methods can be used to derive new fitness functions that can transform a textual data in a much lower-
dimensional subspace more adequately regarding a specific  application17. Different types of supervised methods 
exist in the literature. The best-known are Decision Tree model (DT), and Support Vector Machine model (SVM). 
A study was conducted to demonstrate that the combination of genetic algorithm and support vector machine 
method improves the textual classification accuracy of the spam  dataset18. Another study shows that the efficiency 
of feature selection based on information gain and genetic algorithm can reduce the dimension of the text vector 
and improve the accuracy of text  classification19. A recent paper proposes the genetic algorithm-oriented latent 
semantic feature methodology to achieve better representation of documents in text  classification20.

Therefore based on all the above, one can summarize the motivation of combining GA and supervised learn-
ing methods by the following:

The combination of Genetic Algorithms (GA) and supervised learning methods has been a popular topic of 
research in the field of machine learning and optimization. For example, in a study by Fernández et al. (2002), 
the authors used a GA to optimize the parameters of a support vector machine (SVM) for a classification task 
and showed that the combination of these two approaches led to improved performance compared to using only 
the SVM. Another study by Liu et al. (2011) proposed a GA-based approach for feature selection in conjunction 
with a decision tree classifier, showing that the combination of these two methods outperformed individual 
methods in several benchmark datasets. In addition to parameter optimization, GAs have also been used to 
search for optimal network architecture in deep learning. For instance, Real et al. (2017) proposed a method 
called “Large-Scale Evolution of Image Classifiers” where they used a GA to evolve the architecture of Convo-
lutional Neural Networks (CNNs) and showed that the evolved architectures outperformed manually designed 
ones in the CIFAR-10 and CIFAR-100 image classification benchmarks. These studies demonstrate the potential 
of combining GA and supervised learning methods for improving performance in various applications, and 
highlight the need for further research in this area.

On the other hand, the research gaps and challenges and how we are overcoming these points can be sum-
marized by the following:

The most challenging issues in this study are likely related to the task of developing a predictive model that 
can accurately predict the failure conclusions based on the failure descriptions. This is a challenging task as it 
requires the model to learn the relationship between the input features and the target output, which can be dif-
ficult due to the presence of noisy or irrelevant features, imbalanced class distributions, and non-linear relation-
ships between features and target.
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The proposed method addresses these challenges by combining a genetic algorithm with a decision tree 
classifier, referred to as GA-DT. The GA is used to search for a subset of the most discriminative features from 
the failure descriptions, which are then used as input to the decision tree classifier. By doing so, the GA helps to 
overcome the issue of noisy or irrelevant features, as it only selects the most informative features for the classifier 
to use. Additionally, decision trees are known to be able to handle imbalanced class distributions and non-linear 
relationships, making them a suitable choice for this task.

The effectiveness of the proposed GA-DT model is demonstrated through experiments, which show improved 
performance compared to using only a decision tree classifier or only a genetic algorithm. This highlights the 
contribution of the proposed method, which combines the strengths of both GA and decision tree classifiers to 
improve the accuracy of the predictive model.

Then, the main goal of this study is to build an advanced predictive model capable of predicting failure out-
comes significantly using failure analysis description. Another objective is to investigate the potential of using 
a supervised variable selection technique using a genetic algorithm to identify more informative and useful 
text features from the text dataset that contains a very large number of words, and to show whether the features 
selected by the proposed method can significantly improve the performance of predictive models between failure 
conclusion features and failure analysis description features. We propose a methodology based on the association 
of a genetic algorithm with a supervised model such as the decision tree or support vector machine evaluated by 
the F1 score as a fitness function for the identification of the discriminating variables applied the failure analysis 
textual data. This function allows calculating the accuracy of predictive models applied on unbalanced dataset. 
The suggested algorithms are called GA-SVM and GA-DT.

This article is structured as follows: In the second part, we present what Feature Selection is and its associ-
ated algorithms. Then, we detail the operating principle of population-based metaheuristic algorithms. We 
focus more particularly on Genetic Algorithm, and their detailed operation that allows the selection of relevant 
features. In this part of this work, we present machine-learning algorithms used to calculate the fitness value 
for the metaheuristic algorithms. We go deep in the description of supervised methods such as Support Vector 
Machine (SVM), and Decision Tree (DT). In the third part, we present the results obtained by applying our 
metaheuristic-machine learning algorithms combination on the failure conclusion features and failure analysis 
description features. We show that the results observed allow us to pick the most valid model, which is the 
GA-DT, confirmed with the different metrics as BLEU score and cosine similarity at a division of 70% training 
set and 30% testing set. Finally, and after discussing the results, we close with a general conclusion on the interest 
of the combination of feature selection algorithms with machine learning methods, its capability and perfor-
mance in dimension reduction, and on the possibilities of implementing other tools belonging to metaheuristic 
algorithms to improve the accuracy rates.

Mathematical methods
Supervised learning modelling. Multiclass error‑correcting output codes (ECOC) model using support vec‑
tor machine (SVM). The Error-Correcting Output Codes (ECOC) framework is a basic yet effective method 
for dealing with the multi-class categorization problem based on the embedding of binary classifiers, where the 
classifier consists of multiple binary learners such as support vector machines (SVMs). The ECOC model clas-
sifiers allow to store training data, parameter values, prior probabilities, and coding  matrices21. These classifiers 
aims to perform tasks such as predicting labels or posterior probabilities for new data. The multi-class ECOC 
model using SVM methods consist of three major components that are encoding, binary classifier learning, and 
decoding steps. In the coding procedure, a coding matrix is usually first determined for several classes, where 
each row of the coding matrix represents a specific class. Then, a group of independent binary classifiers is 
formed based on a different partition of the original data according to each column of the coding matrix. Finally, 
a new data is predicted as a specific class through the decoding procedure based on the outputs of the learned 
binary classifiers and the coding matrix.

Let X = {xj}
n
j=1 be a training set of n samples of observed variables, where a d-dimensional vector repre-

sents each sample, and let C be an unobserved random variable denoting the class membership of xj , where 
C ∈ {c1, . . . , ck , . . . , cK } with K denoting the number of class. In kth class SVM problem, class ck is separated from 
the remaining classes. All k binary SVM classifiers are combined together to make a final multi-class classifier. 
Here the remaining means that all the data points from classes other than ck are combined to form one class cl . 
The optimal hyperplane that separates data points from the class ck and the combined class cl is found by using 
the standard SVM approach. We denote the optimal separating hyperplane discriminating the class ci and the 
combined class ck  as22:

where wk ∈ R
S is the weight vector, b is the bias and the mapping function φ projects the training data into a 

suitable feature space RS to allow for nonlinear decision surfaces. The parameters of the decision function gk(xj) 
are determined by the following  minimization23:

subject to

(1)gk(xj) = wk × φ(xj)+ bk k ∈ {1, . . . ,K}.

(2)min J(wk , ξ) =
1

2
�wk�

2 + C

n
∑

j=1

ξj .

(3)yj

(

wT
k φ(xj)+ bk

)

≥ 1− ξj ξj ≥ 0; j = 1 . . . n.
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with scalar yj ∈ {−1,+1} denoting its class label, C ∈ R
+ is a regularization constant and ξj denote a slack vari-

able can be introduced to relax the separability constraints in Eq. (2).
The decision rule fk(xj) that assigns the vector xj to the class ck given by:

The main difficulty in this approach is that the outputs of the classifiers fk(xj) are binary values. The usual way 
to handle this problem is to ignore the sign-operator in Eq. (4). After finding all the optimal hyperplanes given 
by gk(xj) for k ∈ {1, . . . ,K} , we say xj is in the class which has the largest value of the decision function and is 
given  by24:

In this approach the index of the largest component of the discriminant functions gk(xj) for k ∈ {1, . . . ,K} is 
assigned to the data point xj . The error rate RSVM of the SVM classifier, which is defined as:

with xj that belongs to the class ck estimated by the method classifier in the class ĉk and 1ck  =ĉk (xj) is the indicator 
function defined as:

Decision tree classifier. A decision tree classifier is a non-parametric classifier that does not require any a priori 
statistical assumptions to be made regarding the underlying distribution of data. The basic structure of the deci-
sion tree, however, consists of one root node, a number of internal nodes and finally a set of terminal nodes. A 
node is a subset of the predictors that is used to determine a split. A non-terminal node or parent node is a node 
that is further split into two child nodes. Growing a tree consists of selecting the optimal splits to determine a 
non-terminal node, and the assignment of each terminal node to a  class25. The data is recursively divided down 
the decision tree according to the defined classification framework.

Classes are simply assigned to a terminal node by observing which class is mostly commonly observed in that 
region of the tree. Thus, the challenge is to optimally choose the best variable and split that variable to maximize 
the purity or similarity among the responses. The impurity of a parent node τ , denoted i(τ ) , is zero when all 
observations are in the same class. A split s is determined by selecting the best predictor and split value that 
optimizes the highest reduction in  purity26:

where τb denotes child node b, p(τb/τ) is the proportion of observations in τ that are assigned to τb , and B is the 
number of branches after splitting. Two common impurity functions are the entropy  criterion26:

and the Gini index criterion

where pk is the proportion of observations in class ck with k ∈ {1, . . . ,K} . Pruning is based upon successive 
steps of removing lower branches that lead to improved classification rates. Once the final tree is determined by 
�(s, τ) , it is natural to evaluate its predictive performance by comparing the observed class to the predicted class 
for observation xj . In a terminal node m, representing a region Rm with nm observations, let

denote the proportion of class ck observations in terminal node m27. We classify the observations in node m to 
class

The misclassification error rate is simply the proportion of observations in the node that are not members of 
the majority class in that node.

(4)fk(xj) = sign(gk(xj)).

(5)ĉk(xj) = argmax
k

(

gk(xj)
)

.

(6)R
SVM(xj) =

1

n

n
∑

j=1

1ck �=ĉk .

(7)1ck  =ĉk (xj) =

{

1, if class ck  = ĉk
0, if class ck = ĉk

(8)�(s, τ) = i(τ )−

B
∑

b=1

p(τb/τ)i(τb).

(9)i(τ ) = −

K
∑

k=1

pk log2(pk).

(10)i(τ ) = −

K
∑

k=1

p2k .

(11)ˆpmk =
1

nm

nm
∑

j=1

1Ck
(xj).

(12)ĉk(xj) = argmax
k

( ˆpmk).
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Supervised learning modelling. Genetic algorithms (GA) are a type of evolutionary optimization com-
putation that became popular through the work of  Holland28. These algorithms are based on the concept of natu-
ral selection of solutions by copying its main principles. Each solution may be considered as a population where 
each element is represented in the form of a chromosome, with selected textual feature positioned as  genes28. 
The GA steps reproduce the various evolutionary operations such as crossover and mutation allowing to select 
for each generation the best chromosomes and to identify at the end an optimal chromosome with respect to an 
optimization criteria defined by a fitness  function29. Figure 1 shows the steps of the informative feature selection 
procedure using a  GA30.

The GA can be applied on data matrix X = {xj(y)}
n
j=1 with xj(y) ∈ R

d and y is the set of textual features 
for failure description dataset. This procedure gives in each one of these cases an optimal chromosome 
z0 = [z01 · · · z0l · · · z0L] ∈ R

L with z0l textual feature form y and L the number of variables chosen to select. 
The optimal chromosome allows extracting a new sub-data matrix {xj(z0)}nj=1 of under-dimensioned data on 
which we can apply methods of data analysis. The GA steps are briefly described thereafter, being detailed in 
the  articles31  and32. 

1. Initialization: The initial parameters are : the chromosome size L (the number of genes corresponding to 
the number of features to be selected in each case) ; the population size N (the number of chromosomes 
per generation) ; the number of elites Ne (the chromosomes with the best fitness values in the current gen-
eration that are guaranteed to survive to the next generation) ; the fraction of crossover Fc (the number of 
chromosomes selected to perform crossover Nc such that Nc = Fc × (N − Ne)) . The stop parameters are: 
the maximal number of iterations T and the tolerance ǫ for the fitness function. The first step of a GA is the 
creation of the starting population P(0). N chromosomes are generated by randomly selecting L variables 
from y ( L < S is the size of the chromosomes): 

 The initial population P(0) of wavenumbers variables is chosen randomly from the set of uniformly distrib-
uted variables ranging over their maximum and minimum  limits31 : 

 where z0i  signifies the initial lth variable of the ith population; zmin
i  and zmax

i  are the minimum and maximum 
limits of the lth decision variable; U(zmin

i , zmax
i ) signifies a uniform random variable ranging over[zmin

i , zmax
i ] . 

Then, computation is done over generations. For each generation (t), we obtain the population of chromo-
somes {zi(t)}Ni=1 the steps thereafter give another population of chromosomes {zi(t+1)}

N
i=1.

(13)R
DTC(xj) =

1

n

n
∑

j=1

(

1−max
k

( ˆpmk(xj))

)

.

(14)P(0) =
{

zi = [zi1, . . . , ziq, . . . , ziL] ∈ R
L
}N

i=1
.

(15)z0i ∼ U(zmin
i , zmax

i ).

Figure 1.  Synoptic representation of the proposed GA methodology.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4934  | https://doi.org/10.1038/s41598-023-30769-8

www.nature.com/scientificreports/

2. Evaluation: Each chromosomezi(t) is rated by a fitness function F(.) that assigns a value Fi = F(zi(t)) . The 
smaller the Fi value is, the more corresponding chromosome will have chance to be selected. The role of 
a fitness function is to measure the quality of the chromosome in the population according to the given 
optimization  objective32. Since we want to create a predictive model between the failure description dataset 
X and the failure conclusion dataset Y, we propose to use the supervised model for each chromosome such 
as the decision tree (DT) and the support vector machine (SVM) and then to calculate the F1 score of each 
model built as a fitness function to assess the qualities of our predictive model obtained. The F1 score of these 
supervised learning methods is one of the simplest methods that can be used as a classical fitness function 
to evaluate the accuracy of predictive model. The fitness function is defined as follows: 

 with 

 where Fmodel
1  is theF1 score defined as the harmonic mean between precision and recall; Pmodel

r  is positive 
predictive value (precision) and Rmodel

c  is the sensitivity (Recall) of the predictive model such as SVM and 
DT. This function ( F1 score) is very useful when dealing with unbalanced class issues. These are problems 
when one class can dominate the data set. For each fitness function Fi , the values are ordered in ascending 
order and the best Ne chromosomes are selected based on this ordering. These surviving chromosomes will 
be copied unchanged in the next population.

3. Selection: Used for choosing parents from the population for crossing, this step may be implemented in 
different ways: rank, stochastic, roulette wheel, stochastic universal sampling selection, etc. We have chosen 
the stochastic universal sampling selection since this method is zero-biased, has no deviation between the 
expected reproduction rate and the algorithmic sampling frequency, and has a minimum  spread33. The 
selection is performed probabilistically so that an individual’s selection probability is proportional to the 
individual’s fitness. First, we compute the probability pi of selecting the chromosome zi and the cumulative 
probability qi : 

 Next, we generate a uniform random number r ∈ [0, 1
N ] . If r < q1 then we select the first chromosome z1 , 

otherwise we select the chromosome zi such that qi−1 < r ≤ qi . The ascending ordered Fi values allows 
selecting Ne chromosomes guaranteed to survive to the next generation and Np = (Fc + 1)× N − 2Ne par-
ent chromosomes for the crossover.

4. Crossover: This step attempts to extract genes from the selected chromosomes and recombines them into 
potentially superior children. We have chosen the uniform crossover since it gives good results in a major-
ity of the cases. A gene is randomly selected either from the first or from the second  parent34. The crossover 
operation gives Nc = (Fc × N)− Ne children. To explain the uniform crossover, the parent’s chromosomes 
p1[ziq] , p2[ziq] and the children chromosomes o1[ziq] , o2[ziq] , q = 1 . . . L are gene arrays. The most popular 
crossover variant between real numbers is the uniform crossover. Genes situated in the q position of the 
children chromosomes zi are calculated as it  follows35:

• α is a random vector of real numbers uniformly distributed with the same size as p1 , p2 , o1 , o2 where 
αq ∈ [0, 1].

• Children are copied from parents and crossover is obtained with Eqs. (20) and (21): 

5. Mutation: is a genetic operator used the modification of the value of gene to maintain genetic diversity from 
one generation of a population to the next one. We have chosen the Gaussian operator since it produces the 
best results for most of the fitness  functions36. This operator adds a unit Gaussian distributed random value 
to Np − 2Nc chromosomes. The new values of the genes are then rounded to the nearest integer. The standard 
deviation of this distribution is the parameter that the call “scale” which is equal to one in the first genera-
tion, but this parameter is controlled during the next generations by another parameter that is “shrink”. The 
standard deviation at the tth generation, σt is the same at all coordinates of the parent chromosome, and is 
given by the recursive  formula37: 

(16)Fmodel
i = Fmodel(zi) =

(

1− Fmodel
1 (zi)

)

.

(17)Fmodel
1 (zi) = 2×

Pmodel
r (zi)× Rmodel

c (zi)

Pmodel
r (zi)+ Rmodel

c (zi)
.

(18)pi =
Fi

∑N
i=1 Fi

.

(19)qi =

i
∑

i=k

pk .

(20)o1[zi] =p1[zi] for each αq > 0.5, o1[ziq] = p2[ziq].

(21)o2[zi] =p2[zi] for each αq > 0.5, o2[ziq] = p1[ziq].

(22)σt = σt−1 × (1− shrink
t

T
).
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 Where T the number of generations. A low value of “shrink” produce a small decrease in the amplitude of 
the mutation on the indices of gene positions.

6. Steps 1 to 5 are repeated until the maximal number of iterations T is reached or when GA has converged, 
i.e. the average relative change in the fitness function value is less than the tolerance ǫ . This procedure gives 
an optimal chromosome z0 , which depends on the fitness function and the initial values. With the proposed 
choice of the GA steps, we have found that the same optimal chromosome is found whatever the initial values 
of chromosomes were used.

Computing similarities between documents. BLEU score. The BiLingual Evaluation Understudy 
(BLEU) scoring algorithm assesses the similarity between a predictive document and a collection of reference 
documents. To assess the quality of document translation and summarization models, we use the BLEU score. 
The n-gram counts, clipped n-gram counts, modified n-gram precision scores, and a brevity penalty are used to 
calculate the BLEU  score38.

If necessary, the clipped n-gram counts function Countclip truncates each n-gram gram’s count so that it 
does not exceed the highest count found in any one reference for that n-gram. The clipped counts function is 
defined as follows:

where Count(n-gram) represent the n-gram counts and maxRef(n-gram) is the highest n-gram count observed 
in a single reference document for that n-gram. The updated n-gram precision scores are calculated as follows:

where n is the length of n-gram and Predictive Document is the set of sentences in predictive documents, D 
and D′ are predictive documents . Given an n-gram weight vector w, the BLEU score formulation is given  by38:

where N is the greatest length of n-grams, p̄n are the geometric means of the modified n-gram precisions, and 
BP is the brevity penalty defined as

BLEU score returned as a scalar value in the range [0, 1]. A BLEU score close to zero indicates low similarity 
between the predictive document and the references. A BLEU score close to one indicates strong similarity. If 
the predictive document is identical to one of the reference documents, the score is one.

Cosine similarity. The similarity of two vectors in an inner product space is measured by cosine similarity. It 
determines whether two vectors are pointing in the same general direction by measuring the cosine of the angle 
between them. In text analysis, it is frequently used to determine document  similarity39. Let us see how docu-
ments in our corpus are related to one another. Let t1 and t2 be two vectors that represent the topic associations of 
documents d1 and d2 , respectively, where t(k)1  and t(k)2  are the number of terms in d1 and d2 that are connected with 
subject k respectively. The cosine similarity can then be used to calculate a measure of document  similarity39:

where ‖tj‖ denotes the norm of vector tj . Cosine similarity score indicate a scalar value in the range [0, 1]. A 
cosine similarity close to zero indicates poor similarity between the predictive document and the references. A 
cosine similarity close to one indicates strong similarity.

Proposed methodology for evaluation the predictive model of failure analysis. In this section, 
we present the methodology proposed for the selection of variables by the genetic algorithm combined with the 
decision tree (GA-DT) or the support vector machine (GA-SVM) model applied to textual data. Figure 2 shows 
the steps of the failure analysis modeling methodology by extracting the best textual features using supervised 
variable selection techniques and representing the predictive models between failure description X and conclu-
sion of failure Y for this analyzed data. This proposed methodology consists of three main phases. First, we 
perform the pipeline preprocessing of the failure analysis description X and conclusion of failure Y. This is a 
most important and time consuming part of textual data because failure to clean and prepare the data could 
compromise the predictive model. The Phase 2 shows the application of the Word2Vec vectorization method on 
preprocessed textual data to obtain numerical data.

The Phase 3 shows the application of GA variable selection method combined with decision tree or support 
vector machine supervised learning on vectorized preprocessed data. To quantify the accuracy of the selected 
predictive model on discriminate textual features, we compute the different metrics like as BLEU score and 

(23)Countclip(n-gram) = min
n

(

Count(n-gram);maxRef(n-gram)
)

.

(24)pn =

∑

D∈{Predictive Document}

∑

n-gram∈D Countclip(n-gram)
∑

D
′
∈{Predictive Document}

∑

n-gram
′
∈D

′ Countclip(n-gram
′
)
.

(25)BLEU score = BP× exp

(

N
∑

n=1

wn log(p̄n)

)

.

(26)1ck  =ĉk (xj) =

{

1, if c > r
exp(1− r

c ), if c < r

(27)c =

∑

k t
(k)
1 × t

(k)
2

�t1� × �t2�
.
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Cosine similarity. Finally we compare the predicted textual conclusion and the original textual conclusion to 
confirm the similarities between them.

Application and results
All data treatments were performed using the MATLAB-R2022b environment, and scripts are available upon 
request.

Data description and structure. Data description and analysis is an important phase that precedes mod-
eling. An accurate representation of the data is necessary to define the parameters of a model. We have a textual 
dataset on failure analysis of Microelectronics production. The original dataset provided by STMicroelectron-
ics dated between 2019 and 2021 consists of two parts: the first is the description of failure analysis X (source 
of failure request, properties of samples and details of failure) and the second is the dataset of its conclusion Y 
(analysis conclusion, success rate and cycle time). Tables 1 and 2 contains a list of different features of X and 
Y with a short description. This data has been transformed from a vertical stacking of analysis to horizontal 
stacking. This means that its description (objective, context, etc.) as well as its conclusion of failure represent 
an observation. The transformation reduces the data size to 12,300 observations and we keep 19 preprocessed 
features out of dates. After getting clean processed data using the preprocessing pipeline introduced  in40, we 
vectorize using on Word2Vec. Genism’s Word2Vec settings are kept except the vocabulary size is set to 1000 and 
the minimum word is  three41.

In formalizing our approach, we use the following notations: let X = {xij}
n,m
i=1,j=1 represents the input space 

of a given dataset where n is the number of samples and m is the number of features; Y = {yij}
n,p
i=1,j=1 represents 

the output space of conclusion failure dataset where p is the number of features.

Preprocessing pipeline. Eliminating noise by removing whitespace and punctuation, correcting spelling 
errors, deleting duplicate instances, converting text to lowercase, and removing stop words and words with less 
than three letters are all examples of preprocessing text. We will start with the stages of the preparation pipeline:

Figure 2.  Synoptic representation of the proposed GA methodology.

Table 1.  Textual features and its description present in the data set of the conclusion of failure analysis Y.

Feature (Y) Description

Pt failure/Elt by sample This is the point on the sample where an expert observes the failure during fault analysis

Macro failure mode by sample Macro failure mode of a sample is the type of failure observed on sample before a failure analysis is 
requested

Elementary failure mode Elementary failure observed during analysis

Tech cause/defect by sample Technical cause of the failure

Analysis conclusion Conclusion of the failure analysis
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• Symbol and alphanumeric removal: This technique removes words from the text that do not add to the intel-
ligence pattern or the analytic sample, such as symbols and occasionally alphanumeric words. They are just 
stop words and inflexions that are used to emphasize meaning, thus they have been  removed42.

• Tokenization and Thresholding: Tokenizing is to change or break the sentence into a token by using a 
 separator42. Thresholding is a term used to remove words below certain length. In this paper, we set the 
threshold at two.

• Stemmatization and Lemmatization: this is the process of removing affixes (prefixes and suffixes) from textual 
 features43.

• Abbreviation: Abbreviations are common in FRACAS, hence the need to replace them with their original 
meaning. We have created a dictionary of abbreviations to alleviate this challenge.

Optimization of the parameters of the GA. A critical phase of GA is the right choice of its parameters 
in order to ensure the convergence of the algorithm to the optimal solution. The parameters have been initialized 
as follows: the number of elites Ne = 2 , the fraction of crossover Fc = 0.8 , the maximum number of iterations 
T = 100 , the population size N = 100 and the tolerance ǫ = 10−6 . These values have been used for several 
implementation of GA since they give good results for similar  data44.

To identify the optimal values for L and N, the GA was evaluated for different sizes of chromosomes. When the 
algorithm has converged (tolerance ǫ ) or when it has reached the maximum number of iterations (T), the values 
chromosome size L that give the maximize value of the fitness function are chosen as the optimal values (Eq. 28):

The best accuracy of GA-SVM and GA-DT was evaluated for different sizes of chromosomes, L = 3, . . . , 8 . 
Figures 3 and 4 show the fitness values of GA-DT and GA-SVM algorithms respectively. We found that L = 3 or 
4 gives the highest fitness value for both methods. This indicates we need all four failure description features to 
build the best predictive model of analysis conclusion of failure.

Results and discussion of the proposed methodology for the prediction of the conclusion of 
failure. The proposed methodology has been applied with two different fitness functions (SVM and DT). 
After selecting variables by the GA-SVM and GA-DT algorithms, we calculated the accuracy (%) to evaluate the 
performance of a predictive model, BLEU score and cosine similarity as metrics in order to quantify the results 
of the prediction of the conclusion of failure.

Accuracy is the most intuitive performance measure and it is simply a ratio of correctly predicted document 
to the total documents.

(28)L = max
L=3···8

{F(zi)}.

Table 2.  Textual features and its description present in the data set of the description of failure analysis X.

Feature (X) Description

Subject A unique subject particular to the fault expert desire to analyses

Context Context of the failure analysis

Objectives/work description Objective of the fault analysis and a description of how to proceed provided by expert

Source of failure (request) Identification of source of the failure for the component of a given sample

Source of failure (detailed) Details of the source of the failure record for the identified failure source

Requestor Verify a product problem and determine corrective action through the evaluation of a small quantity

Requested activity Tries to find the wrong things in material, design, production, installation, and service

Priority level Level of priority of the analysis

High confidentiality Confidentiality level of failure analysis

Confidentiality The principle of confidentiality consists of giving access to data and information only to authorized persons 
with a defined and specific need to see or use such information

Reference
Is the identifier that describes the location and team handling the failure product. e.g., ADG CST FA Team-
19-00281 contains information about location [ADG], failure analysis team [CST FA Team], year [19] and 
failure analysis number [00281]

Organization Organizational failure analysis is described for in-depth identification of organizational deficiencies and 
failures that can lead to accidents

Organization Division The description of current organizations and processes that control the causes of failures

Department The failure analysis department described the section under the FA lab where the analysis is carried out

Cost Center The Cost Center is a department or a distinct unit or division within the framework of a company. These 
cost centers indirectly contribute to the organization’s profits

Site This describes the location where the Failure Laboratory is situated e.g., Grenoble. The FA process is fin-
ished once there is enough information to make a conclusion about the location of the failure site

Lab Determine the nature and the causes of a defect with an expertise of the product in a laboratory

Lab Team Select the causes of a failure by the teams of people from the failure analysis laboratory

Project The description given to the failure analysis project given by the FA team
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Where TP is True Positives, TN is True Negatives, FP is False Positives and FN is False Negatives. FP and FN, 
these values occur when the actual documents contradicts with the predicted documents. These values (BLEU 
score, Cosine similarity and Accuracy), presented in Table 3, confirm that the GA-DT allows a better predic-
tive model of the textual samples to predict the failure conclusion (features Y) compared to the other algorithm 
such as GA-SVM. We can see that the first four features of Y give good precision and good values of BLEU score 
and cosine similarity for GA-DT method except the last textual feature which is the conclusion of the analysis 
because each sample recorded on this variable is a large textual paragraph. About this latter feature we can say 
that the metrics calculated (accuracy = 25%; BLEU = 0.32; Cosine = 0.30) are very good compared to the other 

(29)Accuracy =
TP + TN

TP + FP + FN + TN
.

Figure 3.  Values of GA-DT fitness functions for different sizes of L chromosomes. The optimal value is the 
highest F1 score.

Figure 4.  Values of GA-SVM fitness functions for different sizes of L chromosomes. The optimal value is the 
highest F1 score.
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studies on textual dataset. One can also find that the application of variable selection by the genetic algorithm 
improves the accuracy of the model. These results are showed in Table 3.

In Table 4 we present some examples of results obtained after the application of the genetic algorithm with 
decision tree (GA-DT). We display the three best predictions for each failure analysis conclusion text sample. 
Then, we calculate the BLEU score to quantify the similarity between these predicted samples and the original 
sample. One can find that the values of BLEU scores are very close to one. This indicates strong similarity between 
the predicted samples and the reference ones.

Conclusion
We have proposed a methodology based on the association of a genetic algorithm with some supervised classifier 
methods for identification of discriminant textual features for the study of the best predictive model of failure 
conclusion using the features of failure descriptions.

The implementation of a genetic algorithm with a decision tree classifier as the fitness function led to the 
identification of a few interesting features. The BLUE score and the cosine similarity are used to evaluate the 
similarity between a predictive documents and a set of reference documents. We obtained very interesting values 
that indicate a strong similarity between the predictive documents and the references. We have also found that 
the application of variable selection by the genetic algorithm improve the accuracy and the metrics of the model 
obtained by DT or SVM methods.

We have shown that the discriminating features selected by the proposed GA-DT method provide the best 
predictive model of the failure conclusion according to the description of the failure process compared to GA-
SVM model or the direct application of the decision tree or the support vector machine applied to all the fea-
tures of the description of the failure (i.e., without any preselection method). As a perspective, we are working 
towards addressing the following challenges: 1) Improving the performance of the model by applying a generative 
sequence-to-sequence language model for failure conclusion generation given failure description; 2) Propose a 
methodology based on Genetic algorithm (GA) with decision tree (DT) to select the most important input vari-
ables that best predicts the conclusion (root cause) of a Failure analysis (FA). These variables will then be used to 
train a Transformer model for failure conclusion generation such as GPT2 transformer model etc.

Table 3.  Values of the accuracy, BLEU scores, cosine similarities for both GA-SVM and GA-DT algorithms. 
A higher value of these metrics signifies a better predictive model within the conclusion of failure. Significant 
values are given in bold.

Algorithm Feature (Y) Accuracy BLUE score Cosine similarity

GA-SVM Pt failure/Elt by sample 74% 0.56 0.61

GA-DT Pt failure/Elt by sample 84% 0.72 0.85

DT on all features Pt failure/Elt by sample 70% 0.54 0.70

SVM on all features Pt failure/Elt by sample 67% 0.48 0.52

GA-SVM Macro failure mode by sample 75% 0.70 0.72

GA-DT Macro failure mode by sample 84% 0.95 0.97

DT on all features Macro failure mode by sample 72% 0.65 0.70

SVM on all features Macro failure mode by sample 70% 0.62 0.65

GA-SVM Elementary failure mode 72% 0.66 0.70

GA-DT Elementary failure mode 78% 0.95 0.97

DT on all features Elementary failure mode 69% 0.64 0.66

SVM on all features Elementary failure mode 68% 0.62 0.64

GA-SVM Tech cause/defect by sample 70% 0.48 0.54

GA-DT Tech cause/defect by sample 77% 0.75 0.93

DT on all features Tech cause/defect by sample 68% 0.65 0.67

SVM on all features Tech cause/defect by sample 65% 0.60 0.62

GA-SVM Analysis conclusion 13% 0.09 0.08

GA-DT Analysis conclusion 25% 0.32 0.30

DT on all features Analysis conclusion 8% 0.04 0.06

SVM on all features Analysis conclusion 6% 0.02 0.05
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Data availability
All data, models, and code generated or used during the study appear in the submitted article and are provided 
upon request by contacting Abbas Rammal via email: rammal_abbass@hotmail.com.

Table 4.  Some examples of textual samples of analysis conclusion and their three best predictions by the 
GA-DT algorithm.

Sample Predict Y BLUE score

[‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘arsen’, ‘compar’, ‘sampl’, ‘scan’, 
‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’]

(1) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘beryllium’, ‘detect’, ‘1-trichloroethan’, ‘leakag’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, 
‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘crater’]

0.974

(2) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘1-trichloroethan’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, 
‘assemb’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘local’, ‘crater’]

0.949

(3) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘beryllium’, ‘observ’, ‘inspect’, 
‘astatin’, ‘reject’, ‘sampl’, ‘curv’, ‘trace’, ‘short’, ‘detect’, ‘arsen’, ‘compar’, ‘scan’, ‘auger’, 
‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘intern’, ‘electron’, ‘assembl’, 
‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’]

0.938

[‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘sampl’, ‘1-trichloroethan’, ‘arsen’, 
‘compar’, ‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, 
‘intern’, ‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘local’, 
‘crater’]

(1) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘1-trichloroethan’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, 
‘assemb’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘local’, ‘crater’]

0.953

(2) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘beryllium’, ‘detect’, ‘1-trichloroethan’, ‘leakag’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, 
‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘crater’]

0.943

(3) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘1-trichloroethan’, ‘curv’, ‘trace’, ‘short’, ‘beryllium’, ‘detect’, ‘arsen’, ‘compar’, ‘ scan’, 
‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘ attach’, ‘observ’, ‘intern’, ‘assembl’, 
‘defect’, ‘liquid’, ‘crystal’, ‘local’, ‘hotspot’, ‘nearbi’, ‘pin’, ‘failur’, ‘crater’, ‘pend’, 
‘requestor’, ‘decis’]

0.917

[‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘1-trichloroethan’, ‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, 
‘assembl’, ‘defect’, ‘crater’]

(1) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘beryllium’, ‘observ’, ‘inspect’, 
‘astatin’, ‘reject’, ‘sampl’, ‘curv’, ‘trace’, ‘minor’, ‘leakag’, ‘detect’, ‘arsen’, ‘compar’, 
‘transistor’, ‘outlin’, ‘packag’, ‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, 
‘attach’, ‘intern’, ‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, 
‘crater’]

0.912

(2) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘beryllium’, ‘observ’, ‘inspect’, 
‘astatin’, ‘reject’, ‘sampl’, ‘curv’, ‘trace’, ‘leakag’, ‘detect’, ‘short’, ‘1-trichloroethan’, 
‘arsen’, ‘compar’, ‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, 
‘intern’, ‘electron’, ‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’]

0.909

(3) [‘induct’, ‘reactanc’,‘ray’, ‘nobelium’, ‘abnorm’, ‘beryllium’, ‘observ’, ‘inspect’, ‘asta-
tin’, ‘reject’, ‘sampl’, ‘curv’, ‘trace’, ‘leakag’, ‘detect’, ‘1-trichloroethan’, ‘short’, ‘arsen’, 
‘compar’, ‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘intern’, 
‘electron’, ‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’]

0.908

[‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘arsen’, ‘compar’, ‘sampl’, ‘scan’, 
‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, ‘abnorm’, 
‘visual’, ‘crater’, ‘defect’]

(1) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘beryllium’, ‘detect’, ‘1-trichloroethan’, ‘arsen’, ‘compar’, ‘transis-
tor’, ‘outlin’, ‘packag’, ‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, 
‘observ’, ‘spot’, ‘intern’, ‘visual’, ‘reveal’, ‘burnt’, ‘mark’, ‘crater’, ‘defect’]

0.916

(2) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘1-trichloroethan’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, 
‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘decap’, ‘recov’, ‘transistor’, ‘outlin’, ‘packag’, 
‘perform’, ‘crater’]

0.862

(3) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘beryllium’, ‘observ’, ‘inspect’, 
‘astatin’, ‘reject’, ‘sampl’, ‘curv’, ‘trace’, ‘minor’, ‘leakag’, ‘detect’, ‘arsen’, ‘compar’, 
‘transistor’, ‘outlin’, ‘packag’, ‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, 
‘attach’, ‘intern’, ‘assembl’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, 
‘crater’]

0.853

[‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘leakag’, ‘beryllium’, ‘detect’, ‘short’, ‘sampl’, ‘arsen’, ‘compar’, ‘scan’, 
‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, ‘assembl’, 
‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘local’, ‘crater’]

(1) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘leakag’, ‘beryllium’, ‘detect’, ‘short’, ‘1-trichloroethan’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘die’, ‘observ’, ‘carbon’, ‘attach’, ‘transis-
tor’, ‘consid’, ‘critic’, ‘pwsso36l’, ‘dual’, ‘chip’, ‘base’, ‘spec’, ‘intern’, ‘assembl’, ‘defect’, 
‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘crater’]

0.971

(2) [‘induct’, ‘reactanc’, ‘ray’, ‘miss’, ‘wire’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, ‘1-trichlo-
roethan’, ‘nobelium’, ‘abnorm’, ‘beryllium’, ‘observ’, ‘curv’, ‘trace’, ‘short’, ‘detect’, 
‘leakag’, ‘arsen’, ‘compar’, ‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, 
‘attach’, ‘intern’, ‘assembl’, ‘defect’, ‘electron’, ‘reveal’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, 
‘nearbi’, ‘pin’, ‘failur’, ‘crater’]

0.862

(3) [‘induct’, ‘reactanc’, ‘ray’, ‘nobelium’, ‘abnorm’, ‘inspect’, ‘astatin’, ‘reject’, ‘sampl’, 
‘curv’, ‘trace’, ‘short’, ‘leakag’, ‘beryllium’, ‘detect’, ‘1-trichloroethan’, ‘arsen’, ‘compar’, 
‘scan’, ‘auger’, ‘microscopi’, ‘analysi’, ‘delamin’, ‘issu’, ‘die’, ‘attach’, ‘observ’, ‘intern’, 
‘assemb’, ‘defect’, ‘liquid’, ‘crystal’, ‘hot’, ‘spot’, ‘nearbi’, ‘pin’, ‘failur’, ‘local’, ‘crater’]

0.823
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