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Albedo effects in the ER3BP 
with an oblate primary, a triaxial 
secondary and a potential due 
to belt
Jagadish Singh 1 & Tyokyaa K. Richard 2*

We have examined the effects of Albedo in the Elliptic Restricted Three-Body Problem (ER3BP) with 
an oblate primary, a triaxial secondary, and potential due to belt for the Earth–Moon system. We 
have found that as the perturbed parameters increases, the possible boundary regions of the primary 
come closer to one other, allowing particles to travel from one region to the next freely and possibly 
merge the permissible regions. Our study has revealed that the formation of triangular libration points 
depends on the Albedo effects, semi-major axis, the Eccentricity of the orbits, triaxiality, and the 
potential due to the belt. As the parameters mentioned above increase, the triangular positions L

4
 and 

L
5
 move towards the center of origin in cases 1, 2, 3, and 4 and away from the center of the origin in 

cases 5, 6, and 7. Considering the range of a stable and unstable libration point for the problem under 
study given as  0 < µ < µ

c
 for stable libration points and µ

c
≤ µ ≤

1

2

 for unstable libration points, our 
study has established that the triangular libration points are respectively stable and unstable for cases 
1, 2, and 6 and cases 3, 4, 5, and 7. Our study has also revealed that each set of values has at least 
one characteristic complex root with a positive real part. Hence, the triangular libration points for the 
Earth–Moon system are unstable in the sense of Lyapunov. The Earth–Moon system’s Poincare Surface 
of Section (PSS) has demonstrated that a slight change in the initial conditions, the semi-major axis, 
and the Eccentricity of the orbits have affected the system’s behavior dramatically. Further, it is seen 
that a chaotic dynamical behavior of the system results into either regular or irregular orbits.

For many years, the area of celestial mechanics has been under investigation. Newton created the three-body 
issue in orbital mechanics in the late seventeenth century1,2. In this problem, the three bodies are spherically 
symmetric, and they all move in response to the gravitational pull of the other two. Because of how complex the 
issue is, no comprehensive analytical solution exists. The idea that one of the bodies has an infinitesimal mass and 
the other two become the principal gravitational bodies was established by Leonhard Euler in the late eighteenth 
century, according to1,2. Therefore, the infinitesimal body will not impact the primary’s motion. This transforms 
the issue into the well-known restricted three-body problem, greatly simplifying it.

One of the areas of celestial mechanics is the restricted three-body problem, wherein two finite bodies, 
known as primaries, move in elliptic or circular orbits around their centers of mass as a result of their mutual 
gravitational attraction, and a third body, known as infinitesimal mass, is attracted to the two primaries but is 
unaffected by their motion. The classical case of the restricted three-body problem has five libration points, three 
collinear libration points 

(

L1,2,3
)

 and two non-collinear (triangular) libration points 
(

L4,5
)

 . The collinear points 
are those that connect the primaries, whereas the non-collinear points are those that form equilateral triangles 
with them. The non-collinear libration points have been proven to be conditionally stable, whereas the collinear 
libration points are usually unstable1,3–11.

Because most celestial planets’ orbits are elliptical rather than circular, the elliptic restricted three-body 
problem is the finest tool for analyzing the dynamical behavior of such systems. According to observations, 
most celestial planets are oblate spheroid or triaxial rigid bodies. The planets Earth, Jupiter, Saturn, and the 
stars Archid, Archerner, Anttares, Altairand, and Layten are all sufficiently oblate or triaxial rigid bodies that 
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are important in studying celestial bodies and the Stellar System. The lack of sphericity in such celestial bodies 
produces a great deal of chaos.

Notable researches were carried out to ascertain the triaxiality of these heavenly bodies. Sharma and co-
authors investigated stationary solutions to the planar restricted three-body problem when the primaries are 
triaxial rigid bodies with one of the axes serving as the axis of symmetry and the equatorial plane intersecting 
the plane of motion. Their findings reveal that triangular points in the same mass ratio range have long or short 
periodic elliptical orbits12. The behavior of a test particle around a triaxial primary and an oblate companion 
orbiting each other in elliptic orbits was studied by13. The primary’s triaxiality and oblateness were discovered 
to be perturbing characteristics of the triangular points’ positions and stability. The triangular points for the 
binaries PSR J1518 + 4904, PSR B1534 + 12, PSR B1914 + 16, and PSR B2127 + 11c are unstable due to the almost 
equal masses of the neutron stars. Singh and Simeon10 studied the triangular equilibrium points in the Circular 
Restricted Three-Body Problem under triaxial luminous primaries with Poynting-Robertson Drag. Duggad 
et al.14 investigated the effects of the triaxiality of both primaries on the position and stability of the oblate infini-
tesimal body in the elliptic restricted three-body problem. El-Bar15 studied the stability of collinear equilibrium 
points in the restricted three-body problem under some perturbations due to the bigger primary’s triaxiality 
and the smaller primary’s oblateness. Singh and Isah16 examined the effects of radiation pressure and triaxiality 
of two primaries surrounded by a belt in the Elliptic Restricted Three-Body Problem.

Broucke17 considered ranges of eccentricities and mass ratios as from 0 to 1 and 0 to 12 respectively. He 
discovered that the periodic orbits’ stability characteristics and the absence of the Jacobian integral in the ellip-
tic problem distinguish the circular problem from the elliptic problem. Sarris18 investigated how families of 
symmetric-periodic orbits evolve and remain stable in the three-dimensional elliptic problem with changes to 
the mass ratio and Eccentricity of the orbits.

Peng and Xu19 utilized continuation methods with the multi-segment optimization method to generate two 
groups of multi-revolution elliptic halo (ME-Halo) orbits and then systematically investigate their stability 
evolution with respect to the Eccentricity and the mass ratio of the primaries.

Ferrari and Lavagna20 surveyed periodic solutions in the Circular Restricted Three-Body problem where both 
the Sun–Earth and the Earth–Moon systems were considered. Their findings supported cataloging based on the 
number of libration point revolutions in the periodic solutions.

Albedo is a dimensionless quantity measured on a scale from 0 to 1. A body or surface with 0 Albedo is 
referred to as a "black body," as it absorbs all incident radiation. A "white body" with an Albedo value of one is 
a perfect reflector that reflects all incident radiations entirely and uniformly in all directions. Because it reflects 
the bulk of the radiation that strikes it, a surface with a high Albedo has a lower temperature. Because it absorbs 
more incoming radiation, a surface with a low Albedo has a higher temperature. There are no black-body planets 
in our solar system. The planets with their respective average Albedos are shown in Table 1 below.

The albedo effect is one of the fascinating non-gravitational forces that considerably impact tiny mass motion. 
The fraction of solar energy reflected diffusely from the planet back into space is referred to as Albedo21. It’s a 
measurement of the planet’s surface reflectance. The percentage of incident solar radiation reaches the planet’s 
surface and is reflected into space according to22–26.

The Earth’s Albedo has an impact on several satellites. The albedo of the Earth is critical for nearly all Earth-
orbiting satellites. The amount of solar radiation reflected by the Earth toward a satellite impacts the energy 
generated by the solar panels, which in turn affects the thermal design sensed by the horizon sensors to determine 
the satellite’s position27.

In the circular restricted three-body problem, Idrisi explored how Albedo affected the libration points from 
their initial position22. When the smaller primary is a homogeneous ellipsoid, Idrisi investigated the Albedo effect 
on the existence and stability of the libration points23. The result shows that the triangular libration points are 
stable for µ < µc where µc = µ0 − (0.00891747+ 0.222579k)α, but collinear libration points are still unstable. 
Idrisi and Ullah26 developed a model for the Elliptic restricted three-body problem in which one of the primaries 
is a source of radiation and the other a non-black-body. They also carried out a study to examine the significant 
effects of Albedo on the existence of out-of-plane equilibria in the elliptic restricted three-body problem under 
an oblate primary model. They found that the equilibria are unstable in a linear sense for all parameters µ,α, e, k, 
and σ.

The belt’s influence changes the dynamical system’s structure, resulting in new equilibrium points under 
certain conditions, according to2,15. In the presence of a large belt, the orbital motion of a test particle around a 
primary is substantially influenced16,28. According to12,29–31, Mb

(r2+T2)
1
2

 is the potential due to the Belt, where Mb 

is the total mass of the Belt, r  is the radial distance of the infinitesimal body, and is given by 
r2 = x2 + y2,T = a+ b , where aandb are parameters which determine the density profile of the Belt. The param-
eter "a" controls the flatness of the profile and is known as the flatness parameter. The parameter "b" controls the 

Albedo =
radiation reflected back to the space

incident radiation

Table 1.   Planets with their respective average Albedos. Sources: Idrisi and Ullah22.

Planet Mercury Venus Earth Mars Jupiter Saturn Uranus Neptune

Albedo 0.12 0.75 0.30 0.16 0.34 0.34 0.30 0.29
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size of the core density profile and is called the core parameter. When a = b = 0 , the potential equals one by a 
point mass.

Singh and Taura28 studied the effects of oblateness up to J4 in the photo-gravitational Circular Restricted 
Three-Body Problem with the potential due to Belt. Their results confirmed that the triangular points are stable 
for 0 < µ < µc and unstable for µc ≤ µ ≤ 1

2 where µ and µc are respectively the mass ratio and the critical 
mass parameter.

In this present study, we have extended the work of26 to include the oblateness of the bigger primary, triaxiality 
of the smaller primary, and potential due to the Belt in the Earth–Moon system.

The organization of the work is in eight sections. The equations of motion are presented in “Equations of 
motion”; “Zero velocity curves (ZVC)” avails us with Zero Velocity Curves (ZVC), in “Location of triangular 
libration points”, locations of the libration points are provided; “Stability and critical mass value (μc)” presents 
the stability and the critical mass value, Poincare Surface of Section is demonstrated in “Poincare surfaces of 
section (PSS)” and conclusions are drawn from “Conclusions”.

Equations of motion
Using dimensionless variables and a barycentric synodic coordinate system (ξ , η, ζ ) , the equations of motion of 
the infinitesimal mass (third body) under the effects of an oblate primary, a triaxial secondary, and a potential 
due to Belt can be expressed as;

with the force function

where ξ1 = µ, ξ2 = µ− 1, 0 < µ = M2
M1+M2

< 1
2.

The mean motion "n" is given as

From Fig. 1 above, M1 and M2 are the masses of the primaries, M1 > M2 . Then M3 is the infinitesimal mass 
M3 << M2 . We have that r1, r2 and r are, respectively, the distances from M1,M2 and 0 to M3 . More so, F1 and 
F2 are the gravitational forces acting on M3 due to M1 and M2 respectively. FP is the force due to solar radiation 
pressure by M1 on M3 and FA is the Albedo force due to solar radiation reflected by M2 on M3.
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Figure 1.   Configuration of the model.
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Now, the force acting on M3 due to M1 and M2 are F1
(

1− FP
F1

)

= F1(1− α) and F2
(

1− FA
F2

)

= F2(1− β) 

respectively.  Then α = FP
F1

<< 1 and β = FA
F2

<< 1 .  Also,  α and β  can be expressed as; 
α = l1

2πGM1Cσ
;β = l2

2πGM2Cσ
 where l1 is the luminosity of the bigger primary M1 , l2 is the luminosity of the 

smaller primary M2 , G is the gravitational constant, c is the speed of light, and σ is mass per unit area of the 
infinitesimal mass M3 . Now, β

α
= M1l2

M2l1
thatisβ = α

(

1−µ
µ

)

k . Assuming k = l2
l1
= constant, 0 < α < 1, 0 < β < α 

and 0 < k < 1 . Moreso, Mb

(r2+T2)
1
2

 , is the potential due to belt. Mb is the total mass of the belt, r is the radial dis-

tance of the infinitesimal body, and is given by r2 = ξ 2 + η2,T = a+ b , aandb are parameters which determine 
the density profile of the belt.

The Jacobian integral is given by

where C is the Jacobian constant. The mass parameter (µ) and the oblateness of the bigger primary (A) , as in32 
are shown in Table 2 below.

Zero velocity curves (ZVC)
In the present study, zero velocity curves (ZVC) in the ξη-plane is demonstrated by determining numerically the 
Jacobian constant C using initial conditions in Eq. (5). We have observed that 2�− C ≥ 0 . This indicates that 
the curves of zero velocity are particularly defined through the expression 2� = C, which defines a boundary 
relation called Hill’s surface. If we consider the velocity of the infinitesimal body to be zero, then the surfaces 
obtained in the ξη-plane, known as the zero relative velocity surface, can be given as;

C = 2� , that is

Using Table 3 below and with the help of software MATHEMATICA, the ZVC for the Earth–Moon system 
is demonstrated from Eq. (6) for the possible dynamics at a given Jacobian constant C.

The figures below demonstrate the effects of oblateness, Eccentricity, semi-major axis, Albedo, triaxiality, and 
the Belt’s potential for the Earth–Moon system.

The motion of particles around the triangular libration points for the Earth–Moon system is demonstrated 
in Figs. 2, 3, 4 and 5. We have used Eq. (5) and Table 3 with constant and other varying values of parameters 
(Mass ratio, Eccentricity of the orbits, Semi-major axis, Albedo effects of both primaries, Triaxiality of the smaller 
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Table 2.   Systems and their parameters. Sources: Sharma and SubbaRao32.

S./no. System Mass ratio (µ) Oblateness (A)

1 Earth–Moon 0.0121502994 0.0000003686

2 Jupiter-Io 0.0000415283 0.0006701421

3 Jupiter-Europa 0.0000250794 0.0002646382

4 Jupiter-Ganymede 0.0000807835 0.0001040401

5 Jupiter-Callisto 0.0000479677 0.0000337017

6 Saturn-Mimas 0.0000000659 0.0042349996

7 Saturn-Enceladus 0.0000001480 0.0025865767

8 Saturn-Tethys 0.0000010950 0.0016835857

9 Saturn-Dione 0.0000020390 0.0010308526

10 Saturn-Rhea 0.0000032000 0.0005275432

11 Saturn-Titan 0.0002461294 0.0000981153

12 Saturn-Hyperion 0.0000002000 0.0000667989

13 Saturn-Iapetus 0.0000039400 0.0000115606

14 Saturn-Phoebe 0.0000000520 0.0000008764

Table 3.   Numerical data in a dimensionless form for the Earth–Moon system.

S./No. System Mass ratio (µ) Oblateness (A) Eccentricity (e) Semi-major axis (a)

1 Earth–Moon 0.0121502994 0.0000003686 0.0549 0.000452709685952
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primary, and the Potential due to belt as shown in Figs. 2, 3, 4 and 5) to observe the Zero velocity curves for the 
system under study. When the Jacobian constant C is small due to no oblateness, Albedo effects, triaxiality, and 
Potential due to belt, a link between the two major regions is noticed, with a small orbit forming between the 
openings connecting the two large regions, as shown in Fig. 2.

The single orbit created in Fig. 1 has been separated into two orbits or regions, and the two primary parts have 
been disconnected in the presence of the parameters mentioned above. As a result, we have witnessed a constant 
movement of particles within the allowed regions when the perturbed parameters are considered (see Fig. 3).

Figure 2.   Zero velocity curves for µ = 0.01215, e = 0.0549, a = 1.000453,A = σ1 = σ2 = α = k =

Mb = T = 0 showing the boundary relations.

Figure 3.   Zero velocity curves for µ = 0.01215, e = 0.0549, a = 1.000453,A = 0.0000003686,T = 0.01,

σ1 = 0.03, σ2 = 0.01,α = 0.05, k = 0.05,Mb = 0.2 showing the boundary relations.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4286  | https://doi.org/10.1038/s41598-023-30671-3

www.nature.com/scientificreports/

As the Albedo effects of both primaries, triaxiality of the smaller primary, and the potential due to the belt of 
the system increase with an increase in the Jacobian constant C , the two smaller obits formed in Fig. 3 merged to 
form a smaller region in between the two major regions resulting to three isolated possible regions (see Fig. 4).

Figure 5 shows how the movements of the major regions are affected by the values of the Jacobian constant C 
and other factors. The possible boundary regions of the primary get closer to each other as the Jacobian constant 
value increases with the perturbed parameters, allowing particles to travel freely from one zone to another and 
possibly merge the permissible regions.

Figure 4.   Zero velocity curves for µ = 0.01215, e = 0.0549, a = 1.000453,A = 0.0000003686,T = 0.01,

σ1 = 0.04, σ2 = 0.02,α = 0.045, k = 0.10,Mb = 0.4 showing the boundary relations.

Figure 5.   Zero velocity curves for µ = 0.01215, e = 0.0549, a = 1.000453,A = 0.0000003686,T = 0.01,

σ1 = 0.05, σ2 = 0.03,α = 0.040, k = 0.15,Mb = 0.6 showing the boundary relations.
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Location of triangular libration points
The equilibrium points are those points at which the velocity and acceleration of the particle are zero. These 
points are the solutions to the equations: �ξ = �η = �ζ = 0 . This means that the solutions to equations 
�ξ = �η = �ζ = 0, η �= 0, ζ = 0 ; are the triangular libration points. Hence, we have

Neglecting second and higher powers of γ , e,A, σ1, σ2 and rc and their products, the positions of the triangular 
libration points L4(ξ , η) and L5(ξ ,−η) are obtained as;

where β = α(1−µ)k
µ

.

where β = α(1−µ)k
µ

.
From Eqs. (9) and (10) for the Earth–Moon system, we have generated numerical values for the positions 

of triangular libration points using the software MATHEMATICA. The effects of the parameters involved are 
represented in Table 4 and demonstrated graphically in Fig. 6 below.

We have demonstrated the positions of libration equilibrium points when considering the solutions 
�ξ = �η = 0 . The light blue line and the orange line in Figs. 6, 7 and 8, respectively, represent �ξ = 0and�η = 0, 
which corresponds to the equilibrium positions of the infinitesimal body M3 . The black dots represent the 
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Table 4.   Effects of various perturbations on the positions of libration points L4,5(µ = 0.01215,

A = 0.0000003686, e = 0.0549, γ = −0.0004527,T = 0.01).

Case α σ1 σ2 k Mb L4(ξ) L5(±η)

1 0 0 0 0 0 −0.48785 0.864459

2 0.5 0 0 0 0 −0.321183 0.768234

3

0.5 0.03 0 0 0 −0.332618 0.727205

0.5 0.04 0 0 0 −0.336429 0.713528

0.5 0.05 0 0 0 −0.340241 0.699851

4

0.5 0.03 0.01 0 0 −0.323806 0.737994

0.5 0.04 0.02 0 0 −0.318806 0.7351080

0.5 0.05 0.03 0 0 −0.313806 0.7322210

5

0.5 0.03 0.01 0.05 0 −0.996013 0.3496070

0.5 0.04 0.02 0.10 0 −1.68354 −0.0534018

0.5 0.05 0.03 0.15 0 −2.39140 −0.468146

6

0.050 0 0 0 0.2 −0.471184 0.777405

0.045 0 0 0 0.4 −0.47285 0.700936

0.040 0 0 0 0.6 −0.474517 0.624467

7

0.050 0.03 0.01 0.05 0.2 −0.541027 0.708327

0.045 0.04 0.02 0.10 0.4 −0.593300 0.596843

0.040 0.05 0.03 0.15 0.6 −0.633348 0.492424
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positions of the primary bodies Mi(i = 1, 2, 3) and the red dots are the positions of the libration points (Collinear 
and triangular points) denoted by Li(i = 1, 2, 3, 4, 5, 6, 7, 8, 9) as in the case under study.

We have used cases 1, 3, and 7 in Table 4 to graphically demonstrate the positions of libration equilib-
rium points for the Earth–Moon system. In case 1, we have observed that, in the absence of Albedo 
effects, triaxiality of the primaries and the potential due to belt (i.e.α = σ1 = σ2 = k = Mb = 0) , 
the problem admits five (5) equilibrium points (see Fig.  6). Moreso, we witnessed nine (9) equilib-
rium points in case 3 for (α = 0.5, σ1 = 0.03, σ2 = k = Mb = 0) as in Fig.  7. When all the parameters 
(i.e.α = 0.5, σ1 = 0.03, σ2 = 0.01, k = 0.05,Mb = 0.20) in our study are considered, the problem admits six (6) 
equilibrium points, as demonstrated in Fig. 8.

Figure 6.   Effects of oblateness, Eccentricity of the orbits, semi-major axis, Albedo parameters, triaxiality, and 
the potential due to belt on the triangular libration points for the Earth–Moon system using case 1 of Table 4.

Figure 7.   Effects of oblateness, Eccentricity of the orbits, semi-major axis, Albedo parameters, triaxiality, and 
the potential due to belt on the triangular libration points for the Earth–Moon system using case 3 of Table 4.
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We observed from our study that the formation of these equilibrium points depends on the system parameters 
(Mass ratio (µ) , Eccentricity (e) , Semi-major axis (a) , Oblateness (A) , Albedo (αandβ) , Triaxiality (σ1andσ2) and 
the Potential due to belt (Mb) ) of the problem under study.

The figure below represents the effects of oblateness, Eccentricity of the orbits, semi-major axis, Albedo 
parameters, triaxiality, and the potential due to belt on the triangular libration points for the Earth–Moon system. 
We have used seven cases of perturbations on the positions of libration points in plotting the figure below using 
the software MATHEMATICA. The coordinates of the triangular libration points (L4, L5) are: 
(−0.48785, 0.864459), (−0.321183, 0.768234), (−0.332618, 0.727205), (−0.323806, 0.737994), (−0.996013, 0.3496070),

(−0.471184, 0.777405), (−0.541027, 0.708327)

Figure 8.   Effects of oblateness, Eccentricity of the orbits, semi-major axis, Albedo parameters, triaxiality, and 
the potential due to belt on the triangular libration points for the Earth–Moon system using case 7 of Table 4.

1.5 1.0 0.5 0.0 0.5 1.0 1.5

0.5

0.0

0.5

L4

L5

Figure 9.   Effects of oblateness, Eccentricity of the orbits, semi-major axis, Albedo parameters, triaxiality, and 
the potential due to belt on the triangular libration points for the Earth–Moon system using Table 4.
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Table 4 and Fig. 9 show the effects of oblateness, Eccentricity of orbits, semi-major axis, Albedo parameters, 
triaxiality, and the potential due to belt on the triangular libration points for the Earth–Moon system. The initial 
conditions ((1.5, 0), (−1.5, 0)) and ((1.5, 0), (−1.5, 0)) are used in plotting the graphs in Fig. 9 for the Earth–Moon 
system. The positions ( L4andL5 ) of the triangular libration points are affected by the aforementioned parameters 
for the system under study. We have observed that as the parameters increase, the position L4 and L5  move 
towards the center of origin for cases 1, 2, 3, and 4 and away from the center of origin for cases 5, 6, and 7 for the 
Earth–Moon system (see Table 4 and Fig. 9). As the parameters increase, constant movement occurs except in 
case 5, as seen in Table 4 and Fig. 9, forming different triangles.

Stability and critical mass value (μc)
The critical mass value ( µc ) can be obtained from the variational equations; for this, we denote the position of 
a dust particle near the triangular points by (ξ0, η0) and we let the small displacements in (ξ0, η0) be 

(

x, y
)

 then 
ξ = ξ0 + x and η = η0 + y , substituting these values in Eq. (1), we have variational equations

where the subscripts denote the second partial derivatives, and the superscripts refer to the values of those 
derivatives at the point (ξ0, η0) . Their characteristic equation is;

At triangular points, we have
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Considering Eqs. (12) to (14) into Eq. (11), we have;

where;

Introducing �2 = � , then Eq. (15) becomes

where P = (4− 3∈1) , Q = 27µ
4 (1− µ)+ ∈2.

To determine the value of the critical mass, we consider the discriminant of Eq. (16), that is,

Solving and neglecting the higher power of γ , e2,A,α,β , σ1, σ2,Mb and their products, we have;
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There is only one value of µ , say µc in 
(

0, 12
)

 for which � vanishes. The triangular points are stable for 
0 < µ < µc and unstable for µc < µ ≤ 1

2 by33. Now, we are interested in the discriminant being zero at the 
critical point. Considering Eq. (17), we have � = 0 that is;

Equation (19) is a quadratic equation in µ . Solving it for µ , we obtain the critical mass value µc as thus;

The Albedo effects, triaxiality, potential due to belt, and other constant parameters on the critical mass value 
µc are demonstrated in Eq. (20).

With the help of the software MATHEMATICA, we have computed the critical mass value numerically µc 
from Eq. (20) considering the Earth–Moon system. The effects of the parameters on the µc are represented in 
Table 5. Now, considering the range of stable and unstable libration points for the problem under study given 
as  0 < µ < µc for stable libration points and µc ≤ µ ≤ 1

2 for unstable libration points, our study confirmed 
that the triangular libration points are stable and unstable for cases 1, 2, 6, and cases 3, 4, 5, and 7, respectively 
(see Table 5). When some of the perturbed parameters are absent, the stability region of the triangular libration 
points increases, while its stability region decreases in the presence of the perturbed parameters. Our study agrees 
with that of Idrisi23 for e = a = A = σ1 = σ2 = Mb = 0 , Idrisi and Ullah25,26 for A = σ1 = σ2 = Mb = 0, a = 1 , 
Duggad et al.14 for α = β = Mb = 0, a = 1.

The critical mass value (µc) decreases with an increase in the Albedo effects, triaxiality of the smaller prima-
ries, and potential due to belt for the Earth–Moon system.

We have also viewed the region of stability when the problem is considered at varying parameters. As shown 
in Table 6 and Figs. 10, 11, 12 and 13, the region of stability decreases with an increase in the values of the 
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semi-major axis, Eccentricity of the orbits, Albedo effects, triaxiality, and the potential due to the belt of the 
problem under study. In the absence of the parameters mentioned above, the triangular libration points are stable 
(see Table 6). However, with the introduction of the parameters, the triangular libration points are unstable (see 
Table 6 and Figs. 10, 11, 12 and 13).

When the parameters indicated above are increased, the critical mass value (µc) decreases, reducing the sta-
bility region. The unstable behavior of the triangular libration points is depicted in Figs. 10, 11, 12 and 13. The 
critical mass value for the problem under investigation decreases as the parameters increase.

Table 5.   Effects of various perturbations on the Critical Mass Value (µc) of the triangular libration points. 
(µ = 0.01215,A = 0.0000003686, e = 0.0549, γ = −0.0004527,T = 0.01).

Case α σ1 σ2 k Mb L4(ξ) L5(±η) µc Remarks

1 0 0 0 0 0 −0.48785 0.864459 0.0379644 Stable

2 0.5 0 0 0 0 −0.321183 0.768234 0.0550862 Stable

3

0.5 0.03 0 0 0 −0.332618 0.727205 −1.81788 Unstable

0.5 0.04 0 0 0 −0.336429 0.713528 −2.44220 Unstable

0.5 0.05 0 0 0 −0.340241 0.699851 −3.06652 Unstable

4

0.5 0.03 0.01 0 0 −0.323806 0.737994 −1.82504 Unstable

0.5 0.04 0.02 0 0 −0.318806 0.7351080 −2.45652 Unstable

0.5 0.05 0.03 0 0 −0.313806 0.7322210 −3.08800 Unstable

5

0.5 0.03 0.01 0.05 0 −0.996013 0.3496070 −1.85710 Unstable

0.5 0.04 0.02 0.10 0 −1.68354 −0.0534018 −2.66197 Unstable

0.5 0.05 0.03 0.15 0 −2.39140 −0.468146 −3.60816 Unstable

6

0.050 0 0 0 0.2 −0.471184 0.777405 0.0454086 Stable

0.045 0 0 0 0.4 −0.47285 0.700936 0.0509693 Stable

0.040 0 0 0 0.6 −0.474517 0.624467 0.056530 Stable

7

0.050 0.03 0.01 0.05 0.2 −0.541027 0.708327 −1.89966 Unstable

0.045 0.04 0.02 0.10 0.4 −0.593300 0.596843 −2.55925 Unstable

0.040 0.05 0.03 0.15 0.6 −0.633348 0.492424 −3.22706 Unstable

Table 6.   Effects of varying parameters on the Critical Mass Value (µc) of the triangular libration points. 
(µ = 0.01215).

k α σ1 σ2 Mb e A γ T µc Remarks

0 0.00 0.00 0.00 0.00 0.00 0.0000 0.00 0.00 0.0385209 Stable

1 0.005 0.05 0.001 0.01 0.1 0.0015 −0.005 0.10 −3.19006 Unstable

2 0.010 0.10 0.002 0.02 0.2 0.0030 −0.010 0.12 −6.32530 Unstable

3 0.015 0.15 0.003 0.03 0.3 0.0045 −0.015 0.14 −9.26309 Unstable

4 0.020 0.20 0.004 0.04 0.4 0.0060 −0.020 0.16 −11.8826 Unstable

5 0.025 0.25 0.005 0.05 0.5 0.0075 −0.025 0.18 −14.0461 Unstable

6 0.030 0.30 0.006 0.06 0.6 0.0090 −0.030 0.20 −15.5994 Unstable

7 0.035 0.35 0.007 0.07 0.7 0.0105 −0.035 0.22 −16.3711 Unstable
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Figure 10.   Effects of Albedo parameters on the Critical Mass Value (µc) of the triangular libration points.
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The figures below demonstrate the effects of the varying parameters, as in Table 6, on the critical mass value 
(µc) of the triangular libration points.

We also numerically compute the roots of Eq. (15) to ascertain the stable nature of the triangular libra-
tion points. This computation is done with the help of a software package called MATHEMATICA for the 
Earth–Moon system. The nature of the roots is demonstrated in Table 7.

We discover that for each set of values, there is at least one complex root with a positive real part, as shown 
in Table 7. As a result, the Earth–Moon system’s triangular libration points are unstable in the Lyapunov sense.
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Figure 11.   Effects of the triaxiality on the Critical Mass Value (µc) of the triangular libration points.
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Figure 12.   Effects of oblateness and potential due to belt on the Critical Mass Value (µc) of the triangular 
libration points.
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Figure 13.   Effects of the semi-major axis and the Eccentricity of the orbits on the Critical Mass Value (µc) of 
the triangular libration points.
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Poincare surfaces of section (PSS)
Stable periodic and quasi-periodic orbits around the primaries are determined with the help of the Poincare 
Surface of Section (PSS). To determine the PSS of a given Jacobian integral C +

(

ξ̇ 2 + η̇2
)

= 2� , where C is the 
Jacobi constant, we express η̇ in terms of the other three variables and then substituting them in the equations 
of motion for each occurrence of η̇, we reduce the phase space to a 3− D 

(

ξ , η, ξ̇
)

 the subspace of the original 
4− D . We repeat the action each time the orbit passes through the surface of the section plane with positive η̇ 
to determine the remaining variables 

(

ξ , ξ̇
)

.
As good analytical tools, many kinds of research are carried out using PSS. In the Circular Restricted Three-

Body Problem, Singh and Leke7 employed PSS to establish the stability of the motion of a passively gravitating 
dust grain particle in the gravitational field of two big stars. Abduljabar et al.34 used oblateness and solar radia-
tion in their work, drawing PSS in the presence and absence of oblateness. Their results reveal that oblateness 
has little influence, but the PSS shrinks in the presence and lack of solar radiation pressure. Poincare Surface of 
Section (PSS) using different values of the variation constant (�1 = 0.2, 0.6, 1) were observed by Ansari et al.35, 
their results confirmed that when the value of �1 increases, the surfaces PSS are shrinking for ξǫ(0.05, 0.17) . In 
the circular restricted problem of three bodies, Singh and Tyokyaa33 used PSS to show the sensitivity to changes 
in the positions and velocities of triangular libration points.

In our present study, we assume ξ = x1, η = x2, ξ̇ = x3, η̇ = x4 and we then reduce the two-second order 
differential equations of motion given in Eq. (1) to the first-order differential equations as in Eq. (21).

Figures 14, 15, 16 and 17 show the stability behavior of periodic and quasi-periodic orbits around the prima-
ries for the Earth–Moon system using the software MATHEMATICA.

The stability behavior of periodic and quasi-periodic orbits around the primary for the Earth–Moon system has 
been graphically depicted using the Poincare Surface of Section (PSS) (see Figs. 14, 15, 16 and 17). As represented 
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Table 7.   Stability of triangular libration points for the Earth–Moon system (µ = 0.01215,A = 0.0000003686,

e = 0.0549, γ = −0.0004527,T = 0.01).

Case α k σ1 σ2 Mb

Stability of triangular libration points

Remarks±�1,2 ±�3,4

1 0 0 0 0 0 −0.720323± 0.720323i 0.72032± 0.720323i Unstable

2 0.5 0 0 0 0 −0.723404± 0.723404i 0.723404± 0.723404i Unstable

3

0.5 0.05 0 0 0 −0.766827± 0.766827i 0.766827± 0.766827i Unstable

0.5 0.10 0 0 0 −0.779785± 0.779785i 0.779785± 0.779785i Unstable

0.5 0.15 0 0 0 −0.792128± 0.792128i 0.792128± 0.792128i Unstable

4

0.5 0.05 0.03 0 0 −0.754309± 0.754309i 0.754309± 0.754309i Unstable

0.5 0.10 0.04 0 0 −0.755436± 0.755436i 0.755436± 0.755436i Unstable

0.5 0.15 0.05 0 0 −0.756559± 0.756559i 0.756559± 0.756559i Unstable

5

0.5 0.05 0.03 0.01 0 −0.758993± 0.758993i 0.758993± 0.758993i Unstable

0.5 0.10 0.04 0.02 0 −0.754227± 0.754227i 0.754227± 0.754227i Unstable

0.5 0.15 0.05 0.03 0 −0.738241± 0.738241i 0.738241± 0.738241i Unstable

6

0.050 0 0 0 0.2 −0.719126± 0.719126i 0.719126± 0.719126i Unstable

0.045 0 0 0 0.4 −0.717579± 0.717579i 0.717579± 0.717579i Unstable

0.040 0 0 0 0.6 −0.716021± 0.716021i 0.716021± 0.716021i Unstable

7

0.050 0.05 0.03 0.01 0.2 −0.723505± 0.723505i 0.723505± 0.723505i Unstable

0.045 0.10 0.04 0.02 0.4 −0.721263± 0.721263i 0.721263± 0.721263i Unstable

0.040 0.15 0.05 0.03 0.6 −0.718126± 0.718126i 0.718126± 0.718126i Unstable
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in Fig. 14, when we have considered varying parameters (σ1 = 0.15, σ2 = 0.003,α = 0.015, k = 3,Mb = 0.03) 
with initial conditions (1, 1, 0.5, 0.5), the system possessed two closed-packed layers of onion shape-like orbits 
with a concentrated number of points in the second layer. We have observed a similar behavior of the orbits 
in Fig. 15 when we have considered the initial conditions (0.5, 0.5, 1, 1) with varying values of parameters 
(σ1 = 0.25, σ2 = 0.005,α = 0.025, k = 5,Mb = 0.05) . As the initial conditions changed, the system formed three 
spaced layers of onion shape-like orbits, with the inner one having a thick meshed point-like shape (see Fig. 15).

As shown in Fig. 16, the system exhibits irregular merged-points onion shape when the initial conditions 
(0.5, 0.5, 1, 1) are changed to (0.5, 0.5, − 1, − 1) with the same values of parameters as in Fig. 15. Then, the three 
layers of onion shape like a Different scenario are observed in Fig. 17 when the semi-major axis and Eccentric-
ity of the orbits are altered with the same initial conditions as in Fig. 16. As demonstrated in Fig. 17, the system 
possessed irregular star-like shape orbits around the primaries.

Generally, we have observed that the system’s behavior has changed significantly with a bit of change in the 
initial conditions, the semi-major axis, and the Eccentricity of the orbits. We witnessed a chaotic dynamical 
behavior of the system resulting in either regular or irregular orbits.

Conclusions
Our study investigates the effects of Albedo in the elliptic restricted three-body problem under an oblate primary, 
a triaxial secondary, and a potential due to belt for the Earth–Moon system. Analytically, we have described 
the locations of triangular points and their stability in Eqs. 1- 4, 6, 9, 10, 15, 20, and 21. The numerical data 
of Table 1 shows that there are no black bodies in our solar systems as all the Albedo values of the planets are 
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Figure 14.   The PSS for the Earth–Moon system with µ = 0.01215,A = 0.0000003686, e = 0.0549,

a = 1.000453,T = 0.01, σ1 = 0.15, σ2 = 0.003,α = 0.015, k = 3,Mb = 0.03.
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Figure 15.   The PSS for the Earth–Moon system with µ = 0.01215,A = 0.0000003686, e = 0.0549,

a = 1.000453,T = 0.01, σ1 = 0.25, σ2 = 0.005,α = 0.025, k = 5,Mb = 0.05.
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greater than zero. The numerical data of Tables 2 and 3 are used to demonstrate the zero velocity curves (ZVC) 
for the problem under study. As observed in Figs. 3 and 4, when the Albedo effects of both primaries, triaxiality 
of the smaller primary, and the potential due to the belt of the system increase with an increase in the Jacobian 
constant C , the two smaller obits merged to form a smaller region in between the two major regions resulting 
to three isolated possible regions.

The movements of the primary regions, as observed in Fig. 5 for the system under review, depend on the 
values of the Jacobian constant C and the parameters involved. This is because the possible boundary regions 
of the primary get closer to each other as the Jacobian constant value increases with the perturbed parameters, 
allowing particles to travel freely from one zone to another and possibly merge the permissible regions.

We have observed from our study that the formation of these equilibrium points depends on the system 
parameters (Mass ratio (µ) , Eccentricity (e) , Semi-major axis (a) , Oblateness (A) , Albedo (α and β), Triaxiality (α1 
and α2) and the Potential due to belt (Mb) ) of the problem under study. Our study shows that as the parameters 
increase, the position L4 and L5 move towards the origin for cases 1, 2, 3, and 4 and away from it for cases 5, 6, 
and 7 for the Earth–Moon system (see Table 4 and Fig. 9).

Considering the range 0 < µ < µc for stable libration points and µc ≤ µ ≤ 1
2 for unstable libration points, 

our study has established that the triangular libration points are stable and unstable for cases 1, 2, and 6 and 
cases 3, 4, 5, and 7, respectively (see Table 5). As presented in Table 7, there is at least one complex root with a 
positive real part for each set of values. Hence, the triangular libration points for the Earth–Moon system are 
unstable in the sense of Lyapunov.

Generally, we have observed that the system’s behavior has changed significantly with a bit of change in the 
initial conditions, the semi-major axis, and the Eccentricity of the orbits. In addition, it is also observed that a 
chaotic dynamical behavior of the system results in either regular or irregular orbits.
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Figure 16.   The PSS for the Earth–Moon system with µ = 0.01215,A = 0.0000003686, e = 0.0549,

a = 1.000453,T = 0.01, σ1 = 0.30, σ2 = 0.006,α = 0.06, k = 6,Mb = 0.06.
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Figure 17.   The PSS for the Earth–Moon system with µ = 0.01215,A = 0.0000003686, e = 0.549,

a = 1.0453,T = 0.01, σ1 = 0.30, σ2 = 0.006,α = 0.06, k = 6,Mb = 0.06.
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