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Comparison of various machine 
learning algorithms used 
for compressive strength prediction 
of steel fiber‑reinforced concrete
Seyed Soroush Pakzad , Naeim Roshan  & Mansour Ghalehnovi *

Adding hooked industrial steel fibers (ISF) to concrete boosts its tensile and flexural strength. 
However, the understanding of ISF’s influence on the compressive strength (CS) behavior of concrete 
is still questioned by the scientific society. The presented paper aims to use machine learning (ML) and 
deep learning (DL) algorithms to predict the CS of steel fiber reinforced concrete (SFRC) incorporating 
hooked ISF based on the data collected from the open literature. Accordingly, 176 sets of data are 
collected from different journals and conference papers. Based upon the initial sensitivity analysis, the 
most influential parameters like water‑to‑cement (W/C) ratio and content of fine aggregates (FA) tend 
to decrease the CS of SFRC. Meanwhile, the CS of SFRC could be enhanced by increasing the amount 
of superplasticizer (SP), fly ash, and cement (C). The least contributing factors include the maximum 
size of aggregates  (Dmax) and the length‑to‑diameter ratio of hooked ISFs (L/DISF). Several statistical 
parameters are also used as metrics to evaluate the performance of implemented models, such as 
coefficient of determination  (R2), mean absolute error (MAE), and mean of squared error (MSE). 
Among different ML algorithms, convolutional neural network (CNN) with  R2 = 0.928, RMSE = 5.043, 
and MAE = 3.833 shows higher accuracy. On the other hand, K‑nearest neighbor (KNN) algorithm with 
 R2 = 0.881, RMSE = 6.477, and MAE = 4.648 results in the weakest performance.

ML is a computational technique destined to simulate human intelligence and speed up the computing procedure 
by means of continuous learning and evolution. ML techniques have been effectively implemented in several 
industries, including medical and biomedical equipment, entertainment, finance, and engineering applications. 
ML can be used in civil engineering in various fields such as infrastructure development, structural health 
monitoring, and predicting the mechanical properties of materials. More specifically, numerous studies have 
been conducted to predict the properties of  concrete1–7

One of the drawbacks of concrete as a fragile material is its low tensile strength and strain capacity. Hence, 
various types of fibers are added to increase the tensile load-bearing capability of concrete. To generate fiber-
reinforced concrete (FRC), used fibers are typically short, discontinuous, and randomly dispersed throughout 
the concrete  matrix8. Until now, fibers have been used mainly to improve the behavior of structural elements 
for serviceability purposes. However, the addition of ISF into the concrete and producing the SFRC may also 
provide additional strength capacity or act as the primary reinforcement in structural elements. Nowadays, For 
the production of prefabricated and in-situ concrete structures, SFRC is gaining acceptance such as (a) second-
ary reinforcement for temporary load scenarios, arresting shrinkage cracks, limiting micro-cracks occurring 
during transportation or installation of precast members (like tunnel lining segments), (b) partial substitution 
of the conventional reinforcement, i.e., hybrid reinforcement systems, and (c) total replacement of the typical 
reinforcement in compression-exposed elements, e.g., thin-shell structures, ground-supported slabs, foundations, 
and tunnel  linings9. Unquestionably, one of the barriers preventing the use of fibers in structural applications 
has been the difficulty in calculating the FRC properties (especially CS behavior) that should be included in 
current design  techniques10.

Accordingly, many experimental studies were conducted to investigate the CS of SFRC. Han et al.11 reported 
that the length of the ISF  (LISF) has an insignificant effect on the CS of SFRC. Setti et al.12 also introduced ISF 
with different volume fractions  (VISF) to the concrete and reported the improvement of CS of SFRC by increas-
ing the content of ISF. Zhu et al.13 noticed a linearly increase of CS by increasing  VISF from 0 to 2.0%. Despite 
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the enhancement of CS of normal strength concrete incorporating ISF, no significant change of CS is obtained 
for high-performance concrete mixes by increasing  VISF

14,15. This highlights the role of other mix’s components 
(like W/C ratio, aggregate size, and cement content) on CS behavior of SFRC. Therefore, owing to the difficulty 
of CS prediction through linear or nonlinear regression analysis, data-driven models are put into practice for 
accurate CS prediction of SFRC.

Recently, ML algorithms have been widely used to predict the CS of concrete. For instance, numerous 
 studies1–3,7,16,17 have been conducted for predicting the mechanical properties of normal concrete (NC). Evidently, 
SFRC comprises a bigger number of components than NC including  LISF, L/DISF, fiber type, diameter of ISF  (DISF) 
and the tensile strength of ISFs. In this regard, developing the data-driven models to predict the CS of SFRC is 
a comparatively novel approach. Kang et al.18 collected a datasets containing 7 features  (VISF and L/DISF as the 
properties of fibers) and developed 11 various ML techniques and observed that the tree-based models had the 
best performance in predicting the CS of SFRC. Also, it was concluded that the W/C ratio and silica fume content 
had the most impact on the CS of SFRC. Mahesh et al.19 used ML algorithms on a 140-raw dataset considering 
8 different features  (LISF,  VISF, and L/DISF as the fiber properties) and concluded that the artificial neural network 
(ANN) had the best performance in predicting the CS of SFRC with a regression coefficient of 0.97. Moreover, in 
a study conducted by Awolusi et al.20 only 3 features (L/DISF as the fiber properties) were considered, and ANN 
and the genetic algorithm models were implemented to predict the CS of SFRC. It was observed that overall, the 
ANN model outperformed the genetic algorithm in predicting the CS of SFRC.

According to the presented literature, the scientific community is still uncertain about the CS behavior of 
SFRC. In addition, the studies based on ML techniques that have been done to predict the CS of SFRC are limited 
since it is difficult to collect inclusive experimental data to develop models regarding all contributing features 
(such as the properties of fibers, aggregates, and admixtures). Hence, the presented study aims to compare 
various ML algorithms for CS prediction of SFRC based on all the influential parameters. For this purpose, 
176 experimental data containing 11 features of SFRC are gathered from different journal papers. The primary 
sensitivity analysis is conducted to determine the most important features. Therefore, based on expert opinion 
and primary sensitivity analysis, two features (length and tensile strength of ISF) were omitted and only nine 
features were left for training the models. Then, nine well received ML algorithms are developed on the data 
and different metrics were used to evaluate the performance of these algorithms. Also, to prevent overfitting, 
the leave-one-out cross-validation method (LOOCV) is implemented, and 8 different metrics are used to assess 
the efficiency of developed models.

Material and method
Data collection. The SFRC mixes containing hooked ISF and their 28-day CS (tested by 150 mm cubic sam-
ples) were collected from the  literature11,13,21–33. Some of the mixes were eliminated due to comprising recycled 
steel fibers or the other types of ISFs (such as smooth and wavy). Moreover, some others were omitted because 
of lacking the information of mixing components (such as FA, SP, etc.). Eventually, 63 mixes were omitted and 
176 mixes were selected for training the models in predicting the CS of SFRC. All these mixes had some features 
such as  DMAX, the amount of ISF (ISF), L/DISF, C, W/C ratio, coarse aggregate (CA), FA, SP, and fly ash as input 
parameters (9 features). Also, the CS of SFRC was considered as the only output parameter.

Compare the correlation between the variables. The correlation of all parameters with each other 
(pairwise correlation) can be seen in Fig. 1. Also, Fig. 2 illustrates the correlation between input parameters and 
the CS of SFRC.

Figure 1.  pair-wise correlation between variables.
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The correlation coefficient ( R ) is a statistical measure that shows the strength of the linear relationship 
between two sets of data. Equation (1) is the covariance between two variables ( COVXY ) divided by their standard 
deviations ( σX , σY ). R shows the direction and strength of a two-variable relationship. The linear relationship 
between two variables is stronger if R is close to + 1.00 or − 1.00.

As can be seen in Fig. 2, it is obvious that the CS increased with increasing the SP (R = 0.792) followed by fly 
ash (R = 0.688) and C (R = 0.501). Whereas, it decreased by increasing the W/C ratio (R = − 0.786) followed by 
FA (R = − 0.521). However, the CS of SFRC was insignificantly influenced by  DMAX, CA, and properties of ISF 
(ISF, L/DISF). The same results are also reported by Kang et al.18.

Calibration. Statistical characteristics of input parameters, including the minimum, maximum, average, and 
standard deviation (SD) values of each parameter, can be observed in Table 1.

(1)RXY =
COVXY

σXσY

Figure 2.  Correlation between numeric variables.
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According to Table 1, input parameters do not have a similar scale. Therefore, the data needs to be normal-
ized to avoid the dominance effect caused by magnitude differences among input  parameters34. Normalization 
is a data preparation technique that converts the values in the dataset into a standard scale. It is essential to note 
that, normalization generally speeds up learning and leads to faster convergence. consequently, the max–min 
normalization method is adopted to reshape all datasets to a range from 0 to 1 using Eq. (2) as follows:

Evaluation metrics. In some  studies34–37, several metrics were used to sufficiently evaluate the performed 
models and compare their robustness. Accordingly, several statistical parameters such as  R2, MSE, mean abso-
lute percentage error (MAPE), root mean squared error (RMSE), average bias error (MBE), t-statistic test  (Tstat), 
and scatter index (SI) were used.  R2 is a metric that demonstrates how well a model predicts the value of a 
dependent variable and how well the model fits the data. Various orders of marked and unmarked errors in pre-
dictions are demonstrated by MSE, RMSE, MAE, and  MBE6. MAPE is a scale-independent measure that is used 
to evaluate the accuracy of algorithms.  TStat and SI are the non-dimensional measures that capture uncertainty 
levels in the step of prediction. SI is a standard error measurement, whose smaller values indicate superior model 
performance. Evaluation metrics can be seen in Table 2, where N , yi , y′i , and y represent the total amount of data, 
the true CS of the sample ith , the estimated CS of the sample ith , and the average value of the actual strength 
values, respectively.

Validation methods. To avoid overfitting, the dataset was split into train and test sets, with 80% of the data 
used for training the model and 20% for testing. Also, a specific type of cross-validation (CV) algorithm named 
LOOCV (Fig. 3) was used to validate the data and adjust the hyperparameters. In LOOCV, the number of folds 
is equal the number of instances in the dataset (n = 176).

(2)xnorm =
x − xmin

xmax − xmin

Table 1.  Feature descriptions of SFRC mix proportions.

Parameters Minimum Maximum Mean SD

Dmax (mm) 9.50 40.00 19.63 7.61

ISF (kg/m3) 0.00 157.00 70.44 49.84

L/D ISF 0.00 80.00 45.83 24.45

C (kg/m3) 150.00 598.00 405.38 87.09

W/C 0.29 0.59 0.47 0.09

CA (kg/m3) 632.00 2092.00 1036.23 164.62

FA (kg/m3) 0.00 1172.00 750.93 131.03

SP (kg/m3) 0.00 5.21 1.42 1.79

Fly-ash (kg/m3) 0.00 150.00 28.04 49.48

Table 2.  Metrics used to evaluate performance of given machine learning models.

Metric Formula Description

R2 1−

N
∑

i=1

(yi−y′i )
2

N
∑

i=1

(yi−yi)
2

Coefficient of determination

MSE 1

N

N
∑

i=1

(yi − y′i)
2 Mean squared error

RMSE

√

1

N

N
∑

i=1

(yi − y′i)
2 Root mean squared error

MAE 1

N

N
∑

i=1

∣

∣yi − y′i
∣

∣ Mean absolute error

MAPE 1

N

N
∑

i=1

∣

∣

∣

yi−y′i
yi

∣

∣

∣ Mean absolute percentage error

MBE 1

N

N
∑

i=1

(yi − y′i) Mean bias error

Tstat

√

(N−1)MBE2

RMSE2−MBE2
t-statistic test

SI RMSE
Mean(yi)

Scatter index



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3646  | https://doi.org/10.1038/s41598-023-30606-y

www.nature.com/scientificreports/

Implemented algorithms. As can be seen in Table 3, nine different algorithms were implemented in this 
research, including MLR, KNN, SVR, RF, GB, XGB, AdaBoost, ANN, and CNN.

MLR is the most straightforward supervised ML algorithm for solving regression problems. Due to its sim-
plicity, this model has been used to predict the CS of concrete in numerous  studies6,18,38,39. MLR predicts the 
value of the dependent variable ( y ) based on the value of the independent variable ( x ) by establishing the linear 
relationship between inputs (independent parameters) and output (dependent parameter) based on Eq. (3):

where ŷ , xn , and α are the dependent parameter, independent parameter, and bias,  respectively18.
The KNN method is a simple supervised ML technique that can be utilized in order to solve both classification 

and regression problems. This algorithm attempts to determine the value of a new point by exploring a collection 
of training sets located  nearby40. This algorithm first calculates K neighbors’ euclidean distance. Then, among K 
neighbors, each category’s data points are counted. Finally, the model is created by assigning the new data points 
to the category with the most neighbors.

SVR model (as can be seen in Fig. 4) has also been used to predict the CS of  concrete41,42. SVR is considered 
as a supervised ML technique that predicts discrete values. In fact, SVR tries to determine the best fit line. The 
best-fitting line in SVR is a hyperplane with the greatest number of points. The primary rationale for using an 
SVR is that the problem may not be separable linearly. In these cases, an SVR with a non-linear kernel (e.g., a 
radial basis function) is used. In SVR, {xi , yi}, i = 1, 2, ..., k is the training set, where xi and yi are the input and 
output values, respectively. Moreover, the regression function is y = �α, x� + β and the aim of SVR is to flat the 
function as more as  possible18.

(3)ŷ = α0 + α1x1 + α2x2 + · · · + αnxn

Iteration 1/N Iteration 2/N Iteration 3/N Iteration N/N

Train Set
Test Set

Figure 3.  Leave-one-out cross-validation method.

Table 3.  Applied models and their hyperparameters.

No. Method Details of hyperparameters

1 Multiple Linear Regression (MLR) –

2 Random Forest (RF) Number of estimators = 100; Maximum depth = 2

3 K Nearest Neighbors (KNN) Algorithm = auto; leaf size = 40; number of jobs = − 1; number of 
neighbors = 7; p = 1; wights = uniform

4 Support Vector Regression (SVR) Kernel = Radial Basis Function; C = 100; Gamma = 0.1; Epsilon = 0.01

5 Gradient Boosting (GB) Number of estimators = 300; maximum depth = 3; learning rate = 0.01

6 Extreme Gradient Boosting (XGB) Number of estimators = 500; maximum depth = 2; learning rate = 0.01; 
objective = squared error

7 Adaptive Boosting (AdaBoost) Number of estimators = 200; learning rate = 1

8 Artificial Neural Network (ANN)

Architecture = Input: 9, 72, 72, 72, Output: 1
Dropout layers: 0.2, 0.2, 0.2, 0.2
Optimizer: Adam (Learning Rate: 0.01)
Loss: Mean Squared Error
Activation Function = (Hidden Layer: ReLU, Output Layer: Sigmoid)
Batch Size: 20, Epochs: 50

9 Convolutional Neural Network (CNN)

Architecture: filter size layer one = 128; kernel size layer one = 2; max 
pooling size layer one = 2;
Filter size layer two = 64; kernel size layer two = 2; max pooling size 
layer two = 2;
Filter size layer three = 16; kernel size layer three = 2; average pooling 
size layer three = 2;
Flatten layer neurons = 100; dropout layer (after flatten layer) = 0.2; 
learning rate = 0.01; batch size = 50; epochs = 20;
Optimizer = Adam; loss function = mean squared error, activation 
function = ReLU

The hyper-parameters were adjusted using Grid Search and Random Search technique
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All tree-based models can be applied to regression (predicting numerical values) or classification (predicting 
categorical values) problems. In the current research, tree-based models (GB, XGB, RF, and AdaBoost) were used 
to predict the CS of SFRC. Among these techniques, AdaBoost is the most straightforward boosting algorithm 
that is based on the idea that a very accurate prediction rule can be made by combining a lot of less accurate 
 regulations43. Moreover, GB is an AdaBoost development model, a meta-estimator that consists of many sequen-
tial decision trees that uses a step-by-step method to build an additive  model6. XGB makes GB more regular and 
controls overfitting by increasing the  generalizability6. RF consists of many parallel decision trees and calculates 
the average of fitted models on different subsets of the dataset to enhance the prediction  accuracy6.

The use of an ANN algorithm (Fig. 5) as a powerful tool for estimating the CS of concrete is now well-
known6,38,44,45. The brain’s functioning is utilized as a foundation for the development of  ANN6. ANN can be used 
to model complicated patterns and predict problems. ANN model consists of neurons, weights, and activation 
 functions18. the input values are weighted and summed using Eq. (4).

where xi ,wij , netj , and b are the input values, the weight of each signal, the weighted sum of the jth neuron, and 
bias,  respectively18. In the current study, The ANN model was made up of one output layer and four hidden 
layers with 50, 150, 100, and 150 neurons each. There is a dropout layer after each hidden layer (The dropout 
layer sets input units to zero at random with a frequency rate at each training step, hence preventing overfitting). 
Adam was selected as the optimizer function with a learning rate of 0.01. It is essential to point out that the MSE 
approach was used as a loss function throughout the optimization process. Table 3 shows the results of using a 
grid and a random search to tune the other hyperparameters.

In recent years, CNN algorithm (Fig. 6) has been increasingly used to predict the CS of  concrete34,46–49. CNN 
model is a new architecture for DL which is comprised of several layers that process and transform an input to 
produce an output. In the current study, the architecture used was made up of a one-dimensional convolutional 
layer, a one-dimensional maximum pooling layer, a one-dimensional average pooling layer, and a fully-connected 
layer. Moreover, the ReLU was used as the activation function for each convolutional layer and the Adam func-
tion was employed as an optimizer. Table 3 displays the modified hyperparameters of each convolutional, flatten, 
hidden, and pooling layer, including kernel and filter size and learning rate.

(4)netj =

n
∑

i=1

wijxi + b

Figure 4.  Support vector regression model.

Figure 5.  Artificial neural network model.
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Tune hyperparameters. To adjust the validation set’s hyperparameters, random search and grid search 
algorithms were used. Table 3 provides the detailed information on the tuned hyperparameters of each model. 
The presented work uses Python programming language and the TensorFlow platform, as well as the Scikit-learn 
package.

Result and discussion
The CS of SFRC was predicted through various ML techniques as is described in section "Implemented algo-
rithms". The predicted values were compared with the actual values to demonstrate the feasibility of ML algo-
rithms (Fig. 7). As can be seen in Table 4, the performance of implemented algorithms was evaluated using 
various metrics.

As the simplest ML technique, MLR was implemented to predict the CS of SFRC and showed  R2 of 0.888, 
RMSE of 6.301, and MAE of 5.317. Al-Abdaly et al.50 reported that MLR algorithm (with  R2 = 0.64, RMSE = 8.68, 
MAE = 5.66) performed poorly in predicting the CS behavior of SFRC. Khademi et al.51 used MLR to predict the 
CS of NC and found that it cannot be considered an accurate model (with  R2 = 0.518). Moreover, according to the 
results reported by Kang et al.18, it was shown that using MLR led to a significant difference between actual and 
predicted values for prediction of SFRC’s CS (RMSE = 12.4273, MAE = 11.3765). Hameed et al.52 developed an 
MLR model to predict the CS of high-performance concrete (HPC) and noted that MLR had a poor correlation 
between the actual and predicted CS of HPC (R = 0.789, RMSE = 8.288). Therefore, based on MLR performance 
in the prediction CS of SFRC and consistency with previous studies (in using the MLR to predict the CS of NC, 
HPC, and SFRC), it was suggested that, due to the complexity of the correlation between the CS and concrete 
mix properties, linear models (such as MLR) could not explain the complicated relationship among independent 
variables. So, more complex ML models such as KNN, SVR tree-based models, ANN, and CNN were proposed 
and implemented to study the CS of SFRC.

KNN  (R2 = 0.881, RMSE = 6.477, MAE = 4.648) showed lower accuracy compared with MLR in predicting the 
CS of SFRC. Kang et al.18 observed that KNN predicted the CS of SFRC with a great difference between actual 
and predicted values. Asadi et al.6 also reported that KNN performed poorly in predicting the CS of concrete 
containing waste marble powder. Moreover, the CS of rubberized concrete was predicted using KNN algorithm 
by Hadzima-Nyarko et al.53, and it was reported that KNN might not be appropriate for estimating the CS of 
concrete containing waste rubber (RMSE = 8.725, MAE = 5.87). Therefore, according to the KNN results in pre-
dicting the CS of SFRC and compatibility with previous studies (in using the KNN in predicting the CS of various 
concrete types), it was observed that like MLR, KNN technique could not perform promisingly in predicting the 
CS of SFRC. This can refer to the fact that KNN considers all characteristics equally, even if they all contribute 
differently to the CS of  concrete6.

Compared to the previous ML algorithms (MLR and KNN), SVR’s performance was better  (R2 = 0.918, 
RMSE = 5.397, MAE = 4.559). Also, a significant difference between actual and predicted values was reported by 
Kang et al.18 in predicting the CS of SFRC (RMSE = 18.024). For the prediction of CS behavior of NC, Kabirvu 
et al.5 implemented SVR, and observed that SVR showed high accuracy (with  R2 = 0.97). Whereas, Koya et al.39 
and Li et al.54 reported that SVR showed a high difference between experimental and anticipated values in 
predicting the CS of NC. Based on the results obtained from the implementation of SVR in predicting the CS 
of SFRC and outcomes from previous studies in using the SVR to predict the CS of NC and SFRC, it was con-
cluded that in some research, SVR demonstrated acceptable performance. In contrast, others reported that SVR 
showed weak performance in predicting the CS of concrete. This can be due to the difference in the number of 
input parameters.

Based upon the results in this study, tree-based models performed worse than SVR in predicting the CS of 
SFRC. However, it is worth noting that their performance in predicting the CS of SFRC was superior to that of 
KNN and MLR. Among these tree-based models, AdaBoost (with  R2 = 0.888, RMSE = 6.29, MAE = 4.433) and 
XGB (with  R2 = 0.901, RMSE = 5.929, MAE = 4.288) were the weakest and strongest models in predicting the CS of 

Figure 6.  Convolutional neural network model.
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Figure 7.  Performance of implimented algorithms in predicting CS of steel fiber-reinforced sconcrete (SFRC).

Table 4.  Performance parameters of applied models (Test set).

No. Method R2 MSE RMSE MAPE MBE MAE Tstat SI

1 MLR 0.888 39.700 6.301 0.115 2.036 5.317 4.041 0.115

2 RF 0.894 37.489 6.123 0.094 − 3.372 4.430 7.806 0.112

3 KNN 0.881 41.950 6.477 0.086 3.337 4.648 7.112 0.119

4 SVR 0.918 29.126 5.397 0.102 1.210 4.559 2.723 0.099

5 GB 0.893 37.801 6.148 0.082 − 2.469 4.089 5.189 0.113

6 XGB 0.901 35.151 5.929 0.083 − 0.928 4.288 1.876 0.109

7 AdaBoost 0.888 39.560 6.290 0.092 − 2.606 4.431 5.388 0.115

8 ANN 0.896 36.680 6.056 0.093 1.057 4.383 2.097 0.111

9 CNN 0.928 25.432 5.043 0.078 − 1.757 3.833 4.398 0.092
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SFRC, respectively. As is reported by Kang et al.18, among implemented tree-based models, XGB performed supe-
riorly in predicting the CS of SFRC. Al-Abdaly et al.50 also reported that RF  (R2 = 0.88, RMSE = 5.66, MAE = 3.8) 
performed better than MLR  (R2 = 0.64, RMSE = 8.68, MAE = 5.66) in predicting the CS of SFRC. Khan et al.55 
also reported that RF  (R2 = 0.96, RMSE = 3.1) showed more acceptable outcomes than XGB and GB with, an  R2 of 
0.9 and 0.95 in the prediction CS of SFRC, respectively. Moreover, Nguyen-Sy et al.56 and Rathakrishnan et al.57, 
after implementing the XGB, noted that the XGB was the best model for predicting the CS of NC. Therefore, 
based on tree-based technique outcomes in predicting the CS of SFRC and compatibility with previous studies 
in using tree-based models for predicting the CS of various concrete types (SFRC and NC), it was concluded 
that tree-based models (especially XGB) showed good performance.

It was observed that ANN (with  R2 = 0.896, RMSE = 6.056, MAE = 4.383) performed better than MLR, KNN, 
and tree-based models (except XGB) in predicting the CS of SFRC, but its accuracy was lower than the SVR and 
XGB (in both validation and test sets) techniques. Mahesh et al.19 noted that after tuning the model (number 
of hidden layers = 20, activation function = Tansin Purelin), ANN showed superior performance in predicting 
the CS of SFRC  (R2 = 0.95). Karahan et al.58 implemented ANN with the Levenberg–Marquardt variant as the 
backpropagation learning algorithm and reported that ANN predicted the CS of SFRC accurately  (R2 = 0.96). 
Asadi et al.6 also used ANN in estimating the CS of NC containing waste marble powder (LOOCV was used 
to tune the hyperparameters) and reported that in the validation set, ANN was unable to reach an  R2 as high 
as GB and XGB. However, ANN performed accurately in predicting the CS of NC incorporating waste marble 
powder  (R2 = 0.97) in the test set. Finally, it is observed that ANN performs weaker than SVR and XGB in terms 
of  R2 in the validation set due to the non-convexity of the multilayer perceptron’s loss surface. Consequently, it 
is frequently required to locate a local maximum near the global  minimum59. Hence, After each model training 
session, hold-out sample generalization may be poor, which reduces the  R2 on the validation set 6. However, it 
is suggested that ANN can be utilized to predict the CS of SFRC.

Eventually, among all developed ML algorithms, CNN (with  R2 = 0.928, RMSE = 5.043, MAE = 3.833) dem-
onstrated superior performance in predicting the CS of SFRC. In comparison to the other discussed methods, 
CNN was able to accurately predict the CS of SFRC with a significantly reduced dispersion degree in the fig-
ures displaying the relationship between actual and expected CS of SFRC. Using CNN modelling, Chen et al.34 
reported that CNN could show excellent performance in predicting the CS of the SFRS and NC. Deng et al.47 
also observed that CNN was better at predicting the CS of recycled concrete (average relative error = 3.65) than 
other methods. Finally, results from the CNN technique were consistent with the previous studies, and CNN 
performed efficiently in predicting the CS of SFRC.

Table 4 indicates the performance of ML models by various evaluation metrics. It is observed that in com-
parison models with  R2, MSE, RMSE, and SI, CNN shows the best result in predicting the CS of SFRC, followed 
by SVR, and XGB. In contrast, KNN shows the worst performance among developed ML models in predicting 
the CS of SFRC. Comparing implemented ML algorithms in terms of  Tstat, it is observed that XGB shows the 
best performance, followed by ANN and SVR in predicting the CS of SFRC. However, regarding the  Tstat, the 
outcomes show that CNN performance was approximately 58% lower than XGB. Comparing ML models with 
regard to MAE and MAPE, it is seen that CNN performs superior in predicting the CS of SFRC, followed by GB 
and XGB. On the other hand, MLR shows the highest MAE in predicting the CS of SFRC. In terms MBE, XGB 
achieved the minimum value of MBE, followed by ANN, SVR, and CNN.

Figure 8 depicts the variability of residual errors (actual CS–predicted CS) for all applied models. If there is 
a lower fluctuation in the residual error and the residual errors fluctuate around zero, the model will perform 
better. Therefore, as can be perceived from Fig. 8, the SVR had the most outstanding performance and the least 
residual error fluctuation rate, followed by RF. In contrast, the XGB and KNN had the most considerable fluctua-
tion rate. In addition, CNN achieved about 28% lower residual error fluctuation than SVR.

As shown in Fig. 9, the minimum and maximum interquartile ranges (IQRs) belong to AdaBoost and MLR, 
respectively. In terms of comparing ML algorithms with regard to IQR index, CNN modelling showed an error 

Figure 8.  Fluctuations of errors (Actual CS–predicted CS) for different algorithms.
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dispersion about 31% lower than SVR technique. Moreover, CNN and XGB’s prediction produced two more 
outliers than SVR, RF, and MLR’s residual errors (zero outliers). Meanwhile, AdaBoost predicted the CS of SFRC 
with a broader range of errors.

Figure 10 also illustrates the normal distribution of the residual error of the suggested models for the predic-
tion CS of SFRC. If a model’s residual error distribution is closer to the normal distribution, there is a greater 
likelihood of prediction mistakes occurring around the mean  value6. Based on this, CNN had the closest distri-
bution to the normal distribution and produced the best results for predicting the CS of SFRC, followed by SVR 
and RF. Overall, it is possible to conclude that CNN produces more accurate predictions of the CS of SFRC with 
less uncertainty, followed by SVR and XGB.

Sensitivity analysis. The sensitivity analysis investigates the importance’s magnitude of input parameters 
regarding the output parameter. The feature importance of the ML algorithms was compared in Fig. 11. The 
sensitivity analysis demonstrated that, among different input variables, W/C ratio, fly ash, and SP had the most 
contributing effect on the CS behavior of SFRC, followed by the amount of ISF. Among these parameters, W/C 
ratio was commonly found to be the most significant parameter impacting the CS of SFRC (as the W/C ratio 
increases, the CS of SFRC will be increased). Knag et al.18 reported that silica fume, W/C ratio, and  DMAX are 
the most influential parameters that predict the CS of SFRC. Also, the characteristics of ISF  (VISF, L/DISF) have a 
minor effect on the CS of SFRC. Li et al.54 noted that the CS of SFRC increased with increasing amounts of C and 
silica fume, and decreased with increasing amounts of water and SP. Therefore, based on the sensitivity analysis, 
the ML algorithms for predicting the CS of SFRC can be deemed reasonable.

Parametric analysis. A parametric analysis was carried out to determine how well the developed ML algo-
rithms can predict the effect of various input parameters on the CS behavior of SFRC. To perform the parametric 
analysis to analyze the influence of one specific parameter (for example, W/C ratio) on the predicted CS of SFRC, 
the actual values of that parameter (W/C ratio) were considered, while the mean values for all the other input 
parameters values were introduced. The implemented procedure was repeated for other parameters as well, con-
sidering the three best-performed algorithms, which are SVR, XGB, and ANN. This method has also been used 
in other research works like the one Khan et al.60 did. The result of this analysis can be seen in Fig. 12.

As shown in Fig. 12, the W/C ratio is the parameter that intensively affects the predicted CS. In other words, 
the predicted CS decreases as the W/C ratio increases. Generally, the developed ML models can accurately pre-
dict the effect of the W/C ratio on the predicted CS. Moreover, among the three proposed ML models here, SVR 

Figure 9.  Distributions of errors in MPa (Actual CS–Predicted CS) for several methods.

Figure 10.  Normal distribution of errors (Actual CS–Predicted CS) for different methods.
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demonstrates superior performance in estimating the influence of the W/C ratio on the predicted CS of SFRC 
with a correlation of R = − 0.999, followed by CNN with a correlation of R = − 0.96. The performance of the XGB 
algorithm is also reasonable by resulting in a value of R = − 0.867 for correlation.

In addition, Fig. 12 illustrates the impact of SP on the predicted CS of SFRC. As can be seen in Fig. 12, the SP 
has a medium impact on the predicted CS of SFRC. Moreover, among the proposed ML models, SVR performed 
better in predicting the influence of the SP on the predicted CS of SFRC with a correlation of R = 0.999, followed 
by CNN and XGB with a correlation of R = 0.992 and R = 0.95, respectively.

However, it is depicted that the weak correlation between the amount of ISF in the SFRC mix and the pre-
dicted CS. This indicates that the CS of SFRC cannot be predicted by only the amount of ISF in the mix. In 

Figure 11.  Feature importance of CS using various algorithms.
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other words, in CS prediction of SFRC, all the mixes’ components must be presented (such as the developed ML 
algorithms in the current study).

The impact of the fly-ash on the predicted CS of SFRC can be seen in Fig. 12. All three proposed ML algo-
rithms demonstrate superior performance in predicting the correlation between the amount of fly-ash and the 
predicted CS of SFRC. It means that all ML models have been able to predict the effect of the fly-ash on the CS 
of SFRC. Moreover, it is essential to mention that only 26% of the presented mixes contained fly-ash, and the 
results obtained were according to these mixes. Therefore, these results may have deficiencies.

Based on the developed models to predict the CS of SFRC (Fig. 12), C,  DMAX, L/DISF, and CA have relatively 
little effect on the CS. Moreover, the results show that increasing the amount of FA causes a decrease in the CS 
of SFRC (Fig. 12). All these results are consistent with the outcomes from sensitivity analysis, which is presented 
in Fig. 11, and the correlation between input parameters and the CS of SFRC shown in Figs. 1 and 2.

Conclusion
This study modeled and predicted the CS of SFRC using several ML algorithms such as MLR, tree-based models, 
SVR, KNN, ANN, and CNN. From the open literature, a dataset was collected that included 176 different concrete 
compressive test sets. This research leads to the following conclusions:

Figure 12.  Parametric analysis between parameters and predicted CS in various algorithms.
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• Among the several ML techniques used in this research, CNN attained superior performance  (R2 = 0.928, 
RMSE = 5.043, MAE = 3.833), followed by SVR  (R2 = 0.918, RMSE = 5.397, MAE = 4.559). In contrast, KNN 
 (R2 = 0.881, RMSE = 6.477, MAE = 4.648) showed the weakest performance in predicting the CS of SFRC.

• Tree-based models performed worse than SVR in predicting the CS of SFRC. However, their performance 
in predicting the CS of SFRC was superior to that of KNN and MLR.

• The capabilities of ML algorithms were demonstrated through a sensitivity analysis and parametric analysis. It 
was observed that among the concrete mixture properties, W/C ratio, fly-ash, and SP had the most significant 
effect on the CS of SFRC (W/C ratio was the most effective parameter). Also, C,  DMAX, L/DISF, and CA have 
relatively little effect on the CS of SFRC.

• According to the results obtained from parametric analysis, among the developed models, SVR can accurately 
predict the impact of W/C ratio, SP, and fly-ash on the CS of SFRC, followed by CNN.

Data availability
All data generated or analyzed during this study are included in this published article. The raw data is also avail-
able from the corresponding author on reasonable request.
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