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Climate, landscape, and life 
history jointly predict multidecadal 
community mosquito phenology
Lindsay P. Campbell 1*, Mohamed F. Sallam 2, Amely M. Bauer 1, Yasmin Tavares 1 & 
Robert P. Guralnick 3

Phenology of adult host-seeking female mosquitoes is a critical component for understanding 
potential for vector-borne pathogen maintenance and amplification in the natural environment. 
Despite this importance, long-term multi-species investigations of mosquito phenologies across 
environments and differing species’ life history traits are rare. Here we leverage long-term mosquito 
control district monitoring data to characterize annual phenologies of 7 host-seeking female mosquito 
species over a 20-year time period in suburban Illinois, USA. We also assembled data on landscape 
context, categorized into low and medium development, climate variables including precipitation, 
temperature and humidity, and key life history traits, i.e. overwintering stage and Spring–Summer 
versus Summer–mid-Fallseason fliers. We then fit linear mixed models separately for adult onset, 
peak abundances, and flight termination with landscape, climate and trait variables as predictors 
with species as a random effect. Model results supported some expectations, including warmer spring 
temperatures leading to earlier onset, warmer temperatures and lower humidity leading to earlier 
peak abundances, and warmer and wetter fall conditions leading to later termination. However, we 
also found sometimes complex interactions and responses contrary to our predictions. For example, 
temperature had generally weak support on its own, impacting onset and peak abundance timing; 
rather temperature has interacting effects with humidity or precipitation. We also found higher spring 
precipitation, especially in low development contexts, generally delayed adult onset, counter to 
expectations. These results emphasize the need to consider how traits, landscape and climatic factors 
all interact to determine mosquito phenology, when planning management strategies for vector 
control and public health protection.

The timing of terrestrial insect adult seasonal emergences, peaks and termination, i.e. key intervals in their 
phenologies, critically impacts ecosystems and their services, and is one of the most sensitive indicators of the 
effects of global environmental  change1. Although multiple studies have focused on temporal trends in insect 
phenology, ranging from pollinator  species2,3 to crop  pests4, few studies have investigated mosquito phenologies 
over multidecadal time scales, despite the global importance of mosquitoes to human and veterinary  health5. This 
gap is especially important to close because mosquito phenology of adult host-seeking females is a critical com-
ponent for understanding potential for pathogen maintenance and amplification in the natural  environment6,7. 
In addition, correlating environmental variables and life history traits to key phenological intervals (i.e. onset, 
timing of peak abundances, and flight termination) can provide useful information that be informative to plan-
ning abatement and control efforts and toward prediction under current and future environmental conditions.

Mosquitoes are ectotherms and require aquatic habitats for multiple life  stages8. Thus, their seasonal phenol-
ogy should link closely to environmental conditions, providing a means to predict the timing and distribution 
of abundances under current and future environmental  change9. In temperate regions, winter dormancy is a 
particularly crucial life-history strategy for timing life cycles to avoid unfavorable conditions, and thus increase 
 survivorship7. The timing of entering and exiting dormancy is in part determined by environmental signaling, 
and often linked to climatic events such as the first hard frost and decreased photoperiod for initiating adult flight 
termination and  dormancy10,11, while increasing day length and accumulation of heat e.g., growing degree  days12 
reinitiates egg or larval development or adult activity. While extrinsic, abiotic factors are fundamental, intrinsic 
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characteristics related to long-term selective contexts can also lead to significant variation among species in both 
timing of when dormancy begins or ends, and what conditions are faced across different life  stages13. For exam-
ple, winter diapause stage (e.g., egg, larval or adult) may directly impact adult phenology responses, since each 
stage has different physiological tolerances and developmental rates in late winter or spring  conditions14. As well, 
whether a species flies earlier or later in the season may also impact responsiveness to different environmental 
cues as has been shown in other  work15.

A final, and potentially particularly important driver of adult phenology relates to landscape and how it has 
been altered. While climatic conditions are often considered the key environmental driver of adult phenology, 
it has been shown that different landscape factors can also impact  phenology16. In particular, more developed 
landscapes may provide more microhabitats, and overall milder winters, compared to wildlands, which may 
shift adult mosquito emergence earlier and termination  later16,17. Landscape impacts on phenology may also 
vary contextually in different climatic  conditions18, but such context-dependence has also not been examined 
in insects generally, and mosquitoes in particular.

Key genetic and physiological mechanisms underlying seasonal mosquito abundance have started to be 
 elucidated19, but far less common are long-term, multi-species investigations of mosquito phenologies across 
heterogeneous environments. Further, while the proximate cues driving especially adult emergence and termi-
nation have long been proposed (e.g., photoperiod, temperature)13, studies that determine how multiple envi-
ronmental drivers, including landscape, can interact to determine key phenological events are far less common. 
Studies addressing long-term phenology trends using multiple species found in different climate and landscape 
contexts, and with differing life-histories, are missing from the literature.

Recent digitization efforts of routine mosquito control trap surveillance data in combination with Earth sys-
tems monitoring data provide new resources to address outstanding questions about how phenology is shifting 
in the face of environmental  change20. These data resources often capture very fine grain spatial and temporal 
sampling over relatively broad regions and over long periods of time. Some mosquito surveillance extends over 
decades, using consistent trapping methods at the same set of sites, with consistent start and stop times and 
cadence of sampling. These rich datasets can be coupled to increasingly high-quality retrospective climatic data, 
along with land cover assessments that are updated every few  years21. These data resources, when coupled with 
statistical modeling frameworks, can uncover the strength of drivers of adult phenology, as well as provide a 
means to understand trends and subtrends in phenology change, all of which can feed into better forecasting of 
mosquito-borne transmission hazard into the future.

Here we showcase the utility of long-term mosquito monitoring and surveillance to characterize the annual 
phenologies of Spring-Summers eason and Summer-mid-Fall season host-seeking female mosquito species 
over a 20-year time period across 18 trap locations in Illinois, USA, and to quantify how landscape, climate, 
life history traits, and their interactions drive adult emergence, peak abundances, and adult flight termination. 
Based on previous work, we expected to find: (1) earlier onsets during years with higher average spring tempera-
tures, precipitation, and humidity; (2) later termination in higher summer precipitation and warmer summer 
temperatures; (3), earlier peak phenology (when abundances are highest) when temperatures are warmer, and 
precipitation and humidity low. We also expected to find earlier onset for mosquitoes found in locations sur-
rounded by greater percentages of developed land cover within foraging/flight ranges. Finally, we anticipated 
that land cover context may drive phenologies, especially given urban heat island effects, and that this effect is 
stronger in colder years. These climate -landscape interactions may also be further conditioned by key traits i.e., 
overwintering stage and seasonal flight timing.

Results
Key species and species traits assembly. Seven species across four genera contained sufficient data to 
calculate phenometrics (Table 1). Overwintering traits for individual species included egg and adult, with all 
three Aedes species classified as overwintering as eggs and the remaining species classified as adult. Although 
Aedes triseriatus can overwinter as larvae if tree holes remain unfrozen, we classified the overwintering stage 
as “egg” given the northern latitude of the study area and associated low winter temperatures in this  region22. 
Spring–Summer and Summer-mid-Fall season species, classified by peak abundances occurring prior to or later 
than Julian day 216 (August 4th, perpetual; August 5th leap year) resulted in five Spring–Summer season species 
and two Summer-mid-Fall season species; species with bimodal peak abundances were classified as “Spring–
Summer”. We chose Julian day 216 based on this date occurring at the middle point of the sampling season 
included in our analyses, however species flight curves (Supplementary Figs. 1, 2) demonstrate that this date is 
reasonable given the flight curve distributions.

Overall results for onset phenology suggest our best model after stepwise variable reduction is informative 
(marginal and conditional  R2 values were 0.483 and 0.59, respectively). Model results for onset showed that 
higher average temperature in spring–summer leads to earlier onset, but this relationship is strongest when vapor 
pressure deficit (a proxy for humidity) is highest. Thus, in highest humidity conditions, temperature no longer 
strongly drives phenology (Fig. 1). A surprising result is that both lower humidity (expressed here as higher vapor 
pressure deficit) and higher cumulative precipitation lead to later onset of phenology, although precipitation 
(but not vapor pressure deficit) impacts are much weaker in more urbanized, developed areas compared to less 
developed ones (Fig. 2). In sum, higher precipitation especially in low development regions, and drier overall 
conditions act to delay onsets. It may seem counterintuitive that precipitation and humidity show opposite effects 
on onset phenology, but as we discuss below, focusing on average values over a season means that a season could 
have punctuated heavy rainfall but still be drier than usual. We finally note one surprising impact of landscape 
on onset timing of mosquitoes—onset is later in all species in more developed areas, rather than earlier, as we 
expected, and Summer-Fall season species are particularly impacted towards later onset (Supplementary Table 1).
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Model results for termination supported our expectations; higher average cumulative precipitation and 
average fall temperatures lead to later termination dates. However, a significant negative interaction of aver-
age fall temperature with Summer-mid-Fall season species demonstrated that warmer temperatures were not 
a strong predictor for Summer-mid-Fall season species termination; as temperatures increased, termination 
dates increased only slightly, especially compared with the very strong effect of temperature on termination in 
Spring–Summer season species (Fig. 3). Marginal and conditional  R2 values for the best model after stepwise 
variable reduction were 0.303 and 0.499.

Model results for peak abundances indicated that average spring cumulative precipitation and mean vapor 
pressure deficit values had a positive effect on peak abundance. Temperature on its own did not impact peak 
phenology timing, but it strongly interacts with cumulative precipitation such that warm and dry conditions lead 
to much earlier peak abundances, while warm and wet conditions lead to much later peaks (Fig. 4). Surprisingly, 
the effect of precipitation is itself different across low and medium developed landscapes, with peak abundances 
showing weakly negative responses to precipitation in medium developed areas and strongly positive responses 
in low developed ones. Conditional  R2 values (0.391) were lower for the final peak abundance model compared to 
onset and termination models. Full model results are available in Supplementary Table 1 and conditional values 
for intercept terms for species-level random effects are available in Supplementary Table 2.

Discussion
Investigations of mosquito phenology most often focus on short time periods and the effects of single environ-
mental variables on individual species. Here, we leveraged routine mosquito control surveillance data over a 
20-year time period and showed that climate, landscape, life history traits, and their interactions have strong and 

Table 1.  Species included in analyses with trait classifications including overwintering stage, and timing of 
peak abundance in adult stage with “Spring–Summer occurring prior to August 4th each year and “Summer–
mid-Fall” occurring after August 4th; bimodal flight patterns are classified as “Spring–Summer.”

Species Trait overwinter Trait Spring–Summer/Summer–mid-Fall Source

Aedes triseriatus Eggs Spring–Summer https:// wrbu. si. edu/ vecto rspec ies/ mosqu itoes/ 
trise riatus

Aedes trivittatus Eggs Spring–Summer https:// wrbu. si. edu/ vecto rspec ies/ mosqu itoes/ 
trivi ttatus

Aedes vexans s.l Eggs Spring–Summer https:// wrbu. si. edu/ vecto rspec ies/ mosqu itoes/ 
vexans

Uranotaenia sapphirina Adult Summer–mid-Fall https:// vecto rbio. rutge rs. edu/ outre ach/ speci 
es/ sapp. htm

Culex territans Adult Summer–mid-Fall https:// vecto rbio. rutge rs. edu/ outre ach/ speci 
es/ terr. htm

Culex pipiens s.l Adult Spring–Summer https:// wrbu. si. edu/ vecto rspec ies/ mosqu itoes/ 
pipie ns

Anopheles punctipennis Adult Spring–Summer https:// acade mic. oup. com/ jme/ artic le/ 54/5/ 
1344/ 37891 08
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Figure 1.  The effect of temperature does not vary across landscapes, and leads to earlier onset in drier 
conditions (e.g., higher spring vapor pressure deficit) but has minimal impact on phenology in wetter 
conditions. These plots also demonstrate a weak effect of later onset in medium developed landscapes. Plots 
were generated using the ‘plot_model’ function in the sjPlot package and functions in ggplot2 package in R.

https://wrbu.si.edu/vectorspecies/mosquitoes/triseriatus
https://wrbu.si.edu/vectorspecies/mosquitoes/triseriatus
https://wrbu.si.edu/vectorspecies/mosquitoes/trivittatus
https://wrbu.si.edu/vectorspecies/mosquitoes/trivittatus
https://wrbu.si.edu/vectorspecies/mosquitoes/vexans
https://wrbu.si.edu/vectorspecies/mosquitoes/vexans
https://vectorbio.rutgers.edu/outreach/species/sapp.htm
https://vectorbio.rutgers.edu/outreach/species/sapp.htm
https://vectorbio.rutgers.edu/outreach/species/terr.htm
https://vectorbio.rutgers.edu/outreach/species/terr.htm
https://wrbu.si.edu/vectorspecies/mosquitoes/pipiens
https://wrbu.si.edu/vectorspecies/mosquitoes/pipiens
https://academic.oup.com/jme/article/54/5/1344/3789108
https://academic.oup.com/jme/article/54/5/1344/3789108


4

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3866  | https://doi.org/10.1038/s41598-023-30751-4

www.nature.com/scientificreports/

complicated effects on multispecies mosquito phenology in temperate climate conditions in suburban Chicago. 
These results emphasize the need to identify and account for variation in mosquito phenology across heteroge-
neous environment and life history traits when planning management strategies for vector control and public 
health protection, even when working across smaller geographic areas.

Our results confirm the importance of temperature as a driver of mosquito phenology, but its impact is both 
conditional on other climatic and landscape drivers and its importance varies across phenology stages. Somewhat 
surprisingly, temperature has the strongest direct impact on mosquito flight termination timing, particularly for 
Spring–Summer season species, rather than onset or timing of peak abundances. Instead, onset and peak phe-
nology is driven much more strongly by humidity, precipitation and landscape composition. This weaker effect 
of temperature on onset, where it is conditionally important only during drier years, is atypical for many insect 
 groups15 but likely reflects the strong requirements for available aquatic habitats needed for larval  development8.

We also expected precipitation to be a significant driver of phenology, given that higher average precipitation 
is often associated with an increased number of aquatic habitats supporting immature mosquito  development8. 
Given this, we expected precipitation to drive earlier onset, and so were surprised to find that higher spring 
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Figure 2.  More cumulative precipitation leads to much later onset in less developed regions, but has no impact 
on phenology in more developed ones. In all cases, higher spring vapor pressure deficit (drier conditions) leads 
to later onset. Plots were generated using the ‘plot_model’ function in the sjPlot package and functions in ggplot2 
package in R.
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Figure 3.  Increasing average late Summer-early Fall temperatures lead to much later termination in Spring–
Summer flying species, but this impact is much weaker for Summer-mid-Fall flying ones. More precipitation 
also leads to later termination but the strength of this predictor is not conditioned on flight timing. Plots were 
generated using the ‘plot_model’ function in the sjPlot package and functions in ggplot2 package in R.
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precipitation along with overall drier conditions instead delayed adult onset, especially in low development land-
scapes. While complex, a pattern of greater precipitation delaying onset has been observed across multivoltine 
insect  species15,23. It may be that the averaged seasonal climate summaries used here do not capture sometimes 
rapid intraseasonal variations, which could contribute to our results. For example, high average precipitation 
coupled with overall drier conditions may indicate punctuated or intermittent heavy rainfall events during a drier 
season, which can result in flushing of immature mosquito habitats and delay onset. Flushing effects have been 
observed previously in Culex mosquito abundances from a multiyear study in New Jersey, USA, which found that 
overall precipitation increased adult mosquito abundances, however episodes of heavy rainfall preceding trap 
collections reduced  counts24. Heavy rainfall followed by drier conditions could also impact the survival rate of 
adult mosquito populations due to desiccation, also delaying onset. Finally, significant early season precipitation 
may fall as snow, delaying onset of spring conditions. The strong effect of temperature and precipitation coupled 
to produce early or mid-spring poor conditions can be smoothed if there are late season warm spells when time 
averaging over a season. One key next step in work on spring dynamics is to utilize finer temporal-grain climatic 
data to detect if, for example, particularly cold and wet early springs are strong drivers of delayed adult onset.

Landscape context often had strong impacts on mosquito phenology but not always in the directions predicted 
and often via conditional effects with climate and traits. When precipitation is low, less developed landscapes 
had much earlier overall timing of mosquito emergence than in more developed areas, but this strong effect 
disappears when precipitation is higher. We find no evidence of earlier emergence driven by milder conditions 
in more built environments e.g., an urban heat effect. We also found that while warmer and wetter conditions 
delayed peak abundances in less developed landscapes, precipitation was not a factor in more urbanized areas. 
In this study, more urbanized study sites consisted of medium developed landscapes characterized by residential 
areas with mixed vegetation and built  environments21 which contain extensive storm water drainage systems 
that include catch basins that provide larval habitats and adult resting/overwintering habitats for some mosquito 
 species25,26. These habitats can provide shelter and help mitigate effects of high precipitation and provide pro-
tection against desiccation under drier environmental  conditions27,28. While further investigation is needed of 
intraseasonal variation in climate conditions, including the timing and magnitude of unusually high precipitation 
events, catch basin environments may mitigate the effects of heavy precipitation on delayed mosquito onset and 
on peak abundance phenology in managed landscapes compared to more natural landscapes.

Although air humidity is an important factor for mosquito survival, we also found that higher spring tem-
peratures coupled with drier humidity conditions advanced adult onset, and as humidity increased, the effect 
of temperature on onset decreased across both less developed and medium developed landscapes. In medium 
developed landscapes, this finding may reflect the emergence of adult mosquito populations from humid catch 
basins and flood drains, where they overwinter as adults and can harbor during resting  periods26,29. In less devel-
oped landscapes, annual spring snowmelt associated with warmer late spring temperatures that do not neces-
sarily correspond to higher humidity may also contribute to this result. Several species in our study, including 
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Figure 4.  Average spring cumulative precipitation leads to much later peak abundances in areas classified as 
low development, but slightly earlier peaks in medium developed areas. Drier conditions (higher vapor pressure 
deficit) lead to later peak abundances independent of land cover type. Plots were generated using the ‘plot_
model’ function in the sjPlot package and functions in ggplot2 package in R.
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species complexes such as Aedes vexans s.l., can use temporary water bodies for initial larval development in 
the spring and if these water bodies are then regenerated through precipitation, multiple generations continue 
throughout the  season30.

Interestingly, while warmer temperatures delayed termination, the effect of temperature was not strong for 
Summer–mid-Fall season species. The Summer–mid-Fall season species investigated here were Cx. territans and 
Ur. sapphirina. Both species bloodfeed on amphibian hosts, however Ur. sapphirina specialize on a broad range 
of annelid hosts and Cx. territans specializes on Rana clamitans  frogs31,32. Previous work under low temperature 
scenarios found Cx. territans presence was closely synchronized to R. clamitans presence, that temperature and 
other environmental variables were not strong predictors of presence, and Cx. territans were able to digest blood 
meals at a low temperature threshold, suggesting that this species can undergo thermoregulation that facilitates 
functioning at low  temperatures31. Although a similar study has not been conducted for Ur. sapphirina, our results 
corroborate earlier field and laboratory investigations for Cx. territans and scales over a longer time period, 
highlighting that additional life history traits including host specialization and host phenology could also be an 
important component of observed mosquito  phenology33.

One life history trait that did not have an effect on mosquito phenology was overwintering stage. This result 
was surprising given the distribution of species overwintering as eggs and as adults in our study and expected 
differences in time between emergence from overwintering to adult host seeking behavior because of life stage. 
However, one possibility for this result could be the thresholds used here for calculating onset and termination 
(i.e. 15% and 85%). The advantage of this approach is capturing a substantial portion of the flight curve and 
reducing effects of unusual early or late individual emergence or  termination34. However, this approach may 
miss nuanced early or late season dynamics that overwinter stage could impact.

Although our study leveraged a substantial 20-year mosquito trap surveillance data set across multiple trap 
locations, limitations exist. While four genera were represented in our study, phenometrics were calculated for 
a total of seven dominant or abundant species, which may not necessarily reflect the full phenological diversity 
of the mosquitoes in the study region. In addition, Cx. pipiens species in our study likely included Cx. pipiens 
pipiens and Cx. pipiens molestus mosquitoes in the same species designation, and in some cases species active 
in the fall that overwinter as adults may have been seeking nectar rather than a blood meal, which could have 
been missed in  CO2 baited light traps. In addition, Ae. vexans mosquitoes may have included multiple subtypes. 
However, we expect that the overall effects of these limitations on our phenometric calculations were minimal. 
While we used an established approach to calculate phenometrics derived from multiple locations, the current 
method does not necessarily account for residual spatial autocorrelation when estimating values. However, 
the inclusion of trap locations into phenometric calculations by land cover type, rather than proximity to one 
another may have helped to mitigate this limitation. In addition, our choice to include general land cover types 
representative of anthropogenic activities may have resulted in missed nuances related to microhabitats and we 
limited our analyses to landscapes within a 1 km buffer distance of traps to provide general information about 
these anthropogenic activities. Future landscape investigations across multiple land cover types and within 
additional buffer distances from trap locations may reveal additional information. Despite these limitations, our 
models were informative for the set of species included here, particularly for onset, and we found that interac-
tions between climate and landscape variables and between species traits and the environment were important 
predictors of mosquito phenology. In addition to multi-species studies, meta-analyses of individual mosquito 
species may provide useful information toward understanding environmental effects on mosquito phenology. 
Future investigations of unusual weather events, particularly precipitation events, have the potential to provide 
further insight into climate and landscape interactions important to mosquito phenology across species and life 
history traits.

Materials and methods
Assembling the mosquito control district data. We focused on Desplaines Valley Mosquito Abate-
ment mosquito trap surveillance data collected from Cooke County, IL. This county is located in the greater 
Chicago Metropolitan Area, USA and includes low, medium, and high intensity developed land cover, with high 
intensity developed land cover in the east in the downtown metropolitan area (Fig. 5). Generally, the climate 
of the study sites is humid continental, as designated by the Köppen–Geiger climate classification system, and 
exhibits large seasonal temperature contrasts with hot summers and cold winters and local weather effects from 
Lake  Michigan35.

Mosquito control surveillance trap data were downloaded from VectorBase PopBio data repository (https:// 
vecto rbase. org/ popbio- map/ web/)36. The data set included multiple fields, which are outlined in an extensive 
data dictionary provided through the data repository. For the purpose of this study, we included latitude and 
longitude coordinates of the collection site, the collection date, trap type, attractant, and an abundance value for 
individual species. Data were filtered to include only New Jersey light traps with visible light as the attractant 
between the years 2000–2020.

Once downloaded, we performed a set of quality assurance and control steps. First, we generated Location 
IDs for each unique set of geographic coordinates and data were reshaped to a site-by-species matrix using the 
‘dplyr’ package in  R37, with individual sites for individual collection dates serving as rows and species counts as 
columns. If an abundance value was NA in the site-by-species matrix, the NA value was replaced with a zero if 
the species had been collected across any sites on a date prior to the collection date; the only species with NAs 
included in the matrix was Aedes japonicus, which was non-native to Illinois and first recorded in 2008. We 
checked for timing of the start and stop of sampling per site-year combination and also checked completeness 
of sampling during the year for all sites (Supplementary Fig. 3).

https://vectorbase.org/popbio-map/web/
https://vectorbase.org/popbio-map/web/
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Assembling key landscape and climate metrics. We generated landcover metrics over the time period 
of the analysis (2000–2020). To do so, we downloaded USGS National Land Cover Data (NLCD) 30 m resolu-
tion data for 2001, 2004, 2006, 2008, 2011, 2013, 2016, and 2019 from the Multi-resolution Land Characteristics 
Consortium (MRLC https:// www. mrlc. gov/ data) and masked to  Illinois21. In this study, we focused on three 
general land cover classes representing general anthropogenic activities surrounding mosquito trap locations. 
Land cover classes for each data set were reclassified to low developed (value = 1), medium developed (value = 2), 
and developed (value = 3). The low developed class included low intensity developed and open developed classes 
along with all other land cover classes except medium- intensity developed and high-intensity developed. The 
medium developed class included medium-intensity developed and the developed class included locations clas-
sified as high-intensity developed. A 1 km buffer was created around each unique location ID and percent land 
cover for each of the three classes was calculated within each buffer for each time period using the landscap-
emetrics package in  R38 and the class with the highest percentage was assigned to the location. Because we were 
investigating annual phenology values from 2000 to 2020 we assigned low, medium, and high developed land 
cover classes at locations for each year for which the NLCD was not available (Fig. 1). In short, for each year 
where NLCD was not available, we chose the closest proximal year. For example, for 2002, we used the NLCD 
2001 data and for 2003 we used the NLCD 2004. In this study, we only had low and medium developed landcover 
classes; none were in the highest development class.

Daily climate values for minimum and maximum temperature, minimum and maximum vapor pressure 
deficit, and total precipitation from 2000 to 2020 were acquired from 4 km resolution gridMET surface mete-
orological  data39 and downloaded using the climateR package at individual mosquito trap  locations40. Daily data 
were stratified into annual spring-early summer and summer-early fall seasons. The spring season included daily 
values from March 1st to June 30th during the early portion of the sampling season, and the summer-fall season 
included daily values between July 1st and October 31st. Annual average minimum and maximum temperature 
values, minimum and maximum vapor pressure deficit, and cumulative precipitation values were summarized at 
each location over the study period using the tidyverse package in  R41. Seasonal climate summaries at individual 
trap locations were then grouped by year and land cover designation and average minimum and maximum 
temperature, average minimum and maximum vapor pressure deficit, and average cumulative precipitation were 
calculated across sites sharing the same land cover designation.

Calculating mosquito flight curves and phenometrics. Phenometrics were derived for individual 
mosquito species representing 15% emergence, 50% relative abundance, 85% termination, and peak abundances 
using the rbms  package42 in R. Adult 15% emergence and 85% termination metrics were chosen to reduce bias 
that can result from unusual early or late individual emergence or termination, while capturing a substantial 
portion of the flight  curve34. The rbms package provides a set of wrapper scripts to calculate relative abundance 

Figure 5.  Distribution of mosquito surveillance trap sites across less developed and medium developed 
landscapes in suburban Chicago. Map was created using ESRI ArcMap v10.6 software program (https:// www. 
esri. com).

https://www.mrlc.gov/data
https://www.esri.com
https://www.esri.com
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indices from yearly time-series data. It does so by defining a start and end date of the monitoring season, a time 
step for the curve (either daily or weekly), and then uses site visit information across multiple sites to calculate 
a summary flight curve.

Our interest in this study are annual flight curves per species, stratified by our land cover classes (low and 
medium developed). Because sampling start and stop timing was highly consistent and sampling relatively com-
plete over the season (see above and Supplemental Fig. 1), we felt confident fitting per-species flight curves across 
land cover types and set a minimum requirement of 2 sites sampled for a species-year-landcover group. After 
assembling data for fitting in rbms, we generated flight curves for all species-year-landcover combinations. While 
there are 24 species and 2 species morphological groups sampled in Illinois over the 20-year period, we could 
only fit phenometrics over most of the time series for the 7 most commonly sampled species. Many species are 
rare or sporadic in the region, making it difficult to establish a clear seasonal abundance pattern. In other cases, 
phenoestimates for some species could only be fit for a more limited portion of the time series, and these too we 
dropped to focus on species with more complete estimates over time. The end result of phenocurves for species-
landscape-year combination provide an estimate of relative abundance over the season, and because the area 
under the curve is equal to one, can easily be used to generate our key metrics (e.g., 15% emergence, 50% median, 
peak, and 85% termination). All data and code used for generating and assembling phenometric data and model 
analyses is available on github (https:// github. com/ Campb ell- Lab- FMEL/ mosqu ito- commu nity- pheno logy).

Assembling key trait data and fitting phenology models. We focus on two key traits that may impact 
phenological responses: overwintering stage and early versus late flight timing, here designated as Spring–Sum-
mer and Summer-mid-Fall flight  timing43. These two traits have been used in other studies and both have been 
shown to strongly relate to phenological responsiveness to both climate and  landscape43,44. We determined the 
overwintering stage for mosquito species using literature resources (see Table 1 in “Results”). We classified spe-
cies as Spring–Summer or Summer–mid-Fall flying by examining 50% flight period timing per species; species 
with bimodal peaks were classified as Spring–Summer. There is a clear bimodal distribution separating those 
species whose median flight timing is prior to early August and those whose 50% timing is later (Spring–Sum-
mer = before Julian Day (JD) 216, Summer–mid-Fall = after JD 216) (Supplementary Figs. 1, 2).

We carefully considered how to associate climatic data to our phenometrics before running models. While 
it remains possible that there are strong lag effects, where earlier climatic conditions have impacts on pheno-
logical sensitivity in a later part of the season, a logical first step is to use climatic conditions proximal to the 
phenological events being measured. We therefore opted to use Spring (March–mid June) summarized climatic 
conditions (e.g., average temperature, cumulative precipitation, and average vapor pressure deficit) for onset and 
summer/early Fall (late July—November) summarized climatic conditions for termination in initial model runs. 
While there is some variation in this timing across species, onsets and offset timing are within these seasonal 
time ranges or just after.

After assembling all the trait, climate and landscape data along with phenometrics, we fit linear mixed effects 
models (LMMs) with species as (intercept-only) random effects using the Imer package in  R45. We are interested 
in interactions between climate, landscape and traits in these models but we avoided overly complex three-way 
interactions and cases where collinearity among predictors was damaging. We evaluated damaging collinearity 
using variance inflation factors (VIFs) generated by the ‘vif ’ function in the R package car46, dropping two-
way interactions that were highly collinear until all VIF scores were under 5. After fitting full models, we then 
used the function ‘step’ in the package lmerTest47 to select the best model after stepwise variable reduction. We 
determined model diagnostics for our best models using the R package performance48 and calculated marginal 
and conditional  R2 values using the ‘r2_nakagawa’ function for mixed effects  models49. We used the function 
‘plot_model’ in the R package sjPlot to generate effects plots for key  predictors50.

Data availability
Data and code used in these analyses are available through GitHub (https:// github. com/ Campb ell- Lab- FMEL/ 
mosqu ito- commu nity- pheno logy).
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