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An econometric analysis 
for the determinants of flight speed 
in the air transport of passengers
Eric Eduardo de Almeida * & Alessandro V. M. Oliveira 

Accurately determining an aircraft’s flight speed is crucial for optimizing airline performance, as it 
directly impacts factors such as fuel consumption and emissions. Flying at speeds higher than what is 
recommended by the manufacturer can result in increased fuel burn. However, flying at slower speeds 
may lead to longer flight times and competitive disadvantages for airlines as passengers typically 
prefer shorter travel times. This study empirically investigates the driving forces in the decision-
making process of airlines when setting flight speeds to reduce costs while maintaining the quality 
of service provided to customers. We develop econometric models of planned flight cruise speed 
and actual mean flight speed. We analyze a vast amount of data, comprising millions of domestic 
flights within Brazil. Our results allow for policy recommendations that identify opportunities for 
improvements in airline flight operations optimization, with implications for the environmental 
footprint of commercial aviation.

Airline flight operations are a complex decision-making process subject to several factors. Weather, maintenance, 
utilization, airport rules, crew and passenger connections, and pre-flight tasks like fueling, cargo handling, and 
provisioning are among the many factors that can affect flight conditions. These activities may generate delays 
in the dispatch of the aircraft. In addition, at airports with high passenger and aircraft traffic and operating close 
to their capacity, delayed arrivals or departures may incur penalties for airlines1. Airlines must consider all these 
factors in their strategic and tactical flight planning, with possible impacts on the choice of cruise speed for a 
given flight.

The planned and the actually performed speed has a direct impact on the airline expenses and operations 
associated with the flight. One can mention, for example, fuel consumption, which increases as aircraft fly at 
higher speeds, closer to the speed of sound, or is attenuated, as aircraft flies at a lower speed, close to its eco-
nomic speed. Since fuel costs represent one of the main costs for airlines2, an initiative to reduce them becomes 
an airline’s interest. This is intensified in the scenario where airlines seek to reduce carbon emissions. Another 
direct impact is on the flight’s duration, which increases as aircraft flies at lower speeds. In this case, there are 
time-related costs that gain importance as the flight time increases.

Besides fuel and time-related costs, aircraft speed can indirectly impact passenger satisfaction as it is related 
to flight duration. According to Kang and Hansen3, passenger may prefer shorter flights instead of longer ones 
on the same route. Additionally, another aspect of satisfaction is flight punctuality, measured through OTP (On 
Time Performance). This factor has the potential to affect the image of airlines, as passengers may prefer com-
panies that have a better history of punctuality to those that have a history of delays4. In this sense, the aircraft 
speed is indirectly related to factors of market competition. Thus, the level of competition between airlines may 
influence the determination of aircraft cruise speeds.

Considering that flight speed is inherent to airlines operating costs, the low-cost business model emerges as 
a factor to be examined more closely. Is there any way to identify a company’s business model by observing its 
practices regarding flight speeds? Given that aircraft speed influences fuel consumption, and at the same time, 
low-cost carriers (LCCs) seek to reduce their costs, one can assume that a LCC flies at more economical speeds. 
However, it is also a LCC characteristic to increase their aircraft utilization5–7, so that higher cruise speeds would 
favor this aspect. Thus, the knowledge of flight practices could be an additional tool to understand airlines’ 
business models.

In the context where cruise speed plays a role in airlines’ costs, market competition, and business models, this 
study proposes an econometric model that: (1) analyzes whether airlines plan and perform more economical 
flight speeds as a tool for savings in scenarios of higher fuel costs; (2) tests if competitiveness factors influence 
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the determination of cruise speed, as it can influence the punctuality policy of airlines; (3) tests if there is a dif-
ferentiated behavior of an LCC company regarding the determination of aircraft speed. Does this company use 
slower speeds to achieve fuel savings, or does it prefer policies of increasing aircraft utilization?

To study the aircraft speed, we observed it from two different perspectives. The first one is the cruise speed 
performed by the aircraft. The actual speed is subject to several random unforeseen situations such as delays, 
need for route deviation, emergencies, weather conditions, etc. Thus, one cannot observe this aspect but may 
estimate it through the mean speed. The second approach is the cruise speed planned by airlines for flights, as 
informed in the Repetitive Flight Plan (RPL). Employing the planned cruise speed in the analysis can contribute 
to the literature since it reveals the ideal scenario pre-defined by airlines regarding the cruise speed.

This paper is composed by the following sections. Section “Literature review” describes literature review about 
the aircraft flight speed, and the themes related to it, such as fuel consumption, and market competitiveness as 
low-cost carriers’ practices. Section “Research design” presents the methodology applied in for this analysis. Sec-
tion “Results and discussion” presents the results and discussions. Section “Conclusion” presents the conclusions.

Literature review
The flight speed determination problem.  One of the main study fronts in the literature about flight 
speed is on the definition of speeds for recovery of consecutive flights, i.e., the effort to avoid propagation of 
delays when they occur in previous flights. The scenario studied by Aktürk et al.8 considers that flight recovery 
commonly involves increasing cruise speed to reduce delays. However, this strategy implies higher fuel con-
sumption, resulting in environmental impacts due to higher emissions. In this scenario, Aktürk et al.8 propose a 
model that includes cruise speed as a factor to be optimized in the delay recovery process, along with the costs 
resulting from the delay. Skaltsas9 describes this practice of increasing flight speed to recover consecutive flights 
as a factor that explains the relationship empirically found between higher punctuality and flight distance.

Delays occurring on the ground also can influence speed control, for example, when there is congestion at 
the destination airport. In such situations, aircraft must remain in flight until air traffic control authorizes it to 
land. Thus, instead of flying over the landing airport, Delgado and Pratz10 evaluate a model that reduces the 
cruise speed so that the operation absorbs the delay and reduces fuel consumption. In a similar context, where 
the constraint is a fixed time of arrival at the destination, Franco and Rivas11 develop a model to optimize flight 
speed, considering fuel consumption and time-related costs.

Aircraft speed also impacts and is impacted by air traffic control. Cafieri and Durand12 and Cafieri and 
d’Ambrosio13 develop models of aircraft deconfliction, that is, the problem of detecting and solving the situation 
in which airplanes share the same airspace and are potentially in trajectory conflict by being insufficiently sepa-
rated from each other, horizontal or vertically. In events like this, air traffic control can determine the alteration 
of airplanes’ heading or altitude, or, as proposed by the authors, change the airplanes’ speed as little as possible 
to remove them from the conflict situation.

Relating flight speed and flight schedule, Şafak et al.14 propose a model that uses, among other factors, higher 
cruise speeds to free up time when there is a need to insert unforeseen flights into a pre-defined schedule. In this 
model, an optimal cruise speed maximizes airline profitability, compensating for financial and environmental 
costs due to higher speeds.

The mentioned studies develop models for defining the optimal cruise speed in abnormal situations to airline 
operations, such as delays in departure or arrival, to accommodate changes in flight schedules, or to resolve 
conflicts in the airspace. All these papers highlight the importance of flight speed for airline operating costs. 
However, they do not describe the airlines’ speed policies under normal conditions. We observe a lack of studies 
in the literature involving econometric modeling to evaluate the factors that influence the choice of flight speed, 
considering the planned cruise speed, or its estimative such as the mean speed. The following topics presents 
how the literature treats factors related to flight speed.

Fuel price and flight speed.  Fuel cost is one of the most relevant components of airlines’ operating costs2. 
According to Edwards et al.15, fuel costs accounted for 32% of airlines’ global operating expenses in 2014, five 
times higher than in 2003. For Şafak et al.14, the importance of this component increases as its price increases, 
and there is a perception in the airline industry that cruise speed selection has a significant impact on airline 
profits.

In addition to fuel purchase itself, there are other costs associated with fuel consumption, such as the carbon 
offsets defined by ICAO’s CORSIA (Carbon Offsetting and Reduction Scheme for International Aviation), which 
requires airlines to buy carbon credits to compensate for their emissions. Thus, as emissions are related to fuel 
consumption, the carbon offsetting program increases fuel-related costs for airlines. This scenario makes compa-
nies adopt measures to reduce consumption, such as replacing old aircraft with modern ones, and implementing 
strategies to reduce the consumption of existing aircraft, such as taxiing with one engine, loading less reserve 
fuel to reduce weight, and adopting lower cruising speeds16.

Variations in fuel price impact companies in several ways, including their network structuring and aircraft 
operations. McConnachie et al.17, by analyzing the impact of fuel prices on airline operations, observed through 
data analysis and interviews that there were significant changes in operational aspects, such as a reduction in 
mean flight speeds, concomitantly with an increase in fuel price in the United States between 2004 and 2011, 
which may have led to an improvement in aircraft energy efficiency.

Typically, the behavior of fuel consumption against aircraft speed is a parabolic curve in which there is a speed 
where the fuel cost is minimum18. This speed is called long-range speed. At values below it, as in the climb and 
approach phases, the fuel consumption is higher. On the other hand, in cruising flight with aircraft speed above 
the long-range speed, the faster the aircraft, the higher the fuel consumption and, therefore, the fuel-related cost.
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In addition to fuel-related costs, which increase as aircraft fly at higher speeds (above long-range speed), 
there are time-related costs such as those with the crew, aircraft maintenance, etc. The sum of fuel-related costs, 
time-related costs, and fixed costs makes the total flight cost. To determine the speed at which the total cost is 
minimum, the cost index (CI) is a tool available on most commercial aircraft since the 1970s15 and which has the 
potential to contribute to the measures to reduce fuel consumption. The CI represents the cost per unit of time 
CT divided by the cost per unit of fuel CF for a specific flight. By using the CI, if time-related costs are high, the 
flight is expected to be faster to reduce them, even if it means higher fuel consumption. On the other hand, if fuel 
cost is the main driver of operating costs, then the cruising speed will be lowered to minimize fuel consumption19.

In the literature, several studies utilize the CI to achieve more efficient operations. Edwards et al.15 study how 
the CI may reduce CO2 emissions. According to the authors, by balancing time with fuel costs, the CI controls 
aircraft speed to achieve the most economical flight time. The impact on the amount of CO2 emitted occurs since 
higher speeds result in higher fuel consumption. In the same direction, Tian et al.20 propose a model in which 
environmental costs are considered additionally to fuel and time-related costs. In this model, the cruising speed 
is one of the variables to be optimized to minimize the total operating cost.

Deo et al.19 use the cost index as a variable to assess aircraft refueling strategy. This study analyzes the possibil-
ity of aircraft making stops to refuel at intermediate airports so that the airplane flies with less fuel, reducing its 
average weight. However, as this process can increase flight time, the cost index is used to prevent time-related 
costs from overlapping the savings achieved with the refueling strategy.

The studies discussed in this section focus on developing methodologies that allow airlines to optimize flight 
speed, respecting some constraints. However, there is no measure of how airlines change aircraft speeds in actual 
operations when there are fuel price variations. In this context, this research examines the behavior of airlines 
regarding flight speed when there are changes in fuel prices, i.e., it tests the hypothesis that airlines adjust their 
operation about flight speed planning, using the cost index, as an alternative to reduce operating costs.

Competition and flight speed.  Flight speed determines the duration of the flight, which composes the 
block time. The block time is the elapsed time between the instant the aircraft leaves the departure gate at the 
origin airport and the instant the aircraft parks at the arrival gate at the destination airport21.

Several studies approach the composition of block time. Through an econometric analysis, Coy21 evaluates 
the factors that influence block time. According to the author, some variables like the population of the origin 
and destination cities, arrival time, airport use, weather conditions, and their interactions with air traffic have a 
significant influence on block time formation.

The strategy for block time formation may be a result of market factors. The literature observes that the 
practice of airlines to include an additional time in the block time to improve their performance concerning the 
OTP (On-Time Performance) and thus improve their image with consumers. Forbes et al.22 note that airlines 
can improve their OTP by increasing the time between takeoff and scheduled landing. Eufrásio et al.23 decom-
poses the extra time added to the scheduled flight time between operational and strategic factors in the Brazilian 
air market and find evidence that reaffirms the existence of this practice. For Skaltsas9, a reliable schedule that 
reduces the propagation of delays through an airline’s network increases customer satisfaction. However, despite 
the positive impacts of punctuality, which has the potential to attract passengers who reward lower chances of 
delay, as noted by Prince and Simon4, adding extra time to flight planning can mean an increase in the total 
flight time of a trip.

For Kang and Hansen3, from the passengers’ point of view, shorter flights may be preferable to longer flights 
on the same route and overestimating the SBT (Scheduled Block Time) may result in a loss of competitiveness for 
an airline. In the same direction, Skaltsas9 suggests that shorter flights may become a market advantage, especially 
on routes of intense competition. This is because, when passengers buy tickets, the system may list the flights 
according to their scheduled duration, showing preferably on screen the shortest ones. Several studies seek to 
relate the block time to market competition. The focus is to verify the behavior of companies concerned with 
their image associated with the frequency of delays. Kang and Hansen3 find evidence that, on highly competitive 
routes, airlines tend to increase the block times. Conversely, Prince and Simon4 and Fan24 suggest that airlines 
reduce scheduled travel time on less competitive routes, making them more vulnerable to delays. All these stud-
ies observe the block time. They do not analyze if and how aircraft speed contributes to airlines’ OTP indexes.

Based on interviews with airlines in the USA, Kang and Hansen3 observe that early arrivals increase customer 
satisfaction by providing extra time for connecting passengers. This is a way to exceed passengers’ expectations, 
especially when the crew announces it to passengers in the final phase of the flight. Deshpande and Arikan25 
point out, however, that the practice of early arrival can induce costs.

It is notable in the literature that defining the flight block time and its impacts on airlines’ image is widely 
studied. However, such studies do not inspect the role of flight speed in scheduling. Similarly to the block time 
formation strategy, we question if airlines choose flying faster on routes with more competition to improve their 
OTP, and fly at lower speeds on less competitive routes to reduce fuel consumption. Another hypothesis we test 
is whether airlines plan higher cruise speeds to avoid possible delays on routes with higher competition, that is, 
where there is a greater possibility of delays to impact the company’s image to passengers.

Flight speed and low‑cost carriers.  Low-cost carriers are those that stand out for adopting a market 
strategy that aims to retain their customers by offering low fares but reduced additional services7, i.e., the pas-
senger pays only for the basic product, which is the transport itself26. To be able to offer the lowest fares, LCCs 
prioritize practices to reduce operating costs and greater exploitation of their assets, such as: reduction of space 
between seats, single class configuration, reduced in-flight service or with extra charges, point-to-point network 
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(when flights are carried out directly between the cities of origin and destination, without connection), opera-
tion in secondary airports, whose fees are lower, fleet standardization, etc.726.

In contrast to LCCs, another commonly studied business model is the full-service carrier (FSC). This model 
offers to passengers a higher level of service, including in-flight entertainment, meals, more space between seats, 
and business classes possibility, among others. Regarding flights operation, according to Gillen27, FSCs gener-
ally utilize the hub-spoke system, in which airlines distribute flights to the cities of demand from a hub airport. 
Consequently, these companies are predominant in the hub airports, where the movement of passengers and 
aircraft is high.

High aircraft utilization is one of the key factors for success in the LCC operating model. The standard meas-
ure of aircraft productivity is its daily utilization, i.e., the average daily hours each aircraft operates in the fleet. 
According to Alamdari and Fagan5, LCCs achieve high utilization rates by performing lower TAT (Turnaround 
Time) than traditional airlines (FSCs), thus making it possible to increase the number of segments flown daily. 
Morrell6 and Gillen7 state the same, adding that the TAT is lower due to a reduced catering service. Also, oper-
ating in less congested secondary airports favors a more efficient use of ground staff and aircraft. Morrell6 also 
highlights that LCCs encourage high productivity of their pilots by reducing the fixed part of their salaries and 
increasing the portion related to hours flown.

In this sense, one can expect that a company operating similarly to LCCs would consider flying faster to 
reduce the block time and to include more flights in a day of operation. On the other hand, as Singh et al.2 argue, 
low-cost carriers are pioneers in implementing policies to reduce fuel consumption and its expenses, conse-
quently increasing profits. In the same direction, the results of Brueckner and Abreu16 demonstrate that, in the 
North American air market, aircraft operated by LCC companies are more efficient in terms of fuel consump-
tion than others. Therefore, flying faster to increase aircraft utilization would imply an increase in costs, which 
contradicts the characteristics of low-cost companies.

The literature analyzes common characteristics of low cost-companies and how they have changed over time. 
However, there is a gap in the literature about the practices of LCCs related to flight speed. We intended to test 
if the predominant practice of low-cost carriers is the search for cost reduction through fuel savings or the high 
utilization of the aircraft.

Research design
Conceptual model.  This study investigates some of the primary factors influencing the determination of 
flight speeds by airlines operating in the Brazilian domestic air transport industry. To achieve this objective, we 
utilize an econometric approach. This approach enables us to examine the presence of statistical associations 
between the variables being studied, as well as to isolate the impact of one variable while holding all others 
constant.

In our framework, the explained variable is the flight speed set by commercial airlines, analyzed from two 
perspectives: the planned flight cruise speed and the actual mean flight speed performed by airlines–hereafter 
SPDCRU and SPDMEA, respectively.

We identify key drivers of flight speed determination based on a literature review. We classify these factors into 
five categories: flight operations, flight delay management, airport operations, aircraft characteristics, and mar-
ket and industry conditions. Some relevant aspects of flight operations that may influence the decision-making 
concerning flight speed determination are not directly observable by the researcher. These factors constitute 
the unobserved portion of the flight speed determinants. Below is a discussion of each flight time determinant 
category.

•	 Flight operations: involves overseeing and ensuring the safe and efficient functioning of an aircraft in all 
flight stages. These tasks encompass a variety  of responsibilities, such as arranging flight schedules, assigning 
aircraft and flight crews, ensuring aircraft maintenance and repair, and complying with all necessary safety 
and regulatory standards. The airlines commonly consider costs and competition conditions in this setting. 
For example, Mcconnachie et al.17, observed a reduction in mean speeds concomitantly with increases in 
fuel prices.

•	 Flight delay management: refers to identifying, assessing, and mitigating delays in flight operations. A 
delayed flight can cause a cascading effect on the entire schedule of a carrier and disrupt the plans of many 
passengers and airports, besides other airlines. Flight delay management is therefore a critical function of 
flight operations. One of the strategies of flight delay management is flight schedule recovery, which can 
include adjusting the flight schedules and speeds, besides rerouting flights to minimize the impact of delays. 
Prince and Simon4, Kang and Hansen3, Bendinelli et al.28, Eufrásio et al.23, and Calzada and Fageda29, among 
many others, investigate the association between market competition and airlines’ concern with punctuality.

•	 Airport operations: refers to the management and coordination of all activities performed at the endpoint 
airports of a flight. It involves many institutions besides the airline, including, among others, the ground 
handling of aircraft, passenger and baggage processing, air traffic control, and maintenance of the airport 
facilities and equipment. The primary goal of airport operations is to ensure that flights are conducted safely 
and efficiently, while also providing a high level of service to passengers and other airport users. On the other 
side, airport congestion and slot restriction policies can affect the efficiency of airport operations30,31.

•	 Aircraft factors: involves airplane-specific factors, such as weight, engine, aerodynamics, and generation, 
which are aeronautical engineering-related determinants of flight speed18. Oliveira et al.32 and Brueckner 
and Abreu33 assess the effect of payload and age of aircraft on their energy efficiency.

•	 Market and industry environment: refers to the state of competition between airlines, and factors that 
drive the expectations and dynamics of the air transport industry. It may involve consumer and technologi-
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cal trends, as well as pressures for carbon footprint mitigation, and broad aspects of cost competitiveness 
and business models of carriers (Singh et al.2, Brueckner and Abreu16, Oliveira et al.34, among many others).

•	 Unobserved flight speed determinants: in our econometric modeling, we aim at finding good and intuitive 
regressors associated with each of the categories raised above. However, in all of them, there are aspects not 
observed by the researcher in our study but are part of pilots’ and airport agents’ information sets. For exam-
ple, flight trajectory particularities, weather and wind direction changes, air traffic control new procedures, 
among others. We will discuss below how we can incorporate some of these factors into the model through 
fixed effects interpreted as nuisance parameters.

Figure 1 synthetically presents our conceptual model.

Data.  Our data consist of detailed operational information of more than 6 million domestic passenger flights 
in Brazil scheduled between January 2009 and November 2022. The data set comprises 14 years, 5017 operating 
days, 1255 airport pairs, and a total of 813 million revenue passengers. We consider data from the three major 
carriers in the country, Latam (36% market share from Dec 2012 to Nov 2022; source: ANAC), Gol (33.7%), and 
Azul (29.7%). There are 726 different airplanes and 22 aircraft models–ICAO codes A20N, A21N, A319, A320, 
A321, A332, A339, A359, AT45, AT72, AT75, AT76, B38M, B733, B737, B738, B763, B777, E170, E190, E195, 
and E295).

The main data source is the country’s airline regulator, National Civil Aviation Agency (ANAC), through the 
following online databases: 1. Active Scheduled Flight Historical Data Series (VRA/ANAC), 2. Air Transport 
Statistical Database, Microdata (ATSD-M/ANAC), and 3. Brazilian Aeronautical Registry (RAB/ANAC). To 
estimate the age of airplanes employed in each flight, we confronted RAB/ANAC’s data with the information 
provided from the web sites planelogger.com, airfleets.net, jetphotos.com, and aviacaopaulista.com. These sources 
contain information by aircraft registration, like the date of the first flight. Concerning the fuel price, we collected 
data from the ANP (National Agency for Petroleum, Natural Gas and Biofuels) website.

For the regressands, we considered measures of SPDCRU​ and SPDMEA.
SPDCRU​ is the flight cruise speed planned by airlines, i.e., the cruise speeds declared in the repetitive flight 

plans (RPL). A repetitive flight plan (RPL) is a type of flight operations plan describing a series of frequently 
recurring, regularly operated individual flights with identical characteristics. Airlines are responsible for its devel-
opment and submission to the Air Navigation Services (ANS)/Air Traffic Services (ATS) teams for retention and 
continued utilization. The main advantage of using this type of flight plan is that it can improve the efficiency of 
operations and lower costs by making the planning and management of resources by the airline more predictable. 
Furthermore, it enhances flight safety by allowing pilots and air traffic controllers to become familiar with the 
specific routes and procedures. The RPL contains information like days of validity, aircraft identification, aircraft 
model, origin and destination airports, departure and arrival times, flight declared cruise speed, altitude, and 
route. We collected RPL data for the period from February 2017 to July 2021.

SPDMEA is the mean actual flight speed performed by carriers. We estimate SPDMEA by using records of 
departure and arrival times of actual flights from the VRA/ANAC database and computing the Viencenty dis-
tance (VDIST) between the origin and destination airports. The Vincenty distance is a technique to calculate the 
geodesic distance between two locations on the Earth’s surface, taking into account the Earth’s irregular shape 
represented by an ellipsoid. It is particularly useful for small to medium distances, as it is a more precise method 
than the traditional Haversine formula. We compute VDIST by using the vincenty routine available for Stata35. 
With this method, it is possible to determine the distance between any two points on the Earth. The mean actual 
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Figure 1.   Conceptual model of flight speed determination.
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flight speed can be calculated by Eq. (1), where FLTIME is the difference between arrival and departure for each 
flight available in the database.

By estimating the mean speed according to Eq. (1), we should be aware that the time between arrival and 
departure may include delays in taxiing or in the approach phase, for example, when the aircraft remains flying 
over the airport until it receives authorization to land. The effect of these situations is to reduce the calculated 
mean speed. Also, the traveled distance may be greater than VDIST, since the flight trajectory comprises seg-
ments that do not necessarily make a straight line. Besides, flights comprise a climb phase, where the aircraft 
accelerates, and an approach phase, where it decelerates, making the mean speed value to decrease as the routes 
are shorter. Given these limitations of the SPDMEA metric, we consider the mean actual flight speed computed 
from Eq. (1) as an alternative way to analyze the costs, operations, and market incentives of airlines to set their 
flight speed. We therefore combine our SPDMEA and SPDCRU​ analyzes to enhance our understanding of the 
research subject and to check for possible consistencies and inconsistencies between them. We also discard mean 
actual flight speeds outliers below the percentile 2.5, and above the percentile 97.5, so that atypical flights, i.e., 
those with duration much longer than the standard, do not affect the analysis’ results.

To build our database, we merged different sources of information, namely RPL, ATSD-M/ANAC, and VRA/
ANAC. The date and flight identification are the indicators utilized to join the information from planned and 
actual flights. Following this procedure, out of the more than 6 million flights extracted from the VRA (and 
ATSD-M/ANAC), we found 887 thousand correspondent observations of planned flight cruise speed from the 
RPL reports.

Econometric model.  Equation (2) contains our baseline econometric model.

where SPD = {SPDMEA, SPDCRU​}. The variables are described as follows:

Flight operations.  VDIST is the vincenty distance of a given flight in kilometers (in logarithm); VDIST2 is equal 
to VDIST squared. Expected signs: positive for VDIST and negative for VDIST2, to allow for increasing speed 
with flight distance, at a decreasing rate.

MASS is a proxy for the overall load factor of a flight. It is equal to the sum of passenger (multiplied by 75 kg), 
and baggage, cargo, and mail kilos (in logarithm, plus 1). This variable controls the fact that aircraft with higher 
load factor (greater weight) need to fly at higher speeds so that the lift force generated balances the weight. 
Expected sign: positive.

FUELP is equal to the mean fuel price over the 30 days previous to the flight (in logarithm). It is a pre-tax, 
deflated value. This variable allows to identify whether variations in fuel price exerts influence over the deter-
mination of flight speed. Airlines may adjust their aircraft cost-index when fuel price increases, requesting their 
pilots to perform more economical flights, possibly through lower flight speeds17. Expected sign: negative.

Flight delay management.  DELDEP is the takeoff delay in minutes (divided by 10). With this variable, we con-
trol the behavior of airlines when there is a delay at the flight’s origin. One can expect that mean speeds will be 
higher to recover the scheduled time in this situation, as predicted by Aktürk et al.8 and suggested by Ryerson 
et al.31. Expected sign: positive.

DELARR​ measures arrival delay in minutes (divided by 10). Ceteris paribus to DELDEP, an arrival delay 
means the flight had additional flight operations issues in its trajectory, due to weather conditions, winds, tur-
bulence, or air traffic control and airport operations management. Expected sign: negative.

The hypotheses regarding DELDEP and DELARR​ dialogue with Brueckner and Abreu33, who test if fuel con-
sumption increases in situations of delays. However, the authors attribute the higher consumption to a longer 
taxiing time or overflight waiting for authorization to land. There is no mention of the possibility of aircraft 
consuming more by flying faster to recover from delays.

Airport operations.  CONG is a proxy to represent the level of congestion at an airport. It is measured by the 
maximum percentage of airport delays in one hour between the origin and the destination airport (in logarithm, 
plus 1). This variable differs from DELDEP and DELARR​, which are flight-to-flight delays since it accounts for 
the level of airport delays when a specific flight is observed. Thus, the more delays at a given time at a specific 
airport, the greater the congestion. In a similar way as Eufrásio et al.23, who estimate the effect of airport conges-
tion on block time formation, here we inspect the effect of congestion on planned cruise and mean actual flight 
speeds. Greater congestion at the destination airport is expected to induce lower speeds. Expected sign: negative.

MAXFREQ indicates the maximum number of flights, at a given time, between the airports of origin and 
destination (in logarithm). This variable represents the scale of operations at an airport. At airports with higher 
frequencies, where congestion is more likely, there is pressure for airlines to comply with flight schedules, rely-
ing on less time on the ground23. Thus, a possible way for carriers to keep their level of on-time performance 

(1)SPDMEA =
VDIST

FLTIME
.

(2)

SPD = β1VDIST + β2VDIST2+ β3MASS + β4FUELP + β5DELDEP + β6DELARR

+ β7CONG + β8MAXFREQ + β9SLOT + β10HUB+ β11AGE

+ β12NEWMOD + β13GOL + β14AZUL + β15NCOMP

+ β16TREND + β17TREND × PAND + ω,
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is to employ higher flight speeds on these routes. On the other hand, a higher level of complexity of operations 
at the airport and its terminal area may impair flight times and decrease speed. Expected sign: undetermined.

SLOT is a dummy variable indicating whether there is a slot constraint in any of the origin and destination 
airports. The current slot-restricted, IATA level 3 airports in Brazil are São Paulo/SBSP and SBGR, Rio de Janeiro/
SBRJ, Belo Horizonte/SBBH, and Recife/SBRF. However, other airports were slot-restricted in the past, due to 
transitory operational conditions and to the advent of tourism mega-events in the country. A slot-restriction 
policy is commonly employed by authorities to mitigate flight delays at high-traffic airports by imposing penalties 
on airlines that do not meet established requirements of on-time performance and the use of slots. This variable 
may have a different sign depending on whether speed is planned or accomplished. One can assume that airlines 
plan slower flights on routes containing these airports in a strategy like padding the block time. Regarding mean 
speed, it can be higher on these routes to avoid or cover delays32. Expected sign: undetermined.

HUB is a variable to observe the behavior of airlines in terms of speed at their hub airports. It is a dummy 
assigned with value 1 if any of the endpoint airports is connected with more than 20 destinations in a given air-
line network. With this algorithm, we are able to account for all airports in the country that have been officially 
declared as "hubs" by the studied airlines—for example, São Paulo/SBSP and SBGR for Latam and Gol, and 
Campinas/SBKP and Belo Horizonte/SBCF for Azul, among others. As with SLOT, operations are more complex 
at hub airports, and there may be congestion with a greater risk of delay31. Thus, it allows testing if planned cruise 
speed is lower on flights involving hub airports to form a buffer time and to cover delays. The mean speed may 
be lower due to longer waiting time for takeoff permission. Expected sign: Negative.

Aircraft factors.  AGE is a variable to account for the effect of aircraft aging on flight speed. It is equal to the 
number of months since the date of the first flight of the aircraft to the date of the considered flight (in logarithm, 
plus 1). As an aircraft ages, the accumulation of structural repairs and modifications may lead to an increase 
in the aircraft’s weight. In this scenario, older aircraft may tend to fly at higher speeds. Expected sign: positive.

NEWMOD is a dummy variable that accounts for the use of new-generation aircraft models by the airlines. 
We consider new-generation families the A320-Neo (ICAO codes A20N and A21N), operated by Latam and 
Azul, the 737-Max (B38M), operated by Gol, and the E195-E2 (E295), operated by Azul. These models include 
new technologies to reduce fuel consumption and perform more efficient flights. In this scenario, time-related 
costs may play a role in the total flight costs, and thus the cost index adjustment may lead to faster flights. Addi-
tionally, newer aircraft may reach higher cruising speeds due to lower drag and more efficient engines. Expected 
sign: positive.

Market and industry environment.  GOL and AZUL are dummy variables intended to empirically test the 
behavior of a low-cost airline regarding the determination of flight speed. Thus, it tests if these airlines prefer tar-
geting higher aircraft utilization (faster flights) or if they prioritize fuel consumption reduction through slower 
and more economical flights. Note that Gol is notably viewed as the current Brazilian LCC. Azul has its origins 
associates with North American LCC Jetblue Airways. It initially had very low penetration prices in the industry 
but nowadays is considered for many the carrier with the highest yields and fares. Expected sign: undetermined.

NCOMP is the number of competing carriers on the route (in logarithm). If two carriers belong to the same 
parent company, we compute them as only one competitor. Expected sign: positive, as competition may for 
carriers to increase on-time performance to satisfy existing time-sensitive consumers. We also experiment with 
an alternative for NCOMP: the Herfindahl–Hirschman index (HHI), an index between 0 and 1. This variable 
indicates the level of market concentration on a given route in terms of RPK (Revenue Passenger Kilometer) 
calculated for each day (multiplied by 10,000, in logarithm). As with NCOMP, HHI index allows investigating 
the relationship between the competitiveness of a route and airlines’ practices regarding flight speed. With these 
variables, we test the hypothesis that on routes with smaller HHI, i.e., with less market concentration, airlines 
perform higher speeds to ensure better on-time performance. On the other hand, on more concentrated routes, 
airlines could concern less about delays and focus on a more efficient operation in terms of fuel consumption32. 
Expected sign: negative.

TREND is a discrete variable set equal to {1, 2, 3, …} from the first operating day in the sample period. It 
allows capturing overall trend effects due to the dynamics of the industry business environment. Expected sign: 
undetermined.

TREND × PAND is equal to TREND multiplied by a dummy to account for the period of the COVID-19 
pandemic (PAND), set equal to 1 since February 26, 2020, when the first coronavirus infection case was reported 
in Brazil. Expected sign: positive, as the period is marked by low demand and consequent airport and air traffic 
control idleness.

Unobserved factors.  u represents the error term of the regression models. As our data comprises a massive 
diversity of flights over thousands of days of operations, we believe that it is necessary to accommodate greater 
complexity related to the unobserved factors of decision-making regarding the flight speed of airlines. We thus 
assume a component error structure in u . In other words, we consider nuisance variables to accommodate idi-
osyncrasies related to flight operations, which, despite being observed by pilots and the airline, are not observ-
able by the econometrician. We consider four versions of the proposed component error structure. First, we have 
the definition in Eq. (3):

(3)u ≡ f
(

ξyear , ξmonth, ξweekday
)

+ υ,
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where ξyear , ξmonth, and ξweekday are fixed effects of year, month, and day of the week of the flight, respectively. In 
addition, υ is a new random error term, which we assume to be normally distributed. For simplicity, we impose 
the additivity of function f (.).

The other versions of the error term u that we consider use route fixed effects. On account of that, we rename 
the error term to ω . The specification of ω is expressed in Eq. (4):

where ξroute are route fixed effects, and ε is a random error term with the same properties as υ . In this specifica-
tion, we consider that there are idiosyncrasies related to the routes flown by airlines that exert influence on flight 
speeds variations observed in the data set, such as idiosyncrasies related to the geometry of the flight paths, the 
direction of the flight, and the characteristics of the terminal areas and endpoint airports.

One limitation of Eq. (4) is that the route effects do not allow considering season-specific variations in the 
data, such as the impact of typical seasonal wind direction, for example. To accommodate this option, a third 
version of u is in Eq. (5):

where ξroute−month are route and month interacted fixed effects, that is, they accommodate route-to-route vari-
ations in each month of the year. See an alternative procedure for accommodating seasonal variation across 
routes in Eufrásio et al.23 and Oliveira et al.32. With this specification, each route now has time-specific variation 
across the year.

Finally, the fourth version of u that we consider is expressed by Eq. (6):

where ξaircraftmodel are fixed effects of aircraft model type. With these fixed effects, it is possible to take into account 
the flight speed impacts of idiosyncrasies related to the engines and aerodynamics of each operated aircraft. For 
example, jet aircraft commonly fly at higher speeds than turboprop aircraft36.

The model specification contained in Eq. (2), combined with the simpler definition of u , expressed by Eq. 
(3), generates our baseline model. However, if we consider the versions of the component error dictated by Eqs. 
(4)–(6), we have that the perfect collinearity between the route-fixed effects and the distance variables makes 
the model estimation unfeasible. Therefore, when considering the more realistic models that include route fixed 
effects, or route-time effects, we do not utilize VDIST and VDIST2. However, route effects allow controlling for 
the factors associated with the distance between the pair of airports, in addition to other invariant factors in the 
temporal dimension. Thus, we reach Eq. (7), which contains our extended econometric model, considering any 
of the versions of ω:

where SPD = {SPDMEA, SPDCRU​}. Our preferred specification combines Eqs. (6) and (7).

Estimation strategy.  To compute the estimation results, we employ the estimation procedure of linear 
regression absorbing multiple levels of fixed effects of Correia37, hereafter "MultLevFE". The standard errors of 
estimates are adjusted for route clusters.

In the ESM Appendix, we present a Table A1 with descriptive statistics of the model variables. We estimate 
a high correlation value between the variables DELDEP and DELARR​ of 0.9472—as expected, since delays in 
the departure may cause delays in the arrival time. Also expected is the relatively moderate correlation between 
AGE and NEWMOD, estimated as 0.3988. The pairwise correlations between the other covariates are typi-
cally below 0.25. Additionally, the estimated mean VIFs for the SPDMEA and SPDCRU models without fixed 
effects are low, equal to 2.72 and 3.06, respectively. Also, we identify the presence of heteroscedasticity through 
Breusch–Pagan/Cook–Weisberg tests. We, therefore, set the MultLevFE estimator to adjust the standard errors 
of estimates for route clusters.

As a set of robustness checks, we run a set of regressions considering the different possibilities dictated by 
Eqs. (2) and (7), and by the four versions of the proposed component error structure of Eqs. (3)–(6). We also 
experiment with HHI in substitution of NCOMP and discard the TREND and TREND × PAND variables in some 
specifications. We intend to observe how the results change by perturbations in the model. We report the results 
of the robustness checks along with our preferred regression results.

As a final set of robustness checks, we consider an alternative approach for building our regressands. We com-
pute proxies for the deviation of observed flight speeds from the manufacturer recommended speeds. To compute 
such proxies, we calculate the "unimpeded speed", as defined by the US Federal Aviation Administration—see 
aspm.faa.gov/aspmhelp/index/ASPM_Arrival_Airport_Enroute__Definitions_of_Variables.html—which con-
sists of the 90th percentile speed. We then compute the unimpeded flight speed versions for each aircraft model. 
Finally, we calculate the new variables DSPDCRU​ and DSPDMEA, consisting of the ratio between the correspond-
ing flight speed and the unimpeded flight speed (in logarithm). We replace these alternative measures as the new 
regressands to assess the sensitivity of results and report them in the next section.

(4)ω ≡ f
(

ξroute , ξyear , ξmonth, ξweekday
)

+ ε,

(5)ω ≡ f
(

ξroute−month, ξyear , ξweekday
)

+ ε,

(6)ω ≡ f
(

ξroute−month, ξyear , ξweekday , ξaircraftmodel

)

+ ε,

(7)
SPD = β1MASS + β2FUELP + β3DELDEP + β4DELARR + β5CONG + β6MAXFREQ

+ β7SLOT + β8HUB+ β9AGE + β10NEWMOD + β11GOL + β12AZUL

+ β13NCOMP + β14TREND + β15TREND × PAND + ω,
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Results and discussion
Tables 1 and 2 present the estimation results for the SPDCRU and SPDMEA models, respectively. In both tables, 
Column (6) shows the results of the preferred model, which includes all variables of Eq. (7), and all fixed effects 
dictated by Eq. (6). The estimation results of the remaining columns allow for an inspection of the robustness of 
our preferred model. The SPDMEA specification includes the flight delay management variables DELDEP and 
DELARR​, while the SPDCRU specification does not. This is because SPDMEA represents the actual speed of the 
aircraft, while SPDCRU is a planned speed metric. Other differences are i. Table 1 does not incorporate aircraft 
model fixed effects, as its inclusion results in a high degree of multicollinearity in the SPDCRU models; and 
ii. to emulate the planning environment of the airline when setting SPDCRU, we compute the variables MASS 
and CONG in Table 1 as their respective sample means on the route over the previous 30 days, which results in 
MASS [hist] and CONG [hist].

In Column (1) we present a model without route-fixed effects, which allows us to estimate the coefficients of 
the flight distance variables VDIST and VDIST2. In Columns (2) to (5), in addition to year, month, and weekday 
fixed effects, we also include route fixed effects, and in Columns (6) and (7), route-month fixed effects. Due to 
perfect collinearity with the route (and route-month) fixed effects, VDIST and VDIST2 cannot be estimated in 
these specifications. In Column (3), we replace the HHI variable with NCOMP. In Column (4) we include TREND 
and in Column (5) we have TREND × PAND. Finally, in Column (7) of both tables, we present specifications 
replacing the original regressands with the alternative measures of flight speed relative to unimpeded speed, 
respectively, DSPDCRU and DSPDMEA.

When we compare the results, we can pinpoint notable similarities and dissimilarities across Tables 1 and 
2. The covariates that produce similar impacts on SPDCRU and SPDMEA across tables are VDIST, VDIST2, 

Table 1.   Estimation results: flight planned cruise speed (SPDCRU​, DSPDCRU​). Results produced by linear 
regression absorbing multiple levels of fixed effects (MultLevFE) of Correia37. Std. errors adjusted for route 
clusters. The no. of observations across columns may vary due to singleton drops. p-value representations: 
***p < 0.01, **p < 0.05, *p < 0.10. Significant values are in [italics].

Variables (1) SPDCRU​ (2) SPDCRU​ (3) SPDCRU​ (4) SPDCRU​ (5) SPDCRU​ (6) SPDCRU​ (7) SPDCRU​

Flight operations

 VDIST 1.3090***

 VDIST2 − 0.0983***

 MASS [hist] 0.4243*** 0.0523*** 0.0521*** 0.0521*** 0.0522*** 0.0702*** − 0.0060

 FUELP 0.0101 0.0062 0.0061 0.0061 0.0012 0.0007 0.0015

Airport operations

 CONG [hist] − 0.0577*** − 0.0094*** − 0.0094*** − 0.0094*** − 0.0097*** − 0.0090*** 0.0021

 MAXFREQ − 0.0085*** 0.0025* 0.0025* 0.0025* 0.0024* 0.0024* 0.0007

 SLOT 0.0201*** 0.0027 0.0027 0.0027 0.0029 0.0040 − 0.0013

 HUB − 0.0299*** − 0.0042 − 0.0042 − 0.0042 − 0.0042 − 0.0045 − 0.0089

Aircraft factors

 AGE 0.0130*** 0.0013 0.0013 0.0013 0.0013 0.0011 − 0.0015**

 NEWMOD 0.0403*** 0.0134*** 0.0134*** 0.0134*** 0.0137*** 0.0124*** 0.0000

Market and industry environment

 GOL − 0.0073 − 0.0133* − 0.0132* − 0.0132* − 0.0133* − 0.0128* − 0.0345***

 AZUL − 0.0020 − 0.0477*** − 0.0477*** − 0.0477*** − 0.0478*** − 0.0467*** − 0.0393***

 HHI 0.0316*** − 0.0091**

 NCOMP 0.0083** 0.0083** 0.0083** 0.0086** − 0.0033*

 TREND − 0.0002 0.0016 0.0009 − 0.0082***

 TREND × PAND − 0.0004*** − 0.0004*** − 0.0002**

Estimator MultLevFE MultLevFE MultLevFE MultLevFE MultLevFE MultLevFE MultLevFE

Fixed effects

 [1] Route No Yes Yes Yes Yes No No

 [2] Year Yes Yes Yes Yes Yes Yes Yes

 [3] Month Yes Yes Yes Yes Yes No No

 [4] Weekday Yes Yes Yes Yes Yes Yes Yes

 [5] Route-month No No No No No Yes Yes

 [6] Aircraft model No No No No No No No

Clusters Route Route Route Route Route Route Route

Adj. R2 statistic 0.6806 0.8855 0.8855 0.8855 0.8856 0.8945 0.5676

RMSE statistic 0.0900 0.0539 0.0539 0.0539 0.0539 0.0517 0.0314

No. observations 887,500 887,494 887,494 887,494 887,494 887,330 887,330
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CONG, NEWMOD, and AZUL. In general, these estimated coefficients have the same sign over the specifica-
tions and are statistically significant at a 1% level. As expected, VDIST and VDIST2 have positive and negative 
estimated coefficients, respectively, intuitively suggesting that flight speed increases at a decreasing rate with 
flight distance. CONG has negative estimated coefficients in most cases, indicating that airport congestion is 
an effective obstacle to airline flight operations optimization, both at planning and tactical management levels. 
NEWMOD has positive coefficients in most cases. This result provides evidence that newer-generation aircraft, 
known to be more economical, can also reach higher flight cruise and actual mean flight speeds. The results for 
CONG and NEWMOD have therefore important policy implications concerning aircraft fuel burn, costs, and 
passenger satisfaction.

Finally, AZUL has negative estimated coefficients. In principle, such a result only documents that this airline 
operates smaller aircraft with less powerful engines—E-Jets and turboprops—than the airline in the base case 
of the dummy, namely Latam Airlines. However, this result holds even in Table 2, where we also control for 
the fixed effects of the different aircraft models. An alternative explanation could therefore come from the fact 
that this carrier operates several domestic routes as a monopoly38, which would reduce the necessary market 
incentives to increase the speed of flights to satisfy its time-sensitive customers. However, in all specifications, 
we control for the effect of the market structure either with HHI or NCOMP. We, therefore, conclude that this 
result may be due to a specificity of the airlines’ business model, which has its origins linked to North American 
LCC Jetblue Airways. The results have important managerial implications suggesting that the carrier’s notable 

Table 2.   Estimation results: flight mean speed (SPDMEA, DSPDMEA). Results produced by linear regression 
absorbing multiple levels of fixed effects (MultLevFE) of Correia37. Std. errors adjusted for route clusters. The 
no. of observations across columns may vary due to singleton drops. p-value representations: ***p < 0.01, 
**p < 0.05, *p < 0.10. Significant values are in [italics].

Variables (1) SPDMEA (2) SPDMEA (3) SPDMEA (4) SPDMEA (5) SPDMEA (6) SPDMEA (7) SPDMEA

Flight operations

 VDIST 1.5770***

 VDIST2 − 0.0910***

 MASS 0.0040 0.0034* 0.0034 0.0033 0.0034 0.0035 0.0034*

 FUELP − 0.0007 − 0.0144*** − 0.0143*** − 0.0157*** − 0.0119*** − 0.0128*** − 0.0137***

Flight delay management

 DELDEP 0.7394*** 0.7397*** 0.7397*** 0.7397*** 0.7397*** 0.7402*** 0.7397***

 DELARR​ − 0.7325*** − 0.7338*** − 0.7338*** − 0.7338*** − 0.7338*** − 0.7342*** − 0.7337***

Airport operations

 CONG − 0.0021*** − 0.0007*** − 0.0007*** − 0.0007*** − 0.0007*** − 0.0007*** − 0.0007***

 MAXFREQ − 0.0326*** − 0.0079*** − 0.0079*** − 0.0079*** − 0.0077*** − 0.0078*** − 0.0075***

 SLOT 0.0090* 0.0060* 0.0061* 0.0060* 0.0061* 0.0062* 0.0072**

 HUB − 0.0358*** 0.0018 0.0017 0.0017 0.0018 0.0018 0.0022

Aircraft factors

 AGE − 0.0000 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

 NEWMOD 0.0179*** 0.0171*** 0.0171*** 0.0170*** 0.0165*** 0.0166*** 0.0155***

Market and industry environment

 GOL 0.0388* 0.0030 0.0032 0.0033 0.0038 0.0040 − 0.0078

 AZUL − 0.0176*** − 0.0234*** − 0.0234*** − 0.0234*** − 0.0235*** − 0.0235*** − 0.0121

 HHI 0.0156*** 0.0019

 NCOMP − 0.0022 − 0.0021 − 0.0021 − 0.0019 − 0.0011

 TREND 0.0149*** 0.0114*** 0.0118*** 0.0134***

 TREND × PAND 0.0009*** 0.0008*** 0.0008***

Estimator MultLevFE MultLevFE MultLevFE MultLevFE MultLevFE MultLevFE MultLevFE

Fixed effects

 [1] Route No Yes Yes Yes Yes No No

 [2] Year Yes Yes Yes Yes Yes Yes Yes

 [3] Month Yes Yes Yes Yes Yes No No

 [4] Weekday Yes Yes Yes Yes Yes Yes Yes

 [5] Route-month No No No No No Yes Yes

 [6] Aircraft model Yes Yes Yes Yes Yes Yes Yes

Clusters Route Route Route Route Route Route Route

Adj. R2 statistic 0.9002 0.9314 0.9314 0.9314 0.9314 0.9318 0.7143

RMSE statistic 0.0796 0.066 0.066 0.066 0.066 0.0658 0.0661

No. observations 6,060,062 6,060,052 6,060,052 6,060,052 6,060,052 6,059,834 6,059,834
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success in avoiding nonstop competition in domestic markets may confer the necessary peace of mind for plan-
ning and putting into practice flight speeds that are closer to the most fuel-efficient speed of its fleet’s airplanes.

HUB also presents similar results across the estimation tables, but in this case, revealing non-statistically 
significant coefficients in most columns.

Another category of the similar result between Tables 1 and 2 concerns estimated coefficients that were not 
statistically significant in most cases or were significant only in isolated situations. The SLOT, AGE, GOL, HHI, 
and NCOMP regressors fit into this category. In these cases, we conclude that the impact of these variables on 
flight speed is either null or has limited evidence. For example, the variable GOL presents ambiguous results 
regarding a possible effect concerning the lower flight speed of this airline when confronted with the base case 
of the dummy (Latam Airlines). Although we find limited evidence suggesting that the carrier operates lower 
cruising speeds (SPDCRU), the results also suggest that this practice is not able to influence its actual mean speed 
(SPDMEA). We therefore cannot conclude that the major Brazilian LCC presents any different flight-speed set-
ting behavior when compared to the major national FSC carrier.

Another example in this type of similarity across the tables is NCOMP, which seems to be positive and sig-
nificant for SPDCRU, but barely significant for DSPDCRU—Column (7) of Table 1- and not significant at all for 
SPDMEA and DSPDMEA—both in Table 2.

Regarding the situations in which Tables 1 and 2 disagree, we identify the divergent results of the covariates 
MASS, FUELP, MAXFREQ, TREND, and TREND × PAND. The estimated coefficients of FUELP are almost always 
negative and statistically significant in the SPDMEA model, but not in SPDCRU. This finding suggests that pilots 
may use their aircraft’s flight management system to adapt the actual flight speed to suit the cost conditions of the 
specific flight. On the other hand, it appears that the airline does not take into account such information when 
determining its planned cruise speeds for flights via the cost index settings.

The estimated coefficients of MASS are in most cases positive in SPDCRU, but not significant at all in SPD-
MEA. We, therefore, have evidence that the pressure to reduce flight times in situations of higher passenger and 
cargo demand is taken into account during the flight planning stage, but is apparently ignored by pilots. Another 
possibility is that in-flight speed adjustments are fully mitigated by the unobserved airport and air traffic condi-
tions that may be correlated with MASS. In this case, there would be an endogeneity of the MASS variable, which 
would limit the interpretation of our results. We suggest further investigation into such a methodological issue.

The MAXFREQ coefficients are always negative and statistically significant in SPDMEA, but are generally not 
significant in SPDCRU. This result suggests that the scale of airport operations—as measured by MAXFREQ—
can indeed impact the mean actual speeds, but this effect is not incorporated into the flight speed planning by 
airlines. We have important policy implications in these results, where we suggest that carriers add this factor 
to their flight planning to make the plans more consistent with actual operations.

Regarding the estimated trends, the results for TREND suggest a long-term gradual increase in mean speeds, 
but not in planned cruise speeds. Additionally, TREND × PAND suggests that such a trend was intensified for 
SPDMEA after the pandemic, implying that the lower airline demand in the period allowed airlines to operate 
increasingly faster flights. However, inconsistently, the TREND × PAND coefficient is negative for SPDCRU, 
pointing to a lack of coordination between the operations and planning tasks in the period. Again, we suggest 
that an effort be made to reconcile these two perspectives of company management, aiming at optimizing overall 
operational performance in the industry.

Finally, regarding DELDEP and DELARR​, we confirm the initial assumptions raised. First, concerning 
DELDEP, the results indicate that the longer the departure delay, the greater the mean speeds, possibly in an 
attempt of the pilot to recover the schedule. For DELARR​, there is an inverse relationship, i.e., higher arrival 
delays TREND to reduce mean speeds, probably due to air traffic control management and landing airport 
operations interference.

Conclusion
This study empirically investigated the determinants of flight speeds of commercial aircraft operating in Brazil. 
We analyzed a vast dataset comprising millions of domestic flights over 14 years. Using an econometric approach, 
we developed a framework to study the planned cruise speed and the mean actual flight speed set by airlines.

Our findings corroborate that airport congestion is a formidable barrier to optimizing airline flight operations. 
Additionally, we confirm that newer-generation aircraft can attain higher cruise and mean actual flight speeds.

Concerning the impact of fuel cost conditions, our results suggest that pilots may use their aircraft’s flight 
management system to adapt the actual flight speed to suit the economic environment of the date of the opera-
tions. In contrast, we find evidence that the airline does not consider such information when determining its 
planned cruise speeds for flights. We pinpoint other cases in which we suggest the airlines should make an effort 
to coordinate flight planning and operations more consistently.

Finally, regarding airlines’ business models, our results do not allow us to conclude that the major Brazilian 
LCC Gol shows a different flight-speed setting pattern when compared to the major national full-service carrier. 
However, we find suggestive evidence that Azul airlines, which has its roots in US low-cost airline Jetblue Airways 
may employ lower planned and actual speeds, possibly targeting more fuel-efficient operations.

The findings of our empirical investigation into the determinants of flight speeds in Brazil hold significant 
policy implications. Specifically, we believe that our results have the potential to aid airlines in optimizing flight 
operations by facilitating a more streamlined and efficient management of aircraft fuel consumption, costs, and 
passenger satisfaction.
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Data availability
To guarantee our results’ reproducibility, we uploaded the survey dataset at https://​doi.​org/​10.​7910/​DVN/​
UCAZ1S.
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