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Community detection in brain 
connectomes with hybrid quantum 
computing
Marcin Wierzbiński 1,2,3, Joan Falcó‑Roget 2,3 & Alessandro Crimi 2*

Recent advancements in network neuroscience are pointing in the direction of considering the brain 
as a small‑world system with an efficient integration‑segregation balance that facilitates different 
cognitive tasks and functions. In this context, community detection is a pivotal issue in computational 
neuroscience. In this paper we explored community detection within brain connectomes using the 
power of quantum annealers, and in particular the Leap’s Hybrid Solver in D‑Wave. By reframing 
the modularity optimization problem into a Discrete Quadratic Model, we show that quantum 
annealers achieved higher modularity indices compared to the Louvain Community Detection 
Algorithm without the need to overcomplicate the mathematical formulation. We also found that the 
number of communities detected in brain connectomes slightly differed while still being biologically 
interpretable. These promising preliminary results, together with recent findings, strengthen the 
claim that quantum optimization methods might be a suitable alternative against classical approaches 
when dealing with community assignment in networks.

Network neuroscience is an emerging discipline that tries to examine brain organizing principles using network 
science tools. It was made possible by the intersection of networks science and  neuroscience1. This allows the 
merging of two worlds which have shown tremendous advancements in recent years. The first world is given by 
complex system studies through graph  analysis2; the second is given by neuroimaging, which permits modeling of 
brain structure and function even representing relevant information as a  graph3. Community (also called cluster 
or module) detection is an explored yet not solved task in many fields using graph  representations4. Previous 
research has demonstrated how a modular structure can be used to highlight links between topological and 
functional aspects of complex networks that are not  trivial5.

The human brain is a complex network made up of physically connected areas that can be activated when 
performing certain tasks or while at rest. Indeed, in network neuroscience, the most used connectivity repre-
sentations are the functional and structural representations, though other representations exist, as the effective 
connectivity which attempts to combine these two. More specifically, functional connectivity represents the cova-
rying activity of spatially separated brain areas observed in time series data as functional magnetic resonance 
imaging or  electroencephalogram6. A graph is then built defining nodes as brain regions and edges according to 
the correlation of brain activity. Structural connectivity is referred to the physical pathways bridging brain areas, 
typically evaluated in-vivo by diffusion-weighted  imaging7, or ex-vivo with staining and histological  imaging8. 
In this case, a graph is defined as nodes also given by the brain regions and edges are the physical neuronal 
pathways. Effective connectivity refers to the impact one neurological system has over another, either at the 
level of individual neurons or entire brain regions. Hence, it naturally incorporates structural and functional 
information as it combines the neuronal activities related by physical  pathways9. We do not focus particularly in 
this last type of connectivity as many recent criticisms raised concerns about its validity, as it can be seen as just 
temporal  correlation10. The most plausible structural organization describing the complexity of brain functions 
is emerging as the integration of segregated regions (communities)11. Therefore, detecting communities in all 
types of connectivity is relevant, even though what community means in neuroscience is still an open question 
lacking absolute ground-truth or based on specific characteristic gathering group of  neurons5.

Previous research in this context has focused on representing properties of isolated brain networks focusing 
on network features important to brain function. Those include variants of Newman’s modularity  function2, and 
its maximization through Louvain-like  algorithms12 for the detection of clusters of  regions13. More advanced 
approaches have expanded this considering brain networks as dynamic and not static  networks14, and information 
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flow at different time  scales15. Indeed defining communities in absolute terms has been discouraged in many 
 fields16 especially considering possible nodes which can overlap communities and mislabeling. Truly, the brain 
is not composed by strictly segregated regions with defined regions as Broadmann introduced in  190917, but by 
a more intricate and integrate complex of segregated networks with smooth  borders18.

The present work is not focused on defining the ideal community detection algorithm in brain connectomes, 
but rather we investigate if better clustering results can be achieved using quantum devices. This is motivated by 
the fact that modularity maximization heuristics have a demanding optimization problem at their core. Moreover, 
optimal solutions have been shown to be elusive to classical computing  devices19.

Optimization problems in quantum devices rely on minimization and sampling from energy-based models via 
combinatorial techniques. The 2-communities modularity maximization problem is closely related to an Ising-
like  model20,21. Furthermore, its generalization to a k-state Potts model is exploitable for Simulated  Annealing22 
as well as its quantum partner, namely Quantum annealing (QA)  algorithms23 (but see also a comprehensive 
 review24). Consequently, we start by formulating the relationship between modularity and energy functions to 
later exploit them for detecting multiple communities in structural and functional brain graphs. Considering 
the Louvain algorithm as a reliable state-of-the-art estimate of the true result, we compare its performance in a 
desktop computer with results obtained with the D-Wave quantum  computer20. More specifically, we tested on 
a real quantum annealer device, and not on simulators. Lastly, we consider networks with deterministic connec-
tions on quantum devices, and not quantum inspired networks on classical  computing25,26.

Methods
In this section we first revise in detail how modularity is defined and how it is mapped into energy based model 
for both quantum and classical computing (sections “Modularity” and “Mapping to energy-based models”). Then 
we clarify how our community detection is implemented inside the quantum annealer (section “k-community 
detection with a QA processor”).

Let us define a brain connectome as G = (V ,E) a weighted graph with nodes i, j ∈ V and edges (i, j) ∈ E . With 
V being brain regions defined by an atlas, and E edges a set of either physical neuronal pathways or correlation 
of brain activity, such that the corresponding adjacency matrix A is defined as follows:

with wij representing the weight for edge between nodes i and j. These weights are the representation of number 
of neuronal fiber bundles or intensity of activity correlation. In our case, we define wij ∈ {0, 1} as a binary variable 
taking into account the existence of a connection between two nodes i and j. Moreover, the degree of a node is 
defined as gi =

∑

j Aij , and it measures the number of connections for the node i quantified by summing over 
all its neighbors.

Modularity. Suppose that a graph contains |V | = n vertices and is divided into k communities or clusters 
denoted as {C1, . . . ,Ck} . Given a specified partition, the modularity is defined  as22,27

where 2m =
∑

i gi is the total number of edges,

is the number of links between nodes inside cluster Cs and

is the sum of the degrees of the nodes belonging to the cluster Cs . The resolution parameter γ defines the arbitrary 
trade-off between intra- and inter-group  edges28.  Conveniently29, and without loss of generality it can be set to 
1, although we comment on other cases in later sections. The modularity as expressed in Eq. (2) is very conveni-
ent if the communities present in the graph are already known. However, if the number of communities k is 
unknown, the summation over s becomes a problem. To bypass this limitation, one can define a binary variable 
identifying nodes and/or links that are part of the same cluster. The most widely used proposal was defined  in2.

For the sake of clarity, we start by having only two communities {C1,C2} . In this simple case, let si = 1 if vertex 
i belongs to community C1 and si = −1 if it belongs to community C2 . We can now define a variable 1

2
(sisj + 1) 

that returns 1 if and only if vertices i, j belong to the same community and 0 otherwise. Thus, the total number 
of existing edges between nodes in the same community can be rewritten as

where the 1
2
 factor has been added to avoid double counting. Moreover, the sum of the degrees in all communities 

can be easily replaced using the same procedure.
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where the double summation over ij has been used instead of 
(
∑

i∈s gi
)2 for completeness. With these changes 

we can express the modularity Q in Eq. (2) as

where the rightmost equality follows from 2m =
∑

i gi =
∑

ij Aij.
Despite replacing a single summation for two, Eq. (5) has two main advantages, the first one being its easy 

interpretability. In a graph, if edges are placed at random, the expected number of links between two nodes i and 
j can be shown to be precisely gigj

2m
2. Hence, the modularity Q can be understood as the difference between the 

actual number of edges and those expected by chance inside all the different communities. Second, proposing 
different sets of two communities is now straightforward. According to Eq. (5), modifying the variable si of even 
a single node yields a completely different partition and corresponding modularity. Hence, to cluster nodes by in 
ways that increases the modularity of a network can be achieved by trying out (i.e., sampling) different combina-
tions of the variables si and keeping track of the resulting communities. Note that when sampling, the network’s 
nodes and connections do not change, but rather the community to which they belong do. We will explore the 
latter in more detail in the following section.

Furthermore, in many graphs, and especially in brain networks, the number of communities is expected to 
be considerably higher than just a couple. A straightforward generalization can be achieved by replacing the 
binary variable in the case of just two communities 1

2
(sisj + 1) for a community agnostic Kronecker delta func-

tion δ(ci , cj) . Then the modularity is expressed as

where B is known as the modularity matrix whose elements are given by

and δ(ci , cj) is one if two nodes belong to the same cluster Cs.
Eventually, the partition in k communities is chosen by the maximum modularity score Q as a function of 

k. Note that permutation of the rows and columns of an adjacency matrix A does not alter the graph nor its 
modularity. However, the output of an algorithm whose goal is to find the partition with highest modularity, 
could depend on how this adjacency matrix was defined initially. Interestingly, results on many test cases in the 
literature show that the ordering of the nodes tends to not have a significant influence on the outcomes therefore 
showing rather deterministic  behaviors12,27.

Mapping to energy‑based models. The conundrum of community detection aims at finding the graph 
partition that maximizes the modularity Q which, for the case of binary and undirected networks, lies between 
− 1

2
 and 1. The problem can be solved using brute force by simply trying out all possible combinations of the 

variables si , sj (or δ(ci , cj) for more than two communities), computing the associated modularities and eventu-
ally choosing the highest one. However, even for rather small graphs, this approach becomes unfeasible due to 
a rapid growth in complexity.

Alternative algorithms, such as the ones we use in the current work, use heuristic  reasoning12 or exploration 
of state and energy  spaces21,22. To use the latter, one needs to map the modularity function to a physical system. 
The simplest of such systems is known as an Ising model, shown to be very useful to study properties of phase 
transitions in magnetic systems. Consider a system with N particles whose magnetic spin is characterised by a 
discrete variable si ∈ {−1, 1} . The energy of the given system immersed in an external magnetic field h is given by

where si are the spins of each particle, hi are the local magnetic fields and Jij encodes the couplings strengths that 
encode the interactions between particles i and j. Usually, Eq. (8) is defined in a regular lattice only considering 
interactions between 1-st neighbours. Note, nonetheless, that the formulation is agnostic towards the specific 
spatial topology of the system. Taking this into consideration, it is direct to see that the modularity in Eq. (5) cor-
responds to an Ising system defined in a non-regular graph, with no external field and coupling matrix J = − 1

2mB.
Furthermore, an Ising model can be easily extended to include more than two states. In this case, each i-th 

particle is fully characterised by a discrete variable si ∈ {0, . . . , k − 1} where k ∈ Z
+ is a positive integer denoting 

the number of possible states.
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where hi is the local magnetic field and the Kronecker function is 1 when two particles are in the same state 
(i.e., si = sj ). Once again, the modularity in Eq. (6) straightforwardly matches a physical system known as 
Potts model with the same coupling constant J = − 1

mB and no external field. A physical system is said to be in 
thermodynamic equilibrium if the energy of the configuration, given by the successive spin variables si , rests 
at a minimum. The problem of how to find this ground state has been widely studied and solved using different 
methods including, but not limited to, QA. In this subsection, we have reviewed how computing the modularity 
of a certain network organization is equivalent to obtaining the energy of a given magnetic system. Thereafter, 
we use the same procedures and strategies to find partitions that maximized the modularity or, alternatively, 
minimized its opposite in Eqs. (5) and (6). That is, we explored configurations Cs such that the corresponding 
modularity Q∗ satisfied:

k‑community detection with a QA processor. QA23,24 relies on the preparation of a physical quantum 
system whose Hamiltonian evolves according to

where the ground state of H0 is “easy” to prepare and to measure experimentally. The functions Ŵ and � are both 
continuous and monotonously decreasing and increasing respectively such that H(0) = H0 and H(T) = Hp . 
If initially the system is prepared in a way that lies at the ground state of H0 , the process in Eq. (11) is adiabatic 
and [H0,Hp] �= 0 (i.e., the Hamiltonians do not commute), given the adiabatic theorem of quantum mechanics, 
the system should remain in the ground state at all times, thus ending up in the minimum of Hp . In this state, 
any measurement of the system’s elements shall return this ground state configuration. We provide a simplified 
description of this process in Fig. 1a.

(10)max
Cs

Q or min
Cs

−Q.

(11)H(t) = Ŵ(t)H0 +�(t)Hp

Figure 1.  Simplified description of a Quantum Annealing (QA) process in (a). Initially, the system is prepared 
in the ground state of an “easy” hamiltonian H0 (solid blue line), in this case a simple cuadratic function of a 
variable describing the quantum state. The hamiltonian of the system, as in Eq. (11), is let to evolve adiabatically 
(dashed grey lines) resting at the minimum of each intermediate hamiltonian H(t) (coloured circles). Under 
these conditions, the final state, depicted as the big orange square, will correspond to the ground state of the 
desired system Hp (solid black line). Note that the two discrete jumps (green-purple and cyan-orange) are 
possible thanks to quantum tunneling. In (b), schematic representation of the logical process explained in the 
Methods. To partition a graph via QA, the connections of the original network, given by an adjaceny matrix as 
in Eq. (1), need to be mapped to a fully connected Ising-like system of spins. Note that the dimensions of the 
Ising system are the same as the original network (identical node coloring) but the strengths of the connections 
(solid weighted black lines) are now given by the modularity matrix in Eq. (7). The system is then embedded in 
a Chimera  graph20 (i.e., the quantum processor) by using the D-Wave platform. Each node in the Chimera graph 
represents a qubit.
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The D-Wave hardware, known as a Chimera graph, consists of i = 1, . . . ,N  qubits coupled with weights J 
whose energetic state Hp is described with an Ising  Hamiltonian20. Therefore, any optimization problem to be 
solved using quantum annealing necessitates the reduction (or embedding) from its original description (e.g., 
(6)) to an enclosed embedded form of Eq. (8) in the Chimera graph (i.e., a mapping from G to Hp ). The D-Wave 
platform autonomously embeds the problem to the  processor30 (see Fig. 1b).

The modularity maximization problem naturally maps to a Potts model, also known as a Discrete Quadratic 
Model (DQM). However, a DQM variable si takes 1 of k possible discrete positive values which is not exactly 
an Ising spin. Yet, an alternative representation using one-hot encodings facilitates the previously mentioned 
reduction. A vector xi is defined such that xiu = 1 if si = u and 0 otherwise. This way we obtain a quadratic 
model subject to the constraint 

∑

u xiu = 1 that is easily transformed to an Ising representation with the mapping 
siu = 2xiu − 1 . Below, we provide snips of the Python code that reduces the original network object to an Ising 
model with which the D-Wave system performs the optimization to better understand how it is implemented. 
Fortunately, the D-Wave platform provides a straightforward way to do this. We used  Networkx31 to compute the 
modularity matrix from an adjacency matrix A in Eq. (1). The reduction is based on the modularity matrix B in 
Eq. (7) and the expression of the coupling matrix J for the quadratic term in Eq. (9). Recall that the external field 
h need not be added. The DiscreteQuadraticModel class contains this model, and its methods provide convenient 
utilities with the specific representation of a problem.

The nested loop is used to express all the possible communities a single node can be assigned to as well as 
to set the corresponding coupling weight given by Bij. Note that the total number of edges m is constant and 
thus it does not modify the relevant ground state. The code, also skips self-referenced nodes. The token can be 
obtained by logging into https:// cloud. dwave sys. com/ leap/. The final result is a sample set assigning each node 
to a particular community.

We have used the Leap Hybrid Solver developed by D-Wave. In contrast to the D-Wave 2000Q, this solver 
service can read and accommodate very large problems. The classical part allocates quantum processing units 
to specific parts of the problem to optimize, these parts being different algorithm steps. This approach leverages 
unique problem-solving capabilities of the quantum processing units and extends these capabilities to larger 
and more varied types of inputs. It can be called through the D-Wave Ocean application programming interface 
(API) hence facilitating its usage to non-specialists.

In our experiments we investigated how similar the detected communities were to an external proxy both 
using classical and quantum computing. Where no ground-truth is available, we considered the results of the 
eigengap, from spectral communities analysis, to be the aforementioned proxy. With the eigengap heuristic, the 
number of communities is usually given by the value of k that maximizes the difference between two consecutive 
eigenvalues. We kept track of the three largest eigengaps. Then, we computed the modularity index obtained 
by 100 runs. The third eigengap acted as a limit to see whether the optimization identified the same number of 
communities or reached higher modularities with less communities.

Finally, we run the same calculation using the Louvain Community Detection Algorithm (LCDA) to solve 
the community detection problem. The Louvain Community Detection Algorithm is a state-of-the-art heuristic 
to extract the community structure of a network based on modularity  optimization12. Given the nature of one 
of the datasets described later as representing a debated ground-truth16, we consider both the case of known 
and unknown number of communities for this dataset. As in previous similar  studies32–34, we consider higher 
modularities as a proxy for better results. Statistical significance is also investigated.

Data and code availability. In this study, we performed experiments using 2 datasets. The first is a 
well-known dataset (Zachary karate  club35) which has been investigated in several community detection stud-
ies (e.g.27). The second dataset is given by the brain connectomes comprised in the BrainNet Viewer Toolbox 
defined from  atlases36, which are the main focus of the study. Both datasets are based on previously acquired data 
from previous studies, and our analysis represents a numerical simulation study for which no ethical approval 
was required. The karate club dataset was created by Zachary by observing 34 members of a karate club over a 
period of 2 years, where a partition of the members happened, and a network of friendships between members 

https://cloud.dwavesys.com/leap/
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of the club was observed. This was previously done by Zachary et al. in accordance with relevant guidelines and 
 regulations35, for more details and contacts on their ethical approval please find all information in their original 
 paper35. The dataset has been traditionally defined as a ground-truth subdivision of 2  communities35 as shown in 
Supplementary Fig. 1. However, communities defined by a specific ground-truth labeling can be misleading and 
not necessarily reflect the network  topology16, and in fact higher number of communities in this dataset have 
been  investigated37. Therefore, we consider both the cases whether this labeling should be restricted to 2 com-
munities and not. This toy example is really useful to validate the modularity in case of a known information flow 
example. The dataset is freely available at the URL https:// netwo rkrep osito ry. com/ soc- karate. php.

The brain connectivity dataset are obtained from the examples of BrainNet Viewer and freely available at the 
URL https:// www. nitrc. org/ proje cts/ bnv/. More specifically, the Automated Anatomical Labeling (AAL) which 
is the most common atlas for structural  connectivity38 comprising 90 regions of interest and the Dosenbach atlas 
which is a functional atlas with 160 regions of interest. For the details of how those regions are used as nodes to 
construct the networks within BrainNet Viewer, we refer to their  paper36. There is no particular reason to use this 
dataset apart the fact that those are brain connectomes publicly available. The basic properties of the networks 
used in the experiments are reported in Supplementary Table 1.

The code was written in Python version 3.9.7, and it is available at the repository https:// github. com/ alecr imi/ 
clust ering- dwave, it comprises a series of custom scripts and the usage of the Networkx library version 2.8.339, 
and the Dwave-system library version 1.10 with all initialization parameters for the NetworkX implementation 
of LCDA were left empty.

The used hardware were respectively for quantum and classical computing: the D-Wave 2000Q with Chimera 
edges, and a powerful workstation with 11th Gen Intel(R) Core(TM) i9-11900KF @ 3.50GHz processor.

Results
In this section, we report the results obtained by using the aforementioned tools on the 2 datasets. We report 
here first the resulting eigengap for both datasets, the communities are defined by modularity and the value of 
modularity.

Karate club dataset. Computing the eigengap Fig. 3a within the karate club dataset we found that the 
highest gaps were related to k = 3, 4, 2 . The highest eigengap was given by k = 4 , while the original defined 
number of communities is k = 235.

Forcing both the classical and quantum community detection algorithm to look for 2 communities, both 
algorithms were able to assign correctly all members of the defined communitiesm (as shown in Supplementary 
Fig. 1. It is relevant to mention that to reach this goal, the resolution parameter γ in Eq. (2) had to be set smaller 
than 1. For all other experiments, we considered the more standard value γ = 1.

Following the experiments in an unsupervised manner as described in the previous section, the classical 
and quantum algorithm showed different results. In Fig. 2 we show the differences of the communities obtained 
by using classical and quantum computing. It can be seen that only 2 communities (depicted in red and blue) 
have different grouping. In Table 1 we can see summarized the modularity index for both classical and quantum 
device. As shown in  literature12,27, the methods behave in a rather deterministic manner and as our results show 
the quantum hardware noise were close to zero even considering a large number of repeated experiments. Results 
are shown in Table 1. Note that the results of the LCDA as implemented in  NetworkX31 slightly differ from what 
is found in the  literature12,32 (see also Supplementary Fig. 2).

Figure 2.  Community detection for the Zachary karate club graph using Louvain Community Detection 
Algorithm (a), and using Leap Hybrid Solver (b). We can observe that the assignment to communities differs for 
these 2 methods in the red and blue communities.

https://networkrepository.com/soc-karate.php
https://www.nitrc.org/projects/bnv/
https://github.com/alecrimi/clustering-dwave
https://github.com/alecrimi/clustering-dwave
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Brain connectivity. The eigengaps for the two brain connectome are depicted in Fig. 3b and c. We found 
some high eigengaps at the end of the spectrum, namely where we consider each node as a cluster. This might 
make sense as nodes in brain atlases represent an already relatively large region of interest according to func-
tional activation of cytoarchitecture. Namely, those are already clusters of neurons or brain activity. However, 
this will not be interesting given the research question of this paper. The 3 largest eigengaps were, respectively, for 
the AAL and Dosenbach atlas: 4,5,11 and 7,11,27. Comparing the modularity obtained on classical and quantum 
devices with AAL90 and Dosembach brain connectivity graphs, we found different modularity indices reported 
in Table 2. The resulting communities are shown in Figs. 4 and 5 respectively for the AAL and Dosenbach atlas. 
The computational times for each algorithm are also reported in Table 2.

For the AAL atlas connectome, if we look for 5 communities as depicted in Fig. 4, those appear to be almost 
the traditional brain lobe subdivision: subcortical regions (yellow), occipital lobe (red), temporal medial (cyan), 
fronto-temporal medial including the default mode network (blue), fronto-temporal lateral (green). The parietal 
lobe was spread across the neighbouring.

For the Dosenbach parcellation, despite the difficulties of the methodology for identifying meaningful parti-
tions, a large-scale pattern was observed, which mostly differentiated visual, sensory-motor and dorsal attention 
regions. More specifically, in Fig. 5 we can see nine clusters depicted: the visual network comprising the occipital 
lobe but also some parietal regions (yellow) as previously  described40, lateral temporal-parietal (mild green), 
extended default mode network (DMN) (dark blue), mostly thalamus and basal ganglie (magenta), cerebellum, 
anterior cingulate cortex and supplementary motor area (orange), superior temporal (light green), some region 
of post-insula and temporal (dark green). The red cluster connected only two regions in the occipital lobe, and 
the light blue cluster only two regions in the parietal lobe. The acronyms of the brain regions are the same as 
reported  in38. Statistical significance for all three dataset is depicted in Fig. 6.

Table 1.  Results of community detection on the karate club dataset. Modularity and computational time 
required for the algorithms to finish [MEAN ± STD]. For the case of QA the time was measured since the 
start of the communication with D-Wave and the return. The number of communities together with its mean 
in brackets. kmax refers to the hyperparameter required for the algorithms to run. All results are averages of 
100 different runs. Bold numbers indicate a better performance. The number of detected communities for 
classical and quantum computing is the same but the modularity is higher for the quantum annealer used. QA 
modularity’s STD was 8.85e−17.

Algorithm Modularity Q Comp. time (s) Ncomm kmax

LCDA 0.440 ± 0.008 0.003 ±  0.001 4 (3.9) 4

QA 0.444 ±  0.000 3.91 ± 0.12 4 (4) 4

Figure 3.  Eigengaps for the Karate club cluster (a), AAL90 brain atlas (b), and Dosenbach brain atlas (c). The 
red lines highlight the highest gap for each case, while the blue line the second highest gap. For the AAL (in b), 
the second eigengap is directly visible thus we explicitely mark the third. Last eigenvalues are not taken into 
consideration.

Table 2.  Results of community detection on the benchmark brain atlases. Modularity and computational time 
required for the algorithms to finish [MEAN ± STD]. The number of communities, together with its mean in 
brackets. All results are averages of 100 different runs. The numbers in bold indicate a better performance. The 
STD of the QA modularity was 7.85e−17 (AAL90) and 8.54e−05 (Dosenbach).

Algorithm

AAL90 ( kmax = 11) Dosenbach ( kmax = 27)

Modularity Q Comp. Time (s) Ncomm Modularity Q Comp. Time (s) Ncomm

LCDA 0.644 ± 0.003 0.002 ± 0.001 6 (5.7) 0.404 ± 0.006 0.005 ± 0.001 13 (12.96)

QA 0.648 ± 0.000 5.3 ± 0.1 5 (5) 0.416 ± 0.000 5.4 ± 0.1 9 (9)
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Discussion
The human brain exhibits an organization of a small-world network, with segregated modular regions integrated 
by some hub  nodes11. The use of connectomes as biomarkers has seen increasing use, and clustering features 
have also been introduced as both functional and structural network changes according to brain  diseases41. 
Indeed, data driven approaches have being increasingly implemented to investigate relationships between brain 

Figure 4.  Graph partitioning of the communities defined by using QA for the AAL atlas. Left: Reordered 
connectivity matrix according to module assignment. Right: Axial, coronal, and 2 hemispheres sagittal views 
of brain connectivity (plotted using the BrainNet Viewer  Toolbox36). In both cases, connections and nodes 
belonging to the same community are plotted using the same color code while grey edges correspond to 
connections between different modules. The size of the nodes is given by the degree.

Figure 5.  Graph partitioning of the communities defined by using QA for the Dosenbach atlas. Left: Reordered 
connectivity matrix according to module assignment. Right: Axial, coronal, and 2 hemispheres sagittal views 
of brain connectivity (plotted using the BrainNet Viewer  Toolbox36). In both cases, connections and nodes 
belonging to the same community are plotted using the same color code while grey edges correspond to 
connections between different modules. The size of the nodes is given by the degree.
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connectivity pathology, for instance Alzheimer’s  disease42. Therefore, it is crucial to increase the precision of 
clustering brain connectivity representations.

In the presented work we investigated the capacity of a quantum annealer to perform clustering on brain 
connectivity data. We focused on comparing the clusters obtained with the same data by using classical and 
quantum computing on a D-Wave machine. The modularity metric was used to assess the quality of a commu-
nity organization. This metric has values between − 1

2
 and 1, where the highest value is considered an indicator 

of better topological  organization2,33.
The maximum number of clusters to detect is a parameter required by both algorithms we tested. Yet, in 

both cases, the algorithm was free to assign each node to any module which, in some cases, resulted in empty 
communities. In practice, this meant that both classical and quantum approaches could partition the graph 
into any number of communities only bounded by the maximum number of modules allowed. Communities 
obtained using the quantum device showed consistent and observable higher modularity indices, as shown in 
Fig. 6. Indeed, higher modularity indices are often considered as a measure of superiority for community detec-
tion  algorithms34,43. This is in agreement with previous work comparing clustering with different datasets and 
similar  settings21.

Interestingly, the number of modules found by the quantum device was consistently smaller despite reaching 
higher modularity. We might argue that LCDA overestimated the number of clusters, resulting in fewer edges 
between nodes within a given community. Were this to occur, the modularity index would decrease, since the 
number of edges expected by chance, as quantified in Eq. (5), remains unaltered. Furthermore, in the two brain 
graphs tested, the k-th eigengap corresponding to the assignment of k clusters was higher (Fig. 3b and c), which 
might be indicative of the significance of the obtained partition. Nonetheless, the lack of ground-truth for brain 
cases represents a limitation. We chose to compare QA to LCDA because the latter is considered as the state-of-
the-art method despite being developed more than 10 years ago. However, alternative algorithms have recently 
been proposed that seem to show significant potential (see for example traversal-based  methods44 or variations 
of  LCDA43,45). Those address issues such as computational speed, detection of small communities compared to 
the average communities in the network and robustness to different initializations.

A puzzling question arises when trying to understand why QA finds higher modularity indices. To this end, 
we note that by enforcing both QA and LCDA to find 2 communities in the Karate club graph, the results were 
identical. We may hypothesize that the energetic landscape to explore in these limited conditions is simple, 
hence both algorithms successfully find the unique isolated minimum (e.g., minimum of a parabolic function). 
However, the unsupervised problem (i.e., not imposing a fixed number of communities) or the presence of 
large networks may add significant  complexity46. Crucially, QA does not travel through the exact shape of the 
 landscape23 hence providing a possible bypass to this issue (Fig. 1a).

Compared to previous studies based on the binary subdivision of hierarchical  clustering21,47, our approach 
can handle odd numbers of clusters and settings where the value k is not a power of 2. Moreover, it is worth 
mentioning that the quantum results are stable even considering potential hardware problems known in this type 
of  devices48, indeed we found a close to zero standard deviation repeating the experiments 100 times.

In our experiments with brain connectomes, we used two different types of brain connectome (both struc-
tural and functional) to test our algorithm by investigating differences. Interestingly, in both cases, the quantum 
algorithm obtained higher modularity. In this study, we avoided investigating the clinical outcomes related to 

Figure 6.  Left: Percentage of relative increase of the QA result with respect to LCDA [MEAN±SEM]. 
Significancy (p<0.05, one-sided Welch’s t-test) is indicated in red. See exact values in Table S2. Errors bars 
were computed by propagating the SEM of the results with LCDA and QA. Dashed black line indicates the no 
increase threshold. Right: Effect size measured by Cohen’s d. Horizontal dashed and colored lines separate effect 
sizes according to standard thresholds. Cohen’s d is a measure of the effect size present in the two populations 
without assessing the statistical significance.
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clustering either structural or functional brain connectomes, as this is beyond the focus of this paper. Neverthe-
less, the brain communities obtained on the quantum device significantly resembled the conventional subdivi-
sion of brain structures.

Connectivity-based approaches tend to generally find at least 6 minimal  clusters49. As we also found, one 
cluster is generally represented by the visual system (occipital cluster). In fact, even at coarse scale (4–6 clusters), 
the visual system generally represented a separate community from the somatosensory system and  others50. 
Somatomotor communities usually remains connected. As in our results, there is a cluster spanning several 
midlines (medial prefrontal cortex and posterior cingulate cortex), defining the so-called default mode network: 
A popular network involved in wakeful rest, daydreaming and mind-wandering51. This division was present in 
both the structural and functional atlas-based connectomes of our experiments.

A concerning limitation of the proposed approach was the computational time. We noticed that the quantum 
annealer took a considerably larger amount of time than its classical counterpart. The speed was not dependent 
on the communication between the client and the quantum computer, but we believe it was related to the cur-
rent configuration of the qubits and the solver. Successfully performing QA in system of qubits relies on smooth, 
adiabatic transitions (i.e., quantum tunneling) between the ground states of two energetic landscapes (see Eq. 
(11)). Eventually, these transitions govern the computational complexity and  time52. Several factors can influ-
ence this complexity, including the number of nodes in a graph. However, solutions found through QA were 
more stable than expected, with not much noise and even achieving higher scores. Physical limitations on the 
D-Wave platforms currently in use include finite precision, sparse connectivity, and a finite amount of qubits 
which are connected in a Chimera graph. It can be hypothetized that having more qubits during computation 
and increased connectivity will improve the performance of this technique. In our approach, the community 
detection problem for the Zachary graph problem has been solved by using a more elegant solution than in the 
 paper21. In that approach, a challenging aspect was also given splitting the graph into pieces supported by the 
combined effect of qbsolv53 and the annealing process.

Another group of quantum optimization techniques employ a quantum version of a network model from 
the early 1980s commonly used to model associative  memory54. This approach differs from ours in that the 
optimization problem is encoded in a Hopfield network instead of an Ising-like  system55,56. In practice, the 
resulting Hopfield encoding can be optimized by any available procedure including but not limited to  QA57 and 
have, in fact, already been implemented on actual quantum processing  units58. Successful applications of this 
approach include image  restoration59, pattern-recalling60 and recognition of genetic  sequences56. As far as we 
know, nonetheless, its application to community detection problems remains unexplored. New optimization 
strategies such as the Hopfield network encoding and the usage of alternative quantum processing units deserve 
further  study58,61. Moreover, in future studies we will expand individual analysis of brain connectomes to multi-
layer  connectomes14 and to common eigenspaces of networks from population  studies9.

Conclusion
In this article, we rigorously described how sampling spin-like variables can be used to find communities that 
yield high modularity organizations in networks. We have explored the potential of quantum computing for 
brain community detection, utilizing a quantum annealer to tackle an NP hard optimization problem. The 
analysis show that the quantum computer is capable of rendering a highly efficient community structure with a 
modularity superior to classical computing. One of the most noteworthy results from applying this QA process 
is that the community structure is obtained “all at once” in the technique within the annealing period and we 
can compute any number of clusters in contrast with previous approaches which could compute only power of 
2 number of clusters.
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