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Differentiating malignant 
and benign eyelid lesions using 
deep learning
Min Joung Lee 1,10*, Min Kyu Yang 2,10, Sang In Khwarg 3,4, Eun Kyu Oh 5, Youn Joo Choi 6, 
Namju Kim 4,7, Hokyung Choung 4,8, Chang Won Seo 9, Yun Jong Ha 9, Min Ho Cho 9 & 
Bum‑Joo Cho 1,9*

Artificial intelligence as a screening tool for eyelid lesions will be helpful for early diagnosis of eyelid 
malignancies and proper decision-making. This study aimed to evaluate the performance of a deep 
learning model in differentiating eyelid lesions using clinical eyelid photographs in comparison with 
human ophthalmologists. We included 4954 photographs from 928 patients in this retrospective 
cross-sectional study. Images were classified into three categories: malignant lesion, benign lesion, 
and no lesion. Two pre-trained convolutional neural network (CNN) models, DenseNet-161 and 
EfficientNetV2-M architectures, were fine-tuned to classify images into three or two (malignant 
versus benign) categories. For a ternary classification, the mean diagnostic accuracies of the CNNs 
were 82.1% and 83.0% using DenseNet-161 and EfficientNetV2-M, respectively, which were inferior 
to those of the nine clinicians (87.0–89.5%). For the binary classification, the mean accuracies were 
87.5% and 92.5% using DenseNet-161 and EfficientNetV2-M models, which was similar to that of the 
clinicians (85.8–90.0%). The mean AUC of the two CNN models was 0.908 and 0.950, respectively. 
Gradient-weighted class activation map successfully highlighted the eyelid tumors on clinical 
photographs. Deep learning models showed a promising performance in discriminating malignant 
versus benign eyelid lesions on clinical photographs, reaching the level of human observers.

Eyelid lesions are commonly encountered in ophthalmology practice1. Although most eyelid lesions are benign, 
a certain proportion are malignant, with increasing incidence rates occurring in many geographical areas1–3. 
If an eyelid lesion is clinically suspected as a malignant tumor based on the history and morphology, surgical 
biopsy is required to confirm a pathologic diagnosis. A biopsy is usually requested to oculoplastic specialists 
owing to concerns about potential scars and eyelid deformities. Although the clinical characteristic features of 
benign and malignant eyelid lesions are well known, the differential diagnosis of eyelid lesions based on clinical 
morphologies remains a challenge to ophthalmologists4–7.

A convolutional neural network (CNN) is a type of deep learning algorithm that indicates an artificial neural 
network performing mathematical operations using convolution matrices8. It has been designed to better utilize 
spatial and configurable information from images, and to detect the relevant features with minimal human 
supervision9. Several CNN models have been shown to be successful in object recognition and thus adopted in 
disease diagnosis for various types of medical images10,11. Studies utilizing a CNN have recently reported a level 
of accuracy equal to that of dermatologists for the automated classification of cutaneous tumors in photographic 
images with homogenous skin background12,13.

There are many promising advantages to the development of an artificial intelligence that can differentiate 
various types of eyelid lesions. Such intelligence can be used as a screening tool for eyelid lesions by general 
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ophthalmologists and can be helpful in reducing “missed malignancies.” It can also help identify lesions that 
should be biopsied. However, classifying eyelid lesions using clinical images can be technically challenging for 
artificial intelligence because of the complex anatomical structure of the eyelid and distinct histopathological 
epidemiology of the eyelid tumors, and there has been no previous studies in our knowledge. Therefore, this 
study aimed at the application of a deep learning model that enables the differential classification of eyelid 
lesions based on clinical eyelid photographs using a CNN. We assessed the performance of a CNN in classifying 
benign and malignant eyelid lesions and compared the diagnostic performance of a trained CNN with that of 
human clinicians.

Methods
Study participants and data extraction.  Patients with eyelid lesions were searched through a retrospec-
tive review of electronic medical records using international classification of diseases-10-clinical modification 
diagnosis codes (Supplementary Table S1) or operation codes at Seoul National University Hospital (SNUH). 
The diagnosis was annotated based on histopathological or clinical findings. All lesions were initially diagnosed 
by an experienced oculoplastic surgeon (SIK) based on the clinical characteristics. For biopsied lesions, the 
diagnosis was annotated based on a histopathological report. If the eyelid lesion had not been biopsied, clinical 
diagnosis was made based on agreement: Eyelid photographs were reviewed by another experienced oculoplas-
tic surgeon (MJL) at the time of enrollment, and the diagnosis was confirmed when the diagnosis agreed with 
the initial diagnosis.

Eyelid or whole face photographs of these patients, which were taken from October 2004 to April 2020, 
were included in this study. Photographs were retrieved from the SNUH photograph database in JPEG format 
with a minimum pixel resolution of 1183 × 690. Poor-quality photographs, photographs inadequate for clinical 
diagnosis, and postoperative photographs were excluded from the database. When the clinical diagnosis was 
inconsistent between the two oculoplastic surgeons, the cases were also excluded. In cases with whole face images, 
two eyelid photos were created by cropping a square with each eyelid separately. For patients with unilateral 
eyelid lesions, images of the contralateral eyelid photograph without any significant eyelid lesions were annotated 
as “no lesion” photographs. This study was approved by the Institutional Review Boards of SNUH (No. 1805-
175-949) and Hallym University Sacred Heart Hospital (No. 2020-03-026). The protocol of this study adhered 
to the tenets of the Declaration of Helsinki. Informed consent was waived by the Institutional Review Boards 
of Seoul National University Hospital, in view of the retrospective nature of the study and the de-identification 
of patients’ data. Signed statements of informed consent to publish patient photographs were obtained from all 
identifiable persons.

Dataset construction.  All eyelid photos were classified into three categories based on a histopathologic 
diagnosis or a clinical diagnosis with expert agreement: malignant lesions, benign lesions, and no lesion cat-
egories. The entire dataset was divided into a training dataset and a test dataset with a ratio of 9:1 by random 
sampling. Dataset splitting was conducted for each class. Random selection was conducted using the patient ID 
as a key to avoid the simultaneous inclusion of the same patient’s image in the test and training datasets for each 
class. The training dataset was then further divided into a proper training dataset and a tuning dataset for train-
ing with a ratio of 8:1. In the test dataset, only one image was randomly selected per one patient for each class. 
This proper training/tuning split was applied three times, and the CNN model was trained and evaluated three 
times independently, using three different training and tuning datasets.

Image preprocessing and data augmentation.  All images were resized into a single size format with a 
pixel resolution of 690 × 460 and then normalized using the means ([0.485, 0.456, 0.406]) and standard deviation 
([0.229, 0.224, 0.225]) of the ImageNet Dataset14. A contrast enhancement was applied using contrast-limited 
adaptive histogram equalization15–17 in all channels of the image. The numbers of images in the malignant lesion 
and no lesion classes of the training dataset were much smaller than those of the benign lesion class training 
dataset, and thus the images in the malignant lesion and no lesion classes of the training dataset were augmented 
four times by zooming-in at 5%, 10%, and 20%. The entire training dataset was then further augmented twice 
through horizontal flipping (Supplementary Fig. S1). The Python libraries opencv (version 4.1.2) and imgaug 
(version 0.4.0; available at https://​github.​com/​aleju/​imgaug; accessed on November 3, 2020) were used for image 
preprocessing and augmentation.

CNN model construction.  We designed two types of eyelid image classification: a ternary classification 
(malignant lesion versus benign lesion versus no lesion) and a binary classification (malignant lesion versus 
benign lesion). For each design, two different CNN architectures, DenseNet-161 and EfficientNetV2-M, were 
adopted: the former as a widely-used model for medical images and the latter as a state-of-the-art model. The 
detailed features of the CNN architectures are described elsewhere18–20. Briefly, DenseNet is characterized by 
Denseblock, which concatenates the feature map of the previous layers18. EfficientNetV2 finds the optimal CNN 
architecture using neural architecture search like EfficientNet, and uses progressive learning which changes 
augmentation magnitude based on the image size19,20. The pre-trained models were downloaded from the 
pytorch website, and the links are as follows: https://​pytor​ch.​org/​vision/​stable/​models/​gener​ated/​torch​vision.​
models.​dense​net161.​html#​torch​vision.​models.​Dense​Net161_​Weigh​ts and https://​pytor​ch.​org/​vision/​stable/​
models/​gener​ated/​torch​vision.​models.​effic​ientn​et_​v2_m.​html#​torch​vision.​models.​Effic​ientN​et_​V2_M_​Weigh​
ts (accessed on Aug 15, 2022).

DenseNet-161 and EfficientNetV2-M were pre-trained with the ImageNet dataset and fine-tuned unfixing 
the weights. We set all layers unfixed, so every layer was fine-tuned. Categorical cross-entropy was used as the 

https://github.com/aleju/imgaug
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https://pytorch.org/vision/stable/models/generated/torchvision.models.densenet161.html#torchvision.models.DenseNet161_Weights
https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_v2_m.html#torchvision.models.EfficientNet_V2_M_Weights
https://pytorch.org/vision/stable/models/generated/torchvision.models.efficientnet_v2_m.html#torchvision.models.EfficientNet_V2_M_Weights
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loss function, and the Adam optimizer was applied21. The batch size was 3 because it was the maximum batch 
size that the GPU memory of our server could handle working with EfficientNetV2 model. The learning rate 
was initially 1e−4, and then reduced by multiplying by 0.1 every 10 epochs until the learning rate reached 1e−7. 
We adopted early stopping after the 30th epoch with a patience value of 30 according to the loss for the tuning 
dataset, or the validation loss value. In the training process, at epochs when the validation loss value was greater 
than the minimum validation loss so far, the model was not updated. Thus, the model that was saved at the epoch 
showing the minimum validation loss in the training stage was selected as the final model to prevent overfitting. 
The training server was implemented with six NVIDIA GTX 1080ti graphic processing units, dual Intel Xeon 
E5-2690 central processing units, 128 GB RAM, and a customized water-cooling system.

Comparison of the diagnostic performance between CNN and clinicians.  After constructing the 
CNN models using the training dataset, the diagnostic performance of the models was evaluated using the test 
set. The main outcomes were the discrimination performance of the established CNN models for ternary or 
binary classification.

The diagnostic performances of the established CNN models and nine clinicians were compared. A panel of 
human clinicians was constructed, including three oculoplastic specialists, three board-certified ophthalmolo-
gists, and three ophthalmology residents.

Saliency map.  To visualize the pixels of interest, a saliency map was created using a gradient-weighted class 
activation map (Grad-CAM). Grad-CAM uses the gradient information flowing into the last convolutional layer 
and is applicable without altering the CNN architecture22. It produces a localization heatmap overlapping the 
existing image, and its visualization outperforms previous approaches on interpretability and faithfulness to the 
original model.

Statistical analysis.  The area under the receiver operating characteristic curve (AUC) of the CNN model 
was calculated and compared using the DeLong test. In addition, the sensitivity, specificity, positive predictive 
value, and negative predictive value for a binary classification were calculated at the point having Youden’s J sta-
tistic maximized. Analyses were conducted using IBM SPSS Statistics version 24.0. (IBM Co., New York, USA) 
and MedCalc version 19.0.4 (MedCalc Software Ltd., Ostend, Belgium).

Conference presentation.  Presented as an e-poster at the American Academy of Ophthalmology 2020 
Virtual Meeting, November 2020.

Presented as an oral presentation at the American Society of Ophthalmic Plastic and Reconstructive Surgery 
51st Annual Fall Scientific Symposium.

Results
A flow diagram and compositions of the constructed image dataset from the 928 patients are shown in Fig. 1 
and Table 1, respectively. The most common diagnosis in the malignant lesion category was basal cell carcinoma 
(N = 306, 37.8%), followed by sebaceous gland carcinoma (N = 287, 35.5%). The most common diagnosis in 
the benign lesion category was chalazion (N = 1377, 42.1%), followed by nevus (N = 784, 24.0%). After dataset 
augmentation, the training dataset is composed 5200 images in the malignant lesion category, 5,608 images 
in the benign lesion category, and 5611 images in the no-lesion category. The ratio of each class was 1:4:1 
originally, and it was changed to 1:1:1 after balancing the training dataset. The performance plateaued after 

Figure 1.   Flow diagram of eyelid image dataset construction.
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approximately 20 training epochs. The inference time for ternary classification per one image in the test dataset 
was 0.0119 ± 0.0001 s by DenseNet-161 and 0.0117 ± 0.0004 by EfficientNetV2-M. The inference time for binary 
classification per one image in the test dataset was 0.0111 ± 0.0001 s by DenseNet-161 and 0.0110 ± 0.0003 by 
EfficientNetV2-M. Learning curves of the CNN models for ternary and binary classifications are presented in 
Supplementary Fig. S2.

Lesion differentiation performance for ternary classification (malignant lesion versus benign 
lesion versus no lesion).  The mean overall diagnostic accuracy of deep learning models for the ternary 
classification was 82.1% (95% CI 81.2–82.9%) when using DenseNet-161, and 83.0% (95% CI 81.8–84.1%) when 
applying EfficientNetV2-M, respectively. Meanwhile, the mean overall accuracies of the ophthalmology resi-
dents, board-certified ophthalmologists, and oculoplastic specialists were 87.7% (95% CI 86.8–88.5%), 87.0% 
(95% CI 86.7–87.2%), and 89.5% (95% CI 82.1–96.8%), respectively.

The per-category diagnostic performance of the deep learning models is presented in Table 2. The diagnostic 
accuracies were highest in differentiating the malignant lesions. The per-class diagnostic AUCs for malignant 
lesions were 0.960 (95% CI 0.956–0.963) for DenseNet-161 and 0.955 (95% CI 0.950–0.959) for EfficientNetV2-
M, respectively.

lesion differentiation performances for binary classification (malignant lesion versus benign 
lesion).  For binary classification, we use a ratio of 1:1 for images containing malignant lesion and benign 
lesion. The performances of deep learning models used for differentiating malignant and benign eyelid lesions 
are presented in Table 3. EfficientNetV2-M showed a better performance (AUC 0.950; 95% CI 0.942–0.957) than 
DenseNet-161 (AUC 0.908; 95% CI 0.899–0.916). The mean diagnostic accuracy, sensitivity, and specificity of 
EfficientNetV2-M were 92.5% (95% CI 91.8–93.2%), 90.4% (95% CI 88.6–92.1%), and 87.8% (95% CI 85.7–
89.8%), respectively. The mean overall accuracy of the clinicians was 87.9% (95% CI 85.3–90.4%) by the oculo-
plastic specialists, 90.0% (95% CI 89.5–90.6%) by the general ophthalmologists, and 85.8% (95% CI 84.6–87.0%) 
by the ophthalmology residents, respectively (Table 3 and Fig. 2). The trained models showed a higher sensitivity 
(90.4% and 92.8%) than general ophthalmologists or ophthalmology residents (64.2% and 73.8%), achieving 
the oculoplastic specialists’ level (92.8%). Regarding the receiver operating characteristics, the performance of 
EfficientNetV2-M was superior to those of ophthalmology residents.

Saliency map.  Representative Grad-CAM images of the EfficientNetV2-M model for binary classification 
differentiating malignant and benign eyelid lesions are shown in Fig. 3. The saliency maps highlighted regions 
that the CNN likely focused on when predicting malignant lesions. In general, the activated regions corre-
sponded well with the tumor location.

Table 1.   Data composition of the constructed eyelid photograph dataset.

Whole dataset Training dataset Test dataset

Images, N Patients, N Images, N Patients, N Images, N Patients, N

Overall 4954 928 4475 883 134 134

Malignant lesion 809 142 727 128 14 14

Benign lesion 3271 804 2953 724 80 80

No lesion 874 503 795 453 50 50

Table 2.   Per-class diagnostic performances of deep-learning models differentiating malignant lesion, benign 
lesion, and no lesion categories. AUC​ area under the receiver operating characteristic curve, CI confidence 
interval, NPV negative predictive value, PPV positive predictive value.

Model Class

Diagnostic performance, % (95% CI)

AUC (95% CI)Accuracy Sensitivity Specificity PPV NPV

DenseNet-161

Malignant 
lesion

92.8 (92.2–
93.3)

83.3 (82.6–
84.0)

93.8 (93.1–
94.5)

62.0 (59.7–
64.3)

98.1 (98.0–
98.1)

0.960 (0.956–
0.963)

Benign lesion 82.8 (82.0–
83.7)

83.3 (83.2–
84.2)

81.7 (80.5–
82.9)

85.2 (84.3–
86.1)

80.0 (79.2–
80.7)

0.907 (0.902–
0.911)

No lesion 88.6 (88.3–
88.9)

79.3 (77.6–
81.0)

93.6 (93.1–
94.0)

87.3 (86.6–
87.9)

89.7 (89.0–
90.4)

0.962 (0.960–
0.963)

EfficientNetV2-
M

Malignant 
lesion

92.1 (91.2–
92.9)

78.5 (77.4–
79.7)

93.5 (92.5–
94.6)

63.3 (59.9–
66.6)

97.6 (97.5–
97.7)

0.955 (0.950–
0.959)

Benign lesion 84.2 (83.2–
85.2)

87.9 (86.5–
89.2)

79.6 (79.0–
80.3)

84.3 (83.7–
84.9)

84.5 (82.9–
86.1)

0.922 (0.913–
0.930)

No lesion 89.8 (89.1–
90.4)

76.7 (74.8–
78.4)

96.8 (96.1–
97.4)

93.2 (92.1–
94.4)

88.8 (88.0–
89.5)

0.965 (0.963–
0.966)
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Discussion
In this study, the CNN-based deep learning models adopting the DenseNet-161 and EfficientNetV2-M architec-
tures showed an excellent performance in terms of ternary and binary classifications for differentiating malignant 
and benign eyelid lesions. In the binary classification, the diagnostic accuracies of these deep learning models for 
differentiating malignant lesions were similar to those of oculoplasty specialists. In the ternary classification, the 
overall diagnostic accuracy of the CNNs were slightly lower than those of the clinicians. However, the diagnostic 
performance was highest in differentiating the malignant lesion category.

In 2017, Esteva et al.12 reported the performance of deep neural networks in skin cancer classification using 
photographic and dermoscopic images, suggesting the possibilities of the novel use of deep learning in the der-
matologic field. After this landmark publication, several published reports have confirmed that the diagnostic 
performance of the CNN-based methods outperformed dermatologists in classifying skin cancer13,23–25. However, 
most of these studies investigated skin tumors on the background of normal homogeneous skin. The differentia-
tion of lesions at specific anatomic sites has rarely been implemented. Cho et al.26 investigated the performance 
of a trained CNN in classifying benign and malignant lip diseases and reported a similar performance as board-
certified dermatologists. We believe that this is the first study to investigate the use of deep learning models to 
differentiate eyelid lesions. Haenssle et al.27 recently compared the diagnostic performance of a CNN against 
dermatologists for face and scalp lesions and reported that the CNN showed a higher sensitivity (96.2% versus 
84.2%) when fixing the specificity of the CNN at the mean specificity of the dermatologists (69.4%). There were 
only four cases of eyelid lesions among the 100 cases in their test set.

The surface anatomy of the eyelid is complicated and contains various structures, including the eyebrow, 
eyelid crease, eyelashes, and meibomian glands. Eyelid images also frequently contain ocular surface areas such 
as the cornea, part of the bulbar conjunctiva, semilunar fold, and caruncle, and there are numerous individual 
variations. Therefore, it is technically challenging for deep learning algorithms to classify eyelid lesions using 
clinical images. Despite this structural complexity and tricky background, the accuracy of binary classification 
was 90.0–92.5%, and the accuracy of ternary classification reached 82.1–83.0% when using the deep learning 

Table 3.   Diagnostic performances of deep-learning models and human clinicians in differentiating malignant 
and benign eyelid lesions. AUC​ area under the receiver operating characteristic curve, CI confidence interval, 
NPV negative predictive value, PPV positive predictive value.

Model

Diagnostic performance, % (95% CI)

AUC (95% CI)Accuracy Sensitivity Specificity PPV NPV

DenseNet-161 87.5 (86.6–88.4) 92.8 (91.6–93.9) 77.4 (76.8–77.9) 42.0 (41.5–42.4) 98.4 (98.1–98.6) 0.908 (0.899–0.916)

EfficientNetV2-M 92.5 (91.8–93.2) 90.4 (88.6–92.1) 87.8 (85.7–89.8) 63.7 (59.8–67.5) 98.2 (97.8–98.5) 0.950 (0.942–0.957)

Oculoplasty special-
ists 87.9 (85.3–90.4) 92.8 (90.3–95.3) 87.0 (83.8–90.3) 67.0 (61.3–72.8) 98.7 (98.3–99.2) –

Board-certified 
ophthalmologists 90.0 (89.5–90.6) 64.2 (59.2–69.2) 94.5 (93.1–96.0) 77.3 (72.6–81.9) 94.0 (93.3–94.8.) –

Ophthalmology 
residents 85.8 (84.6–87.0) 73.8 (72.1–75.4) 87.9 (86.2–89.5) 57.2 (52.9–61.5) 95.1 (94.9–95.3) –

Figure 2.   Receiver operating characteristic curves of deep-learning models in differentiating malignant and 
benign eyelid lesions. The diagnostic performances of nine ophthalmology clinicians on the same test set are 
shown by single dots. Black dots indicate the diagnostic performances of oculoplastic specialists, blue dots are 
those of board-certified general ophthalmologists, and the green dots are those of ophthalmology residents.
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model. The diagnostic accuracies of the EfficientNet-V2-M was superior to those of the clinicians in terms of 
binary classification, differentiating malignant from benign eyelid lesions.

We tested two deep learning models, i.e., ternary and binary classification models. The binary classification 
models were devised with the goal of developing an assistant tool for clinicians, and we applied the ternary 
classification models for the exploitation of automated screening tools or diagnostic applications. In this study, 
the performances of the CNN-based approaches were different between ternary and binary classifications and 
were not uniform across the categories. The binary classification showed a higher accuracy than the ternary 
classification. However, the differentiation of the malignant lesion category showed the highest accuracy (92.8% 
with DenseNet-161 and 92.1% with EfficientNetV2-M) for the ternary classification models. We hypothesized 
that the less distinct appearance of benign lesions and complicated backgrounds made it difficult for a CNN to 
classify the benign lesion and no lesion categories. It is well known that the accuracy of a CNN tends to decline 
as the number of classes increases28. A larger number of training images are needed to improve the accuracy 
of the ternary classification and develop a deep learning algorithm that can diagnose specific eyelid diseases.

In this study, the diagnostic performance of EfficientNetV2-M-based deep learning models was higher 
than that of DenseNet-161-based deep learning models, especially in the binary classification. It is possible 
that EfficientNetV2-M architecture would be more suitable for recognizing the characteristics of eyelids than 
DenseNet-161. A previous dermatologic study on the classification of common skin conditions reported that 
the DenseNet architecture provides better results than other contemporary architectures29. Problems related to 
over-fitting may occur in more complex CNN models. Instead of drawing representational power from extremely 
complex architectures, the DenseNet architecture pursues shorter connections between layers close to the input 
and those close to the output18. Nevertheless, the EfficientNetV2, the state-of-the-art architecture, showed a bet-
ter performance in this study. EfficientNetV2 was developed in 2019 and known to have faeter training speed 
and better efficienty than previous models. The superiority of EfficientNetV2 over other CNN models in terms 
of differentiating eyelid lesions should be repeatedly verified in the future studies.

The clinical diagnosis of eyelid lesions is entirely based on a detailed history and gross morphology. It depends 
on the experience of the clinician, and there are no imaging modalities or ancillary tests. Although the morpho-
logical characteristics of malignant eyelid lesions are well known, differentiating between benign and malig-
nant eyelid lesions is occasionally difficult. Basal cell carcinoma can be confused with nevus, papilloma, and 
hydrocystoma4. Sebaceous gland carcinoma is commonly misdiagnosed as a benign tumor or inflammatory 
lesion, including chalazion or blepharoconjunctivitis, resulting in a significant diagnostic delay6. Early diagnosis 
of malignant eyelid disorders is important for successful treatment and a better prognosis. In addition, higher 
T staging increases the risk of regional lymph node metastasis and tumor-related death in sebaceous gland 
carcinoma30. Moreover, eyelid reconstruction is technically more difficult when the defect is large and involves 
canthal structures. In this study, the promising accuracy of a CNN in binary classification, comparable with that 
of the clinicians, suggests that CNNs have the potential for application under clinical settings. Clinicians may 
be able to improve the accuracy of their clinical diagnoses with the aid of a CNN. In addition, CNNs classify 
the lesions based solely on images without any clinical information, including age, duration of the lesion, or 
anatomical site. These data are easily available and may help enhance the performance of CNNs.

Figure 3.   Representative gradient-weighted class activation mapping images of the EfficientNetV2-M model. 
In differentiating malignant (a–c) eyelid lesions, figures are shown in pairs of the original eyelid image (left) and 
corresponding activation mapping image (right).
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This study has several limitations. First, most of the images used were obtained from Korean subjects, and 
the performance of our deep learning models should be validated using independent datasets from different 
ethnic populations. Second, histopathological diagnosis or clinical diagnosis was annotated to the images as a 
gold standard, and there is a possibility that a clinical diagnosis will be incorrect even though two experienced 
oculoplastic surgeons agree on the diagnosis. Third, the number of images in the training set was insufficient, and 
the proportion of each group was unequal. We therefore manipulated the training set, augmenting the number 
of images, and bias from the image augmentation is possible. Fourth, although the saliency maps highlighted 
regions of interest, the mechanism of the CNN underlying the classification of the eyelid lesions remains unclear. 
Further research with technical aspects that explore the mechanisms underlying such classification is needed. 
Finally, as can be inferred from comparable accuracies among the three groups of clinicians, our dataset may 
contain a significant number of advanced malignant lesions. If the CNN models are constructed with a dataset 
containing a larger number of early-stage malignant lesions and maintain their promising accuracies, they will 
have more clinical significance as a screening tool.

In conclusion, we applied deep learning algorithms for classifying eyelid lesions using clinical photographs, 
and the diagnostic performances of deep learning models differentiating malignant lesions from benign lesions 
were found to be comparable to those of human ophthalmologists. The results of this study suggest that our 
deep learning models may assist clinicians in differentiating malignant eyelid lesions, enabling an early diagnosis 
and improving the clinical outcomes. Further validation of these algorithms in a community setting is needed.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
authors on reasonable request.
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