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Novel methods for reliability study 
of multi‑dimensional non‑linear 
dynamic systems
Oleg Gaidai 1, Jingxiang Xu 1*, Ping Yan 1, Yihan Xing 2, Kelin Wang 1 & Zirui Liu 1

This research presents two unique techniques for engineering system reliability analysis of multi‑
dimensional non‑linear dynamic structures. First, the structural reliability technique works best for 
multi‑dimensional structural responses that have been either numerically simulated or measured over 
a long enough length to produce an ergodic time series. Second, a novel extreme value prediction 
method that can be used in various engineering applications is proposed. In contrast to those currently 
used in engineering reliability methodologies, the novel method is easy to use, and even a limited 
amount of data can still be used to obtain robust system failure estimates. As demonstrated in this 
work, proposed methods also provide accurate confidence bands for system failure levels in the case 
of real‑life measured structural response. Additionally, traditional reliability approaches that deal 
with time series do not have the benefit of being able to handle a system’s high dimensionality and 
cross‑correlation across several dimensions readily. Container ship that experiences significant deck 
panel pressures and high roll angles when travelling in bad weather was selected as the example for 
this study. The main concern for ship transportation is the potential loss of cargo owing to violent 
movements. Simulating such a situation is difficult since waves and ship motions are non‑stationary 
and complicatedly non‑linear. Extreme movements greatly enhance the role of nonlinearities, 
activating effects of second and higher order. Furthermore, laboratory testing may also be called into 
doubt due to the scale and the choice of the sea state. Therefore, data collected from actual ships 
during difficult weather journeys offer a unique perspective on the statistics of ship movements. 
This work aims to benchmark state‑of‑the‑art methods, making it possible to extract necessary 
information about the extreme response from available on‑board measured time histories. Both 
suggested methods can be used in combination, making them attractive and ready to use for 
engineers. Methods proposed in this paper open up possibilities to predict simply yet efficiently 
system failure probability for non‑linear multi‑dimensional dynamic structure.

Generally, it is quite challenging to calculate realistic structural system reliability by using conventional theo-
retical reliability  methods1–7. The latter is often caused by many system freedom degrees and random variables 
that control dynamic systems. Theoretically, it is possible to estimate complicated structural systems’ reliability 
straightforwardly by using sufficient data or direct Monte Carlo  simulations8–13. The experimental or computa-
tional costs may be prohibitive for many complicated dynamic systems. Authors have developed a unique reliabil-
ity approach for structural systems to lower measurement or computing costs as a result of the latter argument.

This work focuses on the general extreme value theory-based approach, in which it is anticipated that neither 
the physical dynamics of the water waves nor any other dynamic or environmental system would significantly 
contribute to the emergence of uncommon  occurrences14–20. Although beyond the scope of our work, there 
have been some successful attempts to study extreme events in water waves (often called rogue or freak waves) 
with distributions that are uniquely determined by the dynamics of the physical system. For  instance20–24, have 
shown that water waves departing from linear theory will modify their distribution from a Rayleigh  type25–30, 
to a distribution dependent on the square root of the wave steepness.  Similarly31–35, have shown that a Rayleigh 
distribution modified by a polynomial function of the ratio between height and water depth controls extreme 
events in Hurricane data. In addition, spectrum bandwidth seems to have different effects in extreme wave 
distribution depending on whether they are in deep  waters36–38. Furthermore, ocean processes such as shoaling 
or wave-current systems that drive wave trains out of equilibrium have been  experimental39–42 associated with 
increasing the occurrence of extreme waves by order of magnitude. However, it has been recently found that no 
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established theoretical distribution to date, neither universal as Gumbel nor based on physical principles, can 
describe extreme wave statistics in a wide range of  conditions43–49.

Figure 1 sketches the flow chart for the methodology suggested in this paper. For the definition of synthetic 
R vector and more details see next Section. Note that methods introduced by authors here do not rely on Gum-
bel (or any other type) distribution type assumption. Instead, Gumbel-based extrapolation was used just for 
comparison. By applying the new approach to a collection of data from a real-world on-board measurement 
experiment aboard a container ship, this part aims to demonstrate the previously stated methodology’s effective-
ness. Ship dynamics is a well-known example of a highly non-linear, multi-dimensional, and cross-correlated 
dynamic system that is difficult to analyse. Furthermore, system reliability research is crucial for container ships 
traversing the Atlantic Ocean in actual, occasionally severe weather. Typically, it is considered that ocean waves 
constitute an ergodic random process (stationary and homogenous) within 3 h storm.

Methods
Consider an offshore MDOF structure that is subjected to ergodic environmental loadings, such as those caused 
by the wind and waves in the area. The other option is to see a process dependent on external factors, whose 
fluctuation over time may be modelled as an independent ergodic process. Let X1, . . . ,XNX be consequent in time 
local maxima of the process X(t) at monotonously increasing discrete time instants tX1 < · · · < tXNX

 in (0,T) . The 
analogous definition follows for other MDOF response components Y(t),Z(t), . . . with Y1, . . . ,YNY ; Z1, . . . ,ZNZ 
and so on. For simplicity, all R(t) components, and therefore its maxima are assumed to be non-negative. The 
aim is to estimate the system failure probability

with

being the probability of non-exceedance for response components ηX , ηY , ηZ ,… critical values; ∪ denotes logical 
unity operation «or»; and pXmax

T ,Ymax
T ,Zmax

T ,... being joint probability density of the global maxima over the entire 
time span (0,T).

In practice, however, it is not feasible to estimate the latter joint probability distribution directly 
pXmax

T ,Ymax
T ,Zmax

T ,... due to its high dimensionality and available data set limitations. In other words, the time 
instant when either X(t) exceeds ηX , or Y(t) exceeds ηY , or Z(t) exceeds ηZ , and so on, the system is regarded 
as immediately as failed. Fixed failure levels ηX , ηY  , ηZ,…are of course individual for each unidimensional 
response component of R(t) . Xmax

NX
= max{Xj ; j = 1, . . . ,NX} = Xmax

T  , Ymax
NY

= max{Yj ; j = 1, . . . ,NY } = Ymax
T , 

Zmax
Nz

= max{Zj ; j = 1, . . . ,NZ} = Zmax
T  , and so on.

Next, the local maxima time instants 
[
tX1 < · · · < tXNX

; tY1 < · · · < tYNY
; tZ1 < · · · < tZNZ

]
 in monoto-

nously non-decreasing order are sorted into one single merged time vector t1 ≤ · · · ≤ tN .Note that 
tN = max{tXNX

, tYNY
, tZNZ

, . . . } , N = NX + NY + NZ + . . . . In this case tj represents local maxima of one of 
MDOF bio-system response components either X(t) or Y(t) , or Z(t) and so on. That means that having R(t) 
time record, one needs continuously and simultaneously screen for unidimensional response component local 
maxima and record its exceedance of the MDOF limit vector (ηX , ηY , ηZ , ...) in any of its components X,Y ,Z, . . . . 
The local unidimensional response component maxima are merged into one temporal non-decreasing vector 
−→
R = (R1,R2, . . . ,RN ) in accordance with the merged time vector t1 ≤ · · · ≤ tN . That is to say, each local maxima 
Rj is the actual encountered local maxima corresponding to either X(t) or Y(t) , or Z(t) and so on. Finally, the 
unified limit vector (η1, . . . , ηN ) is introduced with each component ηj is either ηX , ηY or ηZ and so on, depend-
ing on which of X(t) or Y(t) , or Z(t) etc., corresponding to the current local maxima with the running index j.

Next, a scaling parameter 0 < � ≤ 1 is introduced to artificially simultaneously decrease limit values for all 
response components, namely the new MDOF limit vector 

(
η�X , η

�
Y , η

�
z , ...

)
 with η�X ≡ �·ηX , ≡ �·ηY , η�z ≡ �·ηZ , 

… is introduced. The unified limit vector 
(
η�1 , . . . , η

�
N

)
 is introduced with each component η�j  is either η�X , η�Y or 

η�z and so on. The latter automatically defines probability P(�) as a function of � , note that P ≡ P(1) from Eq. (1). 
Non-exceedance probability P(�) can be now estimated as follows:

(1)1− P = Prob
(
Xmax
T > ηX ∪ Ymax

T > ηY ∪ Zmax
T > ηZ ∪ . . .

)

(2)
P =

(ηX ,ηY ,ηZ ,...)

∫ ∫ ∫
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Figure 1.  Flow chart for described methodology.
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In practice, the dependency between neighbouring Rj is not always negligible; thus, the following one-step 
(called here conditioning level k = 1 ) memory approximation is now introduced

for 2 ≤ j ≤ N (called here conditioning level k = 2 ). The approximation introduced by Eq. (4) can be further 
expressed as

where 3 ≤ j ≤ N (will be called conditioning level k = 3 ), and so on. The motivation is to monitor each inde-
pendent failure that happened locally first in time, thus avoiding cascading local inter-correlated exceedances.

Equation (5) presents subsequent refinements of the statistical independence assumption. The latter type of 
approximation captures the statistical dependence effect between neighbouring maxima with increased accu-
racy. Since the original MDOF bio-process R(t) was assumed ergodic and therefore stationary, the probability 
pk(�):=Prob{Rj > η�j |Rj−1 ≤ η�j−1, Rj−k+1 ≤ η�j−k+1

} for j ≥ k will be independent of j but only dependent on 
conditioning level k . Thus non-exceedance probability can be approximated as in the Naess–Gaidai  method43–49, 
where

Note that Eq. (6) follows from Eq. (1) by neglecting Prob(R1 ≤ η�1) ≈ 1 , as the design failure probability is 
usually very small. Further, it is assumed N ″k.

Note that Eq.  (5) is similar to the well-known mean up-crossing rate equation for the probability of 
 exceedance50,51. There is obvious convergence with respect to the conditioning parameter k

Note that Eq. (6) for k = 1 turns into the quite well-known non-exceedance probability relationship with the 
mean up-crossing rate function

where ν+(�) is the mean up-crossing rate of the response level � for the above assembled non-dimensional vector 
R(t) assembled from scaled MDOF bio-system response 

(
X
ηX

, Y
ηY

, Z
ηZ
, . . .

)
 . In the above, the stationarity assump-

tion has been used. The proposed methodology can also treat the non-stationary case. An illustration of how the 
methodology can be used to treat non-stationary cases is provided. Consider a scattered diagram of m = 1, ..,M 
environmental states, each short-term bio-environmental state having a probability qm , so that 

∑M
m=1 qm = 1 . 

The corresponding long-term equation is then

with pk(�,m) being the same function as in Eq. (7) but corresponding to a specific short-term environmental 
state with the number m . Next, by plotting ln

{
ln
(
pk(�)

)
− dk

}
 versus ln(ak�+ bk) , often nearly perfectly linear 

tail behaviour is observed.
It is useful to do the optimisation on the logarithmic level by minimising the following error function F with 

respect to the four parameters ak , bk , ck , pk , qk

with �1 being a suitable distribution tail cut-off value, namely the largest wave height value, where the confidence 
interval width is still acceptable. Optimal values of the parameters ak , bk , ck , pk , qk may also be determined using 
a sequential quadratic programming (SQP) method incorporated in the NAG Numerical  Library52. Weight 
function ω can be defined as ω(�) =

{
lnCI+(�)− lnCI−(�)

}−2 with 
(
CI−(�), CI+(�)

)
 being a confidence interval 

(CI), empirically estimated from the simulated or measured  dataset43–49. When the parameter c = lim
k→∞

ck is equal 
to 1 or close to it, the distribution is close to the Gumbel distribution.

(3)

P(�) = Prob

{
RN ≤ η�N , . . . ,R1 ≤ η�1

}

= Prob

{
RN ≤ η�N |RN−1 ≤ η�N−1, . . . ,R1 ≤ η�1

}
· Prob

{
RN−1 ≤ η�N−1, . . . ,R1 ≤ η�1

}

=
N∏

j=2

Prob

{
Rj ≤ η�j |Rj−1 ≤ η�1j−, . . . ,R1 ≤ η�1

}
· Prob

(
R1 ≤ η�1

)

(4)Prob

{
Rj ≤ η�j |Rj−1 ≤ η�j−1, . . . ,R1 ≤ η�1

}
≈ Prob

{
Rj ≤ η�j |Rj−1 ≤ η�j−1

}

(5)Prob

{
Rj ≤ η�j |Rj−1 ≤ η�j−1, . . . ,R1 ≤ η�1

}
≈ Prob

{
Rj ≤ η�j |Rj−1 ≤ η�j−1,Rj−2 ≤ η�j−2

}

(6)Pk(�) ≈ exp
(
−N · pk(�)

)
, k ≥ 1

(7)P = lim
k→∞

Pk(1); p(�) = lim
k→∞

pk(�)

(8)P(�) ≈ exp
(
−ν+(�)T

)
; ν+(�) =

∞
∫
0
ζpRṘ(�, ζ )dζ

(9)pk(�) ≡
M∑

m=1

pk(�,m)qm

(10)F
(
ak , bk , ck , pk , qk

)
=

�1

∫
�0

ω(�)
{
ln
(
pk(�)

)
− dk + (ak�+ bk)

ck
}2

d�, � ≥ �0
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For any general ergodic wave height or wind speed process, the sequence of conditional exceedances over a 
threshold � can be assumed to constitute a Poisson process. However, in general, non-homogeneous one. Thus, for 
levels of � approaching 1 , the approximate limits of a p-% confidence interval (CI) of pk(�) can be given as follows

with f (p) being estimated from the inverse normal distribution, for example, f (90%) = 1.65 , f (95%) = 1.96 . 
with N being the total number of local maxima assembled in the analysed vector −→R  . Next, a novel extrapola-
tion method is briefly introduced. Accurate extreme value prediction is a common and challenging engineer-
ing reliability task, especially when available data is scarce. Therefore, developing novel, efficient and accurate 
extrapolation techniques are of great practical importance. Let one consider a stationary stochastic process X(t) , 
either simulated or measured over a specific time span 0 ≤ t ≤ T , and which is represented as a sum of two 
independent stationary processes X1(t) and X2(t) , namely

Note that this paper aims at a general methodology applicable to extreme value predictions for a wide range 
of loads and responses for various vessels and offshore structures. For the process of interest X(t) one may obtain 
marginal PDF (probability density function)pX by two distinctive ways:

(A) By directly extracting pAX from the available data set, i.e. time series X(t),
(B) By separately extracting PDFs from the process components X1(t) and X2(t) , namely pX1 and pX2 , then 

applying convolution pBX = conv
(
pX1 , pX2

)
.

Both pAX and pBX are being approximations of the target PDF pX . Approach (A) is more straightforward to use, 
however (B) would provide a more accurate estimate of the target PDF pX . An advantage of using convolution in 
case (B) is based on the fact that convolution enables extrapolation of the directly extracted empirical PDF pAX , 
without pre-assuming any specific extrapolation functional class, e.g. generalised extreme value distributions 
(GEV) needed to extrapolate distribution tail towards design low probability level of interest. Note that most 
existing extrapolation methods, widely adopted in engineering practice, rely on assuming certain extrapolation 
functional classes, e.g.43–49. To name some of those most popular existing methods: Pareto based distribution 
peak over the threshold (POT)50.

The two independent component representation given by Eq. (12) is seldom available; therefore, one may 
look for artificial ways to estimate pX1 and pX2 , or in the simplest case, find two identically distributed process 
components X1(t) and X2(t) with pX1 = pX2 . This paper is focused on the latter alternative, i.e. case when pro-
cesses X1(t) and X2(t) are equally distributed. Therefore the current study goal would be, given directly estimated 
distribution pX as in option (A), to find component distribution pX1 such that

thus restricting this study only to a deconvolution case. In order to exemplify the latter idea regarding how to 
estimate the unknown distribution robustly pX1 , and subsequently to improve (say extrapolate) the given empiri-
cal distribution pX .

Accurate extreme value prediction becomes extremely challenging whenever there is a scarcity of data in 
engineering. Hence, a novel, efficient and accurate extrapolation method must be developed. Such a method 
better facilitates better design and reliability development.

In a case where the stationary stochastic process X(t) which is either measured or simulated in a time span 
of 0 ≤ t ≤ T , and is then denoted as a sum of two independent stationary processes X1(t) and X2(t).

Noteworthy with a general methodology, this paper hopes to better predict the extreme responses in engi-
neering, with its primary focus on mechanical engineering, e.g. offshore jacket platform dynamics. Note that the 
method described here assumes a stationary dynamic system. In the case of non-stationary processes (long-term 
analysis), there will be a need to have stationary sub-parts in it (e.g. short-term analysis with 3-h sea states, taken 
from the scattered diagram).

The marginal PDF (probability density function)pX can be acquired in two different ways for the process of 
interest X(t):

(A) Using the available data set, i.e., time series X(t) , to directly extract pAX.
(B) Using the process components X1(t) and X2(t) to individually extract their PDFs from, namely pX1 and 

pX2 , and then utilising convolution pBX = conv
(
pX1 , pX2

)
.

In both processes, pAX and pBX are the approximations of the target PDF pX . The initial approach (A), is more 
straightforward; however, the second approach (B), gives a better and more accurate estimate of the target PDF 
pX.

(11)CI±(�) = pk(�)

(
1±

f
(
p
)

√
(N − k + 1)pk(�)

)
.

(12)X(t) = X1(t)+ X2(t)

(13)pX = conv
(
pX1 , pX1

)

(14)X(t) = X1(t)+ X2(t)
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The convolution method in approach (B) is also advantageous since it facilitates the direct extraction of the 
empirical PDF pAX , without a presumption of any extrapolation functional class.

However, the two independent components from Eq. (10) are often unknown and thus pX1 and pX2 must 
be estimated. If not, in a more straightforward scenario, both the identically distributed process components 
X1(t) and X2(t) with pX1 = pX2 must be estimated. The latter-mentioned method will be examined in this paper, 
considering that both the process of X1(t) and X2(t) are equally distributed. Thus, using the directly estimated 
distribution pX like approach A), the component distribution pX1 is derived

This limits this case to only a deconvolution scenario. The convolution of two vectors is characterised by the 
overlapping area of both the vectors, u and v . Thus, convolution is algebraically similar to the multiplication of 
polynomials whose coefficients are the elements of u and v . Let m = length(u) and n = length(v) . Then w is the 
vector of length m+ n− 1 , whose k th element is

The sum is over all the values of j that lead to legal subscripts for u
(
j
)
 and v

(
k − j + 1

)
 , specifically 

j = max(1, k + 1− n) : 1 : min(k,m) . When m = n , as will be the main case in this paper, the latter yields

From Eq.  (13), u = v = (u(1), ..., u(n)) , reduced parts of w-components w(n+ 1), ...,w(2n− 1) are 
obtained, when the index increases from n+ 1 to 2n− 1 . The latter extends vector w into the support 
domain, double the initial distribution support domain. In short, the distribution support length is doubled, 
(2n− 1) ·�x ≈ 2n ·�x = 2XL . When comparing with the initial distribution support length n ·�x = XL . �x , 
in this case, is the constant length of each discrete distribution bin. In short, the convolution convects the dis-
tribution tail properties further down the tail.

The representation of the empirical target distribution pX is w = (w(1), ...,w(n)) where n is the length of 
distribution support [0,XL] . In this paper, only the one-sided positive random variables, X ≥ 0 , are considered 
to minimise complexities. Moreover, only the deconvolution cases considered as Eq. (13) will be u = v . Judg-
ing from Eq. (13), the vectors w and u, has a corresponding distribution pX and pX1 , respectively. The unknown 
components u = v = (u(1), ..., u(n)) , can be found from the given w = (w(1), ...,w(n)) in Eq. (13). It starts from 
the first component u(1) =

√
w(1) , then to the second component u(2) = w(2)

2u(1) , and until n component u(n).
Through this method, a simple linear extrapolation of self-deconvoluted vector (u(1), ..., u(n)) towards 

(u(n+ 1), ..., u(2n− 1)) is achieved. In short, pX1 has its tail extrapolated linearly within the following range 
(XL, 2XL). Thus now, the pX1 is known as a deconvoluted distribution and, in its discrete form, is charac-
terised by a projected vector u . Based on Eq. (13), the vector w is extended and extrapolated doubling the 
length of the initial distribution support domain. In short, the pX distribution support length is doubled, 
(2n− 1) ·�x ≈ 2n ·�x = 2XL , in comparison with the initial distribution support length n ·�x = XL.

A smoothing tail procedure helps smooth the tails as the obtained measurements or Monte Carlo simulations 
are not smooth enough. Using the pX tail interpolation, the original distribution pX(x) tail has been introduced 
since a CDF distribution regularly has high tail values x . Furthermore, the Naess–Gaidai (NG) method was 
implemented since the tails become similar to exp

{
−(ax + b)c + d

}
 with a, b, c, d at x ≥ x0 Where a, b, c, d are 

suitable constants. Similarly, the tail’s linear extrapolation of pX1 is the preferred unbiased option. Other non-
linear extrapolation approaches can be similarly used in the proposed method, but they typically introduce 
different assumptions and biases.

Distribution pX(x) ≡ pX tail interpolation was performed, as CDF distribution tail is generally quite regular 
for high tail values x . At the same time, other non-linear extrapolation approaches can easily plug into the pro-
posed method, but then certain assumptions and biases would be introduced. The NG extrapolation method 
has been used; see “Introduction” section.

In the following, numerical results are presented based on the proposed deconvolution extrapolation method 
outlined in the previous Section. As discussed in the previous Section, the deconvolution extrapolation tech-
nique does not pre-assume any specific extrapolation functional class needed to extrapolate the distribution tail.

Since in most reliability analysis engineering applications, it is more important to estimate the probability of 
exceedance, i.e. 1-CDF where CDF stands for cumulative density function, rather than the marginal PDF, subse-
quently in this paper notation fX will stand for the probability of exceedance 1-CDF, analogous to the marginal 
probability density function PDF pX in the previous section. However, the proposed methodology may be suitable 
for any sufficiently regular monotonously decreasing either concave or convex function tail.

(15)pX = conv
(
pX1 , pX1

)

(16)w(k) =
m∑

j=1

u
(
j
)
v
(
k − j + 1

)

(17)

w(1) = u(1) · v(1)
w(2) = u(1) · v(2)+ u(2) · v(1)
w(3) = u(1) · v(3)+ u(2) · v(2)+ u(3) · v(1)
· · ·
w(n) = u(1) · v(n)+ u(2) · v(n− 1)+ · · · + u(n) · v(1)
· · ·
w(2n− 1) = u(n) · v(n)
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To validate the above-suggested extrapolation methodology, the «shorter» version of the original data set has 
been used for extrapolation for the sake of comparison with predictions based on the entire «longer» data set. 
Therefore, this work aims to demonstrate that the recommended extrapolation approach is at least a few orders 
of magnitude efficient.

The description above shows that an iterative technique may be used, whereas a marginal PDF can be created 
using 1-CDF and then generate a new artificial smoother CDF using integration. The latter can significantly 
facilitate extrapolation if there are distribution tail irregularities due to the scarcity of the underlying data set.

Next, the procedure of discrete convolution, or rather de-convolution (as the purpose was to find a deconvo-
luted 1-CDF distribution fX1 , given the empirical distribution fX ) outlined in the previous section, is based on 
sequential solving of Eq. (4). Since the resulting deconvoluted values u = (u(1), ..., u(n)) are typically following 
a monotonously decreasing pattern (the same was assumed for the empirical parent distribution fX ), it appears 
that some last values of resulting vector u , say (u(n− L), . . . , u(n)) for some L < n may become negative. Because 
positive numbers may only represent distributions, the latter is a numerical mistake and cannot be accepted. 
The following scaling method has been proposed to address that numerical difficulty. The lowest positive value 
fL of the given distribution tail of fX is taken as a pivot value. The scaling then is simply a linear transformation 
along the vertical y-axis of the distribution on the decimal logarithmic scale

with gX(x) being scaled log10 version of the empirical base distribution fX , with the reference level fL being 
intact. The scaling coefficient µ is conveniently chosen to avoid the occurrence of negative components in the 
resulting fX1 . For both numerical examples studied in this paper, µ = 1/3 served that purpose well. Then when 
fX1 was found, and back convolution f̃X = conv

(
fX1 , fX1

)
 as in Eq. (13) was done, the inverse scaling with µ−1 

was performed to restore the original scale, with f̃X being extrapolated version of fX.

Results
A Post-Panamax cargo ship named MSC Napoli capsized in January 2007. MSC Napoli broke in two places: 
amidships, against a pillar bulkhead and in the engine room. Another Post-Panamax cargo ship, MOL Comfort, 
broke in June  201353,54. Even though these two ships may not have been constructed and authorised in accordance 
with best practices, giving them less collapse strength than other ships of comparable sizes, both ships capsized 
owing to the overloading of the hull girders. Such catastrophic events require extensive investigations as they 
shock the business, particularly the container ship sector, in these two  incidents39–42.

This section shows how the technique mentioned above is used in practice. Motion sensors were installed 
on the 2800TEU Panamax container ship during its transatlantic trips. The mid and aft ship panel stresses and 
the ship roll angle were selected as components X, Y, and Z to form an example of a three-dimensional (3D) 
dynamic system.

Unidimensional extreme response values were chosen as crucial thresholds, which led to vascular failure. 
These values generally equate to a 25-year return time. Namely ηX = 140 MPa, ηY = 110 MPa, ηZ = 28 degrees; 
 see45–49.

Compared to contemporary Post-Panamax container ships, this specific Panamax container ship from the 
late 1990s has a small bow flare angle. Hence the amount of whipping on this ship will be quite minor. Routing, 
a human aspect, will control the excessive response. Figure 2 presents TEU2800 mid-ship on-board strain sen-
sors placement along with observed crack positions. Similarly, sensors were placed aft of the vessel, resulting in 
measured stresses in the longitudinal direction on a flat bar below the upper deck. Sensor placement was done 
according to DNV container vessel rules and  regulations55–59. In order to unify all three measured time series 
X,Y ,Z , the following scaling was performed

making all three responses non-dimensional and having the same failure limit equal to 1. Next, all local maxima 
from three measured time series were merged into one single time series by keeping them in time non-decreasing 
order: −→R = (max{X1,Y1,Z1}, . . . , max{XN ,YN ,ZN }) with each set max

{
Xj ,Yj ,Zj

}
 being sorted according to 

temporally non-decreasing occurrence times of these local maxima. Figure 4 left presents an example of a non-
dimensional assembled vector −→R  , consisting of assembled local maxima of TEU2800 mid and aft stresses along 
with vessel roll angle; � > 0.2 cut-on limit was used for illustrative purposes, as lower values � ≥ 0 are obviously 
are not relevant for the failure probability distribution tail extrapolation towards the target � = 1 . Note that vec-
tor −→R  does not have a physical meaning on its own, as it was assembled of different response components with 
different units of measurement (MPa and angular degrees in this case). Index j is just a running index of local 
maxima encountered in a non-decreasing time sequence. The «shorter» data record has been generated by taking 
each tenth data point from the «longer» deck panel stress data record. Therefore, the «shorter» data record had 
an equivalent time length of only one year.

Figure 3 on the left presents the «shorter» data record fX1 tail, obtained by deconvolution as in Eq. (13), and 
subsequently linearly extrapolated in the terminal tail section to cover the X1 range matching the «longer» data 
record. Figure 3 on the right presents the final unscaled results of the proposed in this paper technique, namely 
the «shorter» decimal log scale fX tail, extrapolated by deconvolution, along with «longer» data distribution tail 
and NG extrapolation.

(18)gX = µ
(
log10

(
fX
)
− log10

(
fL
))

+ log10
(
fL
)

(19)X →
X

ηX
, Y →

Y

ηY
, Z →

Z

ηZ
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It is seen from Fig. 3 on the right that the proposed method performs quite well, being based on the «shorter» 
data set and delivering distribution quite close to the one based on the «longer» data set.

Figure 4 right presents extrapolation according to Eq. (9) towards failure state with 25 year return period, 
which is 1, and somewhat beyond, � = 0.4 cut-on value was used. Dotted lines indicate extrapolated 95% confi-
dence interval according to Eq. (10). According to Eq. (5) p(�) is directly related to the target failure probability 
1− P from Eq. (1). Therefore, in agreement with Eq. (5) system failure probability 1− P ≈ 1− Pk(1) can be 
estimated. Note that in Eq. (5) N corresponds to the total number of local maxima in the unified response vector 
−→
R  . Conditioning parameter k = 6 was found to be sufficient, due to convergence occurrence with respect to k , 
see Eq. (6). Figure 4 exhibits quite narrow 95% CI; the latter is due to a substantial amount of data used in this 
study namely over 70 trans-Atlantic voyages of the same vessel.

While being novel, the methodology described above has a clear advantage of utilising available measured 
data set quite efficiently, due to its ability to treat system multi-dimensionality and perform accurate extrapola-
tion based on a relatively limited data set.

Figure 2.  Layout of the mid-ship cross-section with measurement position in the upper deck and crack 
positions.
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Conclusions
Traditional reliability techniques with time series do not have the benefit of effectively dealing with highly 
dimensional systems and cross-correlation between various system responses. The methodology’s primary asset 
is the capacity to analyse the reliability of high dimensional non-linear dynamic systems.

This study examined ship dynamic reaction time series collected aboard a TEU2800 Panamax container ship 
over more than 70 transatlantic journeys between 2007 and 2010. The vessel reliability as a multi-dimensional 
system used novel reliability methodologies in real-time. The suggested method’s theoretical justification is 
explained in depth. It should be noted that while using direct measurement or Monte Carlo simulation to ana-
lyse the reliability of dynamic systems is appealing, the complexity and high dimensionality of dynamic systems 
necessitate the development of novel, accurate, and robust techniques that can handle the available data while 
utilising it as effectively as possible.

The approaches discussed in this study have already been shown effective when applied to a wide variety of 
simulation models, but only for one-dimensional system responses. In general, highly precise predictions were 
made. This work focused on a general-purpose, reliable, and user-friendly multi-dimensional reliability approach. 
The proposed strategy yielded an excellent confidence interval, as demonstrated. As a result, the recommended 
technique might be helpful in a range of non-linear dynamic systems reliability investigations. Time series 
responses can be measured and numerically simulated and studied.

In contrast to prior reliability techniques, the new technique does not call for restarting Monte Carlo-type 
numerical simulation every time the system fails. As this paper’s illustration of measured structural reaction 
shows, it is also feasible to accurately anticipate the likelihood of system collapse.

To sum up, the recommended technique may be used in various engineering fields. By no means does the 
given naval architecture example restrict the potential applications of a new methodology.

Figure 3.  TEU vessel data. Left: scaled fX1
 tail on the decimal log scale for the «shorter» data (cyan), linearly 

extrapolated (dark blue). Right: unscaled raw «shorter» data (green) fX tail on the decimal log scale, extrapolated 
by the deconvolution method (dark blue), along with «longer» raw data (red) and NG extrapolation (cyan).

Figure 4.  Left: Example of non-dimensional assembled 3D vector −→R  . Right: Extrapolation of pk(�) towards 
critical level (indicated by a star) and beyond,k = 6 . Extrapolated 95% CI indicated by dotted lines.
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Data availability
The generated data can be accessed upon reasonable request from the corresponding author Dr. Jingxiang Xu, 
jxxu@shou.edu.cn.
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