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Machine learning identifies 
straightforward early warning rules 
for human Puumala hantavirus 
outbreaks
Orestis Kazasidis * & Jens Jacob 

Human Puumala virus (PUUV) infections in Germany fluctuate multi-annually, following fluctuations 
of the bank vole population size. We applied a transformation to the annual incidence values and 
established a heuristic method to develop a straightforward robust model for the binary human 
infection risk at the district level. The classification model was powered by a machine-learning 
algorithm and achieved 85% sensitivity and 71% precision, despite using only three weather 
parameters from the previous years as inputs, namely the soil temperature in April of two years before 
and in September of the previous year, and the sunshine duration in September of two years before. 
Moreover, we introduced the PUUV Outbreak Index that quantifies the spatial synchrony of local 
PUUV-outbreaks, and applied it to the seven reported outbreaks in the period 2006–2021. Finally, 
we used the classification model to estimate the PUUV Outbreak Index, achieving 20% maximum 
uncertainty.

Environmental conditions triggered by climate change play an ever-increasing role in the spread of zoonotic 
infectious diseases, by altering the animals’ natural habitats, influencing food availability and even driving 
changes in species distribution. Within this framework, we have developed a simple weather-based model for 
the human Puumala Orthohantavirus (PUUV) infection risk in Germany.

The PUUV is the most common hantavirus in Europe, transmitted by bank voles (Clethrionomys glareo‑
lus, syn. Myodes glareolus). The PUUV can cause mild-to-moderate hemorrhagic fever with renal syndrome 
(nephropathia epidemica) with 0.1–0.4% fatality rate1. The human PUUV-infections fluctuate multi-annually. 
Recently, there have been several years with > 1000 annual reported cases in Germany2, generally and large-scale 
driven by beech (Fagus spec.) mast intensity, as shown in the past for Belgium3,4 and for Germany5,6.

The underlying mechanisms for the transmission rate of PUUV to humans seem too complex to model 
directly, as they depend on the abundance of the bank vole populations, their PUUV-prevalence, and the human-
bank vole interaction; all of which fluctuate temporally and vary locally. Nevertheless, weather conditions can be 
used as predictors for the human PUUV-infection risk, because the fluctuation in bank vole populations strongly 
correlates with weather parameters from the two previous years7, whereas the PUUV-prevalence mainly depends 
on the bank vole abundance3,8,9.

We selected German districts with significant numbers of human infections and incidence in 2006–2021, 
and inspected the correlations of the annual PUUV-incidence with monthly weather parameters at the district 
level. We performed a data transformation that highlights the spatial synchrony of the temporal fluctuation of 
PUUV-incidence. This transformation allowed developing a binary classification model based on support vector 
machines (SVM) for the district-related outbreaks, applicable countrywide and based solely on easily-accessible 
weather parameters. Furthermore, we introduced the PUUV outbreak index (POI) as an indicator for the annual 
human PUUV-infection risk. The POI allows an unambiguous definition of a PUUV-outbreak for the first time, 
considering the local magnitude of the PUUV-incidence. The definition of POI is independent of the total annual 
infections, but their values are highly correlated. Finally, we applied the binary classification model to the POI 
and showed that just three values of weather parameters suffice to give a good estimate. The combined POI-model 
may be applied as a straightforward rule-of-thumb for the detection of high-risk years. Such a model can be 
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used to interpret the outbreaks of PUUV, but also to get approximations about rodent dynamics. This is highly 
important to support strategies and decisions for the protection of human health and plants alike.

Results
Local outbreaks and the PUUV outbreak index.  Based on the local infection and incidence values, 
we selected 66 districts in Germany, where PUUV was constantly present in 2006–2021 (Fig. 1). The selected 
districts account for 10,090 human PUUV-infections, 89.9% of the total infections reported countrywide in this 
period (Fig. 1, red gradient). The districts are grouped into four clusters, agreeing with the hypothetical edge of 
the range of the Western bank vole evolutionary lineage10 and comprising all PUUV-molecular clades detected 
so far11–13. The first cluster (Fig. 1, cyan outline) contains 10 districts between Lower Saxony and North Rhine-
Westphalia, at the border to the Netherlands, and corresponds to the clades of Münsterland and of the Teutoburg 
Forest. The second cluster (Fig. 1, green outline) comprises 2 districts in the southwest North Rhine-Westphalia, 
both from the clade of Rhineland. The largest cluster (Fig. 1, purple outline) contains 50 districts in a central 
vertical corridor with a length of about 450 km and a maximum width of about 200 km, expanding from Hesse 
and Thuringia, through Bavaria, until the south of Baden-Württemberg at the border to Switzerland. This cluster 
includes the PUUV-molecular clades of North East Essen, Spessart Forest, Swabian Jura, and Thuringian Forest. 
Finally, the last cluster (Fig. 1, blue outline) contains 4 districts in eastern Bavaria at the border to the Czech 
Republic, with the PUUV-molecular clade of the Bavarian Forest.

There were 12 districts that are combinations of an urban district with its neighboring or surrounding rural 
district, shown in Supplementary Table 1. The only urban districts that remained separate were Cologne (Köln), 
Münster, and Stuttgart, whose areas are distinctly large.

We applied a log-transformation to the incidence values, followed by an individual binary classification for 
each district. The resulting two classes were labelled “low-risk” and “high-risk”. A local “outbreak” occurred 
in a year when the incidence in a district was classified in the high-incidence bin of the recorded values. The 
incidence in districts for non-outbreak years was zero or considered low relative to the recorded values in this 
specific district. From the total 1056 observations (16 years × 66 districts), 682 were assigned low-risk (65%) 
and 374 were assigned high-risk (35%). A total of 8779 infections were registered in observations assigned to 
the high-risk class, which was 87% of the total infections included in this analysis (or 78% of the total infections 
in Germany in 2006–2021).

As the binary classification was district-based, the same incidence value may be assigned to low risk or high 
risk, depending on the district (Fig. 2).

Figure 1.   Selection of the districts for the analysis. The 66 selected districts across Germany are shown in red 
gradient depending on their total PUUV-infections in 2006–2021. The colorbar is linear in the range [0, 50] 
and log-scaled in [50, 650] for increased visibility. There were 26 districts from Baden-Württemberg (BW), 16 
from Bavaria (BY), 8 from Hesse (HE), 3 from Lower Saxony (NI), 10 from North Rhine-Westphalia (NW), 1 
from Rhineland-Palatinate (RP), and 2 from Thuringia (TH). Thick black lines separate the federal states; thick 
colored lines separate four clusters of the detected PUUV-molecular clades, as described in the text. Further 
districts are shown in gray gradient with the same colorbar scaling. The map was generated using the geopandas 
package v0.9.0 (https://​geopa​ndas.​org) in Python v3.8.5. Further information about the raw data, the processing, 
and the visualization is provided in the Methods section.

https://geopandas.org
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Based on the local outbreaks, we developed the PUUV outbreak index (POI) as an indicator for the annual 
human PUUV-infection risk in Germany, i.e., for the global PUUV outbreak. Each year’s value in the POI was 
defined as the proportion of districts assigned high infection risk for that year (Table 1):

Years with > 900 total reported infections in the selected districts have a POI value of > 50%.

Classification model.  Our initial predictors’ pool comprised monthly weather parameters from the two 
previous years. We selected the triple of variables that led to the optimal classification model for the binarized 
log-transformed incidence: the soil temperature in April of two years before (V2_ST_4), the total sunshine 
duration in September of two years before (V2_SD_9), and the soil temperature in September of the previous 

(1)PUUV Outbreak Index(t) =
Number of districts with high PUUV− infection risk in year t

Number of districts where the PUUV is present

Figure 2.   The annual incidence values in the selected districts from 2006 to 2021. The 66 districts are ordered 
by the maximum annual incidence. The low-risk bin is indicated by blue triangles (on the left side of the plot). 
The high-risk bin is indicated by red diamonds (on the right side of the plot). The filled triangles and diamonds 
indicate the average value for each bin. The solid lines highlight the incidence range for each bin. The white gaps 
between the blue and the red lines indicate the separation between the two bins for each district. The x-axis is 
linear in the range [0, 1] and log-scaled in [1, 110] for increased visibility. The naming convention matches that 
of the German version of SurvStat@RKI 2.0. LK: rural district (from the German Landkreis) and SK: urban 
district (from the German Stadtkreis).
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year (V1_ST_9). The resulting model had 82.6% accuracy, 84.8% sensitivity, 71.4% precision, 81.4% specificity, 
and 0.775 F1-score. The elements of the confusion matrix were: true negatives TN = 555 (53% of the total 1056 
observations), false negatives FN = 57 (5%), false positives FP = 127 (12%), and true positives TP = 317 (30%). 
5/7 classifications for high risk were correct (precision), and almost 6/7 real high-risk observations were cor-
rectly classified (sensitivity). The observations in false negatives summed up to 301 infections, which was 3.5% 
of the infections in real high-risk observations (or 3.0% of the total infections).

For the pairs (V2_SD_9, V1_ST_9) and (V2_ST_4, V1_ST_9) the two risk classes were well linearly separa-
ble, with sensitivity > 77% and precision > 67% (Fig. 3a,b). Weather parameters are for the most part spatially 
uniform. Thus, the observations from each year formed clusters in the 3D input space of our model. The values 
of the weather variables for these “cluster centers” were the annual average values over whole Germany.

Because of the clustering of the weather variables and the separation of the data from each year, the model 
classified all districts from each year in the same risk class. The only exceptions were 2006 and 2021, the years 
whose clusters were closest to the planar class boundary. For 2006, 58 districts were classified in the low-risk 
class and 8 in the high-risk class. For 2021, 40 districts were classified in the high-risk class and 26 in the low-risk 
class. All observations from 2007, 2010, 2012, 2015, 2017 and 2019 were classified in the high-risk class, which 

Table 1.   The number of districts assigned high risk for each year from 2006 to 2021. The PUUV outbreak 
index (POI) was calculated by dividing by the total number of districts, i.e., 66. The POI values highly correlate 
with the total annual infections in the selected districts given in the last column, with 0.95 Pearson correlation 
coefficient and a p value of 1.15 × 10−8.

Year Number of districts with high risk PUUV outbreak index—POI (%) Total infections

2006 0 0.0 48

2007 46 69.7 1503

2008 5 7.6 157

2009 1 1.5 123

2010 59 89.4 1686

2011 6 9.1 198

2012 61 92.4 2121

2013 2 3.0 88

2014 15 22.7 285

2015 27 40.9 476

2016 6 9.1 111

2017 52 78.8 1013

2018 6 9.1 110

2019 44 66.7 918

2020 5 7.6 124

2021 39 59.1 1129

Figure 3.   Views of the model. 2D scatter plots with all 1056 observations from 2006 to 2021 for the three pairs 
of variables in the selected 3D model. V1_ST_9 in (a) and (b): the mean soil temperature in September of the 
previous year, V2_SD_9 in (a) and (c): the total sunshine duration in September of two years before, and V2_
ST_4 in (b) and (c): the mean soil temperature in April of two years before. Yellow (hex color code #FDE725FF) 
corresponds to observations with low risk, whereas indigo (hex color code #440154FF) corresponds to 
observations with high risk. The overlaying red x-markers indicate the values of the variables from each year 
averaged over whole Germany, called cluster centers. The red diamond markers indicate the average values over 
Germany for 2022 (filled markers) and for 2023 (unfilled markers).
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designated them as PUUV outbreak years; whereas all observations from 2008, 2009, 2011, 2013, 2014, 2016, 
2018 and 2020 were classified in the low-risk class.

The highest annual accuracy was 98% for 2009 (1 FN). For seven additional years, an annual accuracy > 90% 
was achieved, i.e., 2012 from the outbreak years, and 2008, 2011, 2013, 2016, 2018 and 2020 from the non-
outbreak years. The lowest annual accuracy was 41% for 2015 (39 FP), followed by 65% for 2021 (12 FP and 11 
FN). For 2014, the only wrong classifications were false negatives (15 FN, 77% accuracy). The highest accuracy 
was achieved in Baden-Württemberg (90%), and the lowest in North Rhine-Westphalia (66%) and Lower Saxony 
(69%). There were 6 districts from Baden-Württemberg, 2 from Bavaria, and 1 from Hesse with 100% accuracy. 
Another 15 districts had only one false classification (9 FP and 6 FN). The maximum numbers of false negatives 
came from the districts of Borken and Bentheim, with 7 FN and 6 FN, respectively. Borken also had the lowest 
accuracy among the districts with 44% (7 FN and 2 FP).

According to our classification model, a hyperplane separated the two risk classes. This hyperplane was a 
planar boundary in the 3D space:

Based on this plane, we could define the binary infection risk with respect to V1_ST_9, the last weather vari-
able that becomes available prior to prediction:

where we have rounded the coefficients to three significant figures. In Eqs. (2)–(4), the units for the temperatures 
ST are °C, and for the sunshine duration SD are hours. To minimize rounding errors, ST should have a precision 
of at least two decimal places and SD of at least one decimal place.

Prediction of a PUUV outbreak year.  The distance of the cluster centers from the planar boundary 
of the classification model (Eq. 2) can serve as a qualitative measure for the global PUUV-infection risk. Fig-
ure 4 shows the POI for 2006–2021 with respect to the distance of the corresponding cluster center from the 
planar boundary. The observations form two groups: for distancet > −0.03 (a positive distance means that the 
observation is above the boundary with respect to V1_ST_9; thus, there is high infection risk for that year) and 
for distancet < −0.37 (a negative distance means that the observation is below the boundary with respect to 
V1_ST_9; thus, there is low infection risk for that year). We compared the groups’ means by a one-way ANOVA 
with the function f_oneway from the SciPy library14. Based on the F-value of 97 and p value of 1.1 × 10−7, we 
concluded that the means of the two groups were statistically significantly different.

We applied a piecewise constant function as fit; for each group we assumed a constant value for the POI, 
defined by the average of the recorded values of that group. The standard error of the mean was 2.21% for the 
low-risk group ( distancet < −0.37 ), and 6.77% for the high-risk group ( distancet > −0.03 ). For distances in 

(2)0.270 · V2_ST_4+ 0.0139 · V2_SD_9− 0.549 · V1_ST_9+ 4.054 = 0

(3)
When V1_ST_9 > 0.492 · V2_ST_4+ 0.0253 · V2_SD_9+ 7.38,

there is high infection risk in the district for that year.

(4)
When V1_ST_9 < 0.492 · V2_ST_4+ 0.0253 · V2_SD_9+ 7.38,

there is low infection risk in the district for that year.

Figure 4.   Estimating the PUUV Outbreak Index from the classification model. The proportion of districts 
with high risk for each year, which was defined as the PUUV Outbreak Index, is plotted with respect to the 
distance from the planar boundary of the cluster centers, i.e., of the points defined by the average values of the 
weather parameters over Germany for that year. The red dashed lines show a piecewise constant fit to the data 
(pseudo-R2 = 0.87, calculated according to15). The red-shaded area indicates the uncertainty. The hashed area 
for distances in the interval [− 0.37,− 0.03] represents the increased uncertainty about the position of the 
discontinuity.
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the interval [− 0.37,− 0.03] , where the step occurred and no observation was available, no estimate could be 
generated. With an uncertainty equal to three times the standard error of the mean, we could estimate the POI 
for the year t as:

Discussion
We applied a rigorous and exhaustive method to select the optimal triple of weather variables for a model that 
predicts human PUUV infection risk. The resulting classification model had high explanatory power with almost 
85% sensitivity and more than 70% precision. Although our method may not give the global maximum with 
respect to a specific performance criterion, it avoids including highly correlated variables and it is bound to have 
high sensitivity and precision. A classifier with just two variables would be more straightforward and easy to 
grasp. Although the addition of a third variable increases the performance only marginally, it renders the model 
more robust and less prone to hidden variables. By further increasing the dimensions, the separation of the 
two risk classes is expected to be easier, even though there is no indication that the classes are indeed perfectly 
linearly separable. The weather parameters from the actual year influence both the bank vole populations16,17 
and the human activities18, as well as their interaction, and thus are expected to drive the reported infections in 
a way that cannot be encapsulated by a prediction model with variables from the previous years. Our classifier 
is in essence a prediction model for the beech seed production and the bank vole abundance. Therefore, it can 
also be applied for rodent management and plant protection strategies.

Our analysis assumes that the correlations between the weather parameters and the human PUUV-infections 
are the same for all districts and are time-invariant, i.e., they remain constant with time, which allows consid-
ering each observation as independent. An additional underlying assumption was that the monitoring of the 
hantavirus diseases and the impact of any countermeasures remain constant in each district, though they may 
differ among districts.

Our method reveals a strong influence of the infection risk from the weather parameters in April and Sep-
tember of two years before, and from the previous September. Furthermore, a weather variable from the previous 
September was contained in all variable pairs with the optimal performance, which places the earliest possible 
prediction in early October of the previous year. This should provide enough time to prepare countermeasures 
and to raise awareness in health authorities, risk groups and medical practitioners about the risk of the virus.

Weather variables from two years before were most likely linked to the beech seed production of the previous 
year, which in turn determines the food availability and governs the growth of the bank vole populations4,6. An 
increased soil temperature in autumn of the previous year could lead to a larger initial population for the next 
year, by facilitating the last weeks of the breeding season and increasing the rodent survival rate.

This model estimates the PUUV-infection risk, and thus it is likely to be positively biased compared to the 
reported infections or incidence. Therefore, we may have to accept overestimations (false positives). A close 
inspection of several underestimations (false negatives) is provided in Supplementary Note 1. We hypothesize 
that many underestimations from Lower Saxony and North Rhine-Westphalia were not due to a local outbreak, 
but rather were caused by an increase in the PUUV-baseline in specific districts, due to changes in the reporting 
system and to increased awareness in the local health departments. Another possibility is that the PUUV-season 
may start earlier in Northern Germany in comparison to the other PUUV-clusters. Finally, these infections may 
be connected with a PUUV-spread from the neighboring Netherlands.

The binarization of the incidence suggests spatial synchrony of the PUUV outbreaks in Germany. This opposes 
a recent report about lack of synchrony in 201919, but is in good agreement with earlier studies11,20. The introduc-
tion of the POI allows the unambiguous definition of an outbreak year, which in turn can facilitate the transfer of 
prediction results through media and other public communication. A high value of the POI indicates increased 
risk for a large proportion of districts. This method can be easily extended to describe outbreaks of any zoonotic 
infectious disease with temporal fluctuation and spatial inhomogeneity.

Our classification model can be applied as a straightforward rule-of-thumb for the detection of high-risk 
years, although it is not strictly developed as a prediction model and is not yet validated as such. Combining it 
with the POI, we can predict outbreak years. This method does not offer detailed spatial information, because 
it uses weather parameters that form constellations, and thus can be regarded as spatially uniform across large 
areas. Nonetheless, such a prediction can increase the state of preparedness and raise awareness about virus 
detection and human infection risk. We applied this concept to estimate the PUUV-infection risk in Germany 
in 2022. The values for the 2022 center clusters (Fig. 3) have not been observed during 2006–2021, nor during 
the preceding years 2002–2005. Therefore, this year’s incidence values will allow a refinement of the model’s 
coefficients and decrease its uncertainty. The distance of the 2022 center cluster from the linear boundary of the 
model is −1.08 , thus a low global PUUV-infection risk is expected. By applying Eq. (5), the predicted value in 
the POI is 7.7%± 6.6% , i.e., only about 1–10 districts are likely to report a relatively high number of infections 
in 2022. The distance of the 2023 center cluster from the linear boundary of the model is −0.35 ; this value falls 
inside the interval of increased uncertainty of Eq. (5) and does not allow a definitive estimation of the global 
PUUV-infection risk. Applying Eqs. (3) and (4) at the district level, 11 districts from Lower Saxony and North 
Rhine-Westphalia are in the high-risk class and thus are likely to report a relatively high number of infections 
in 2023. This leads to an expected POI of 16.7%.

Land cover and land use data have not been included in this model but have been previously reported as pos-
sible general predictors of the bank vole PUUV-prevalence21 and the human PUUV-incidence17,22. We consider 

(5)PUUV Outbreak Indext(%) =

{

7.7%± 6.6%, if distancet < −0.37

(1.1%, 91%), if − 0.37 ≤ distancet ≤ −0.03

71%± 20% ⇒ Outbreak, if distancet > −0.03
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that those effects are incorporated into the district-based incidence transformation, i.e., the land cover or land 
use may indeed determine the local magnitude of the PUUV-incidence, but they do not influence the probability 
of an outbreak.

In the future, this approach can be supplemented with spatial information, by including a time-variant and 
spatially non-uniform variable, e.g., the beech mast intensity or the beech flowering intensity as proxies for the 
beech seed production. Such a variable may increase the separation between the observations from 2006 and 
2021, on opposite sides of the decision boundary; two years with relatively similar weather constellations but 
distinctly different incidence values. The years 2014 and 2015 are the outliers that do not seem to fit reasonably 
in the low-risk and high-risk classes, suggesting the existence of a third class with medium risk. However, the 
currently available observations do not suffice for distinguishing such a class.

Methods
We performed data acquisition, processing, analysis and visualization using Python23 version 3.8 with the pack-
ages Numpy24, Pandas25, Geopandas26, Matplotlib27, Selenium, Beautiful Soup28, SciPy14 and scikit-learn29. The 
functions used for specific tasks are explicitly mentioned to allow validation and replication studies.

Data acquisition and processing.  Human PUUV‑incidence.  Hantavirus disease has been notifiable 
in Germany since 2001. The Robert Koch Institute collects anonymized data from the local and state public 
health departments and offers via the SurvStat application2 a freely available, limited version of its database for 
research and informative purposes. We retrieved the reported laboratory-confirmed human PUUV-infections 
( n = 11,228 from 2006 to 2021, status: 2022-02-07). From the attributes available for each case, we retrieved 
the finest temporal and spatial resolution, i.e., the week and the year of notification, together with the district 
(named “County” in the English version of the SurvStat interface).

To avoid bias through underreporting, our dataset was limited to PUUV-infections since 2006. The years 
2006–2021 contain 91.9% of the total cases from 2001 to 2021. Human PUUV-incidence was calculated as the 
number of infections per 100,000 people, by using population data from Eurostat30. For each year, we used the 
population reported for the January 1 of that year. The population for 2020 was also used for 2021.

In the analysis, we only included districts where the total infections were ≥ 20 and the maximum annual 
incidence was ≥ 2 in the period 2006–2021. The spatial information about the infections provided by the SurvStat 
application refers to the district where the infection was reported. Therefore, in most of the cases, the reported 
district corresponds to the residence of the infected person, which may differ from the district of infection. To 
compensate partially for differences between the reported place of residence and the place of infection, we com-
bined most of the urban districts with their surrounding rural district. The underlying assumption was that most 
infections reported in urban districts occurred in the neighboring or surrounding rural district. In addition, some 
urban and rural districts have the same health department. Supplementary Table 1 lists the combined districts.

Weather data.  From the German Meteorological Service31 we retrieved grids of the following monthly weather 
parameters over Germany from 2004 to 2021: mean daily air temperature—Tmean, minimum daily air tem-
perature—Tmin, and maximum daily air temperature—Tmax (all temperatures are the monthly averages of the 
corresponding daily values, in 2 m height above ground, in °C); total precipitation in mm—Pr, total sunshine 
duration in hours—SD, mean monthly soil temperature in 5 cm depth under uncovered typical soil of location in 
°C—ST, and soil moisture under grass and sandy loam in percent plant useable water—SM. The dataset version 
for Tmean, Tmin, Tmax, Pr, and SD was v1.0; for ST and SM the dataset version was 0. × . The spatial resolution 
was 1 × 1 km2.

The data acquisition was performed with the Selenium package. The processing was based on the geopandas 
package26 using a geospatial vector layer for the district boundaries of Germany32. Each grid was processed to 
obtain the average value of the parameter over each district. We first used the function within to define a mask 
based on the grid centers contained in the district; we then applied this mask to the grid. In this method, called 
“central point rasterizing”33, each rectangle of the grid was assigned to a single district, the one that contained 
its center. The typical processing error was estimated to be about 1%, which agrees with the rasterizing error 
reported by Bregt et al.33; we consider that most likely this error is significantly less than the uncertainties of the 
grids themselves, caused by calculation, interpolation, and erroneous or missing observations.

Data structure.  Our analysis was performed at the district level based on the annual infections, acquired by 
aggregating the weekly cases. From each monthly weather parameter, we created 24 records, for all months of the 
two previous years. Each observation in our dataset characterized one district in one year. Its target was acquired 
by transforming the annual incidence, as described in the following section. Each observation comprised all 168 
available predictors from the weather parameters (7 parameters × 24 months), thereafter called “variables”. The 
notation for the naming of the variables follows the format Vx_<parameter>_<month>, where “Vx” can be V1 
or V2 that corresponds to one or two years before, respectively; <parameter> is the abbreviation of the weather 
parameter (see previous subsection: “Weather data”); and <month> is the numerical value of the month, i.e., 
from 1 to 12.

The observations for combined districts retained the label of the rural district. For their infections and 
populations, we aggregated the individual values, and recalculated the incidence. For their weather variables, 
we assigned the mean values weighted by the area of each district.

Target transformation.  To consider the effects that drive the occurrence of high district-relative inci-
dence, we discretized the incidence at the district level. The incidence scaled at its maximum value for each 
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district showed extreme values for minima and maxima. About 49% of all observations were in the range [0, 0.1) 
and 8% in the range [0.9, 1] (Fig. 5). Therefore, we specifically selected to discretize the scaled incidence with 
two bins, i.e., to binarize it.

We first applied a log-transformation to the incidence values34, described in Eq. (6).

The addition of a positive constant ensured a noninfinite value for zero incidence, with 1 selected so that the 
log-incidence is nonnegative, and a zero incidence was transformed into a zero log-incidence. This transforma-
tion aimed to increase the influence of nonzero incidence values; values that are not pronounced, but still hint 
at a nonzero infection risk. Its effect is demonstrated in the right plot of Fig. 5, where the positive skewness of 
the original data is reduced, i.e., low incidence values are spread to higher values, resulting to more uniform bin 
heights in the range [0.05, 0.95] after the transformation. Formally, in this case the log-transformation achieves 
a more uniform distribution for the non-extreme incidence values.

For the binarization, we performed unsupervised clustering of the log-transformed incidence, separately for 
each district, applying the function KBinsDiscretizer of the scikit-learn package29. Our selected strategy was the 
k-means clustering with two bins, because it does not require a pre-defined threshold, and it can operate with 
the same fixed number of bins for every district, by automatically adjusting the cluster centroids accordingly.

Classification method.  We concentrated only on those variable combinations that led to a linear decision 
boundary for the classification of our selected target. We selected support vector machines (SVM)35 with a linear 
kernel, because they combine high performance with low model complexity, in that they return the decision 
boundary as a linear equation of the variables. In addition, SVM is geometrically motivated36 and expected to be 
less prone to outliers and overfitting than other machine-learning classification algorithms, such as the logistic 
regression. For the complete modelling process, the regularization parameter C was set to 1, that is the default 
value in the applied SVC method of the scikit-learn package29, and the weights for both risk classes were also 
set to 1.

Feature selection.  Our aim was to use the smallest possible number of weather parameters as variables for 
a classification model with sufficient performance. To identify the optimal variable combination, we first applied 
an SVM with a linear kernel for all 2-variable combinations of the monthly weather variables from V2 and V1, 
i.e., 168 variables (7 weather parameters × 2 years × 12 months). Only for this step, the variables were scaled to 
their minimum and maximum values, which significantly reduced the processing time. For all the following 
steps, the scaler was omitted, because the unscaled support vectors were required for the final model. From the 
total 14,028 models for each unique pair (  168!

2!·(168−2)! ), we kept the 100 models with the best F1-score, i.e., of the 
harmonic mean of sensitivity and precision, and counted the occurrences of each year-month combination in 
the variables. The best F1-score was 0.752 for the pair (V1_Tmean_9 and V2_Tmax_4); and the best sensitivity 
was 83% for the pair (V2_Tmax_9 and V1_ST_9).

The year-month combinations with more than 10% occurrences were: V1_9 (September of the previous year, 
with 49% occurrences), V2_9 (September of two years before, with 12%) and V2_4 (April of two years before, 
with 10%). To avoid sets with highly correlated variables, we formed 3-variable combinations, with exactly one 
variable from each year-month combination (threefold Cartesian product). From the total 343 models (73 combi-
nations, i.e., 7 weather parameters for 3 year-month combinations), we selected the model with the best sensitivity 
and at least 70% precision, i.e., the variable set (V2_ST_4, V2_SD_9, and V1_ST_9). We consider that the criteria 
for this selection are not particularly crucial; and we expect comparable performance for most variable sets with 

(6)Log - incidence = log10 (incidence+ 1)

Figure 5.   Histograms of the annual PUUV incidence from 2006 to 2021, scaled to its maximum value for each 
of the selected districts. Left: Raw incidence. Right: Log-transformed incidence, according to Eq. (6).
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a high F1-score, because the variables for each dimension of the Cartesian product were highly correlated. The 
eight variable sets with at least 70% precision and at least 80% sensitivity are shown in Supplementary Table 2.

The SVM classifier has two hyperparameters: the regularization parameter C and the class weights. By decreas-
ing C, the decision boundary becomes softer and more misclassifications are allowed. On the other hand, increas-
ing the high-risk class weight, the misclassifications of high-risk observations are penalized higher, which is 
expected to increase the sensitivity and decrease the precision. The simultaneous adjustment of both hyperpa-
rameters ensures that the resulting model has the optimal performance with respect to the preferred metric. 
However, in order to avoid overfitting, we considered redundant a further model optimization with these two 
hyperparameters. For completeness, we examined SVM models for different values of the hyperparameters and 
found that the global maximum for the F1-score is in the region of 0.001 for C and 1.5 for the high-risk class 
weight. Our selected values C = 1 and high-risk class weight equal to 1 give the second best F1-score, which is a 
local maximum with comparable performance, mostly insensitive to the selection of C from the range [0.2, 5.5].

The addition of a fourth variable from V1_6 (June of the previous year) resulted in a model with higher sen-
sitivity but lower precision and specificity (for V1_Pr_6). The highest F1-score was achieved for the quadruple 
(V2_ST_4, V2_SD_9, V1_ST_9, V1_Pr_6). Because of the increased complexity without significant improvement 
in the performance, we considered unnecessary a further expansion of our variable triplet.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.

Code availability
Information about the used software and packages is provided in the main manuscript. The code that supports 
the findings of this study is available from the corresponding author upon reasonable request. Supplementary 
Information is available for this paper.
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