
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3659  | https://doi.org/10.1038/s41598-023-30573-4

www.nature.com/scientificreports

Optomechanically induced gain 
using a trapped interacting 
Bose‑Einstein condensate
H. Mikaeili 1, A. Dalafi 1*, M. Ghanaatshoar 1 & B. Askari 2

We investigate the realization of the phenomenon of optomechanically induced gain in a hybrid 
optomechanical system consisting of an interacting Bose‑Einstein condensate trapped inside the 
optical lattice of a cavity which is generated by an external coupling laser tuned to the red sideband 
of the cavity. It is shown that the system behaves as an optical transistor while the cavity is exposed 
to a weak input optical signal which can be amplified considerably in the cavity output if the system 
is in the unresolved sideband regime. Interestingly, the system has the capability to switch from the 
resolved to unresolved sideband regime by controlling the s‑wave scattering frequency of atomic 
collisions. We show that the system gain can be enhanced considerably by controlling the s‑wave 
scattering frequency as well as the coupling laser intensity while the system remains in the stable 
regime. Based on our obtained results, the input signal can be amplified more than 100 million percent 
in the system output which is much larger than those already reported in the previously proposed 
similar schemes.

In recent decades, ultracold atomic ensembles trapped in optical lattices generated by quantized light  fields1 
and hybrid optomechanical systems containing Bose-Einstein condensates (BECs)2–5, where the excitation of a 
collective mode of the trapped atoms plays the role of the vibrational mode of the moving mirror in a bare opto-
mechanical system (OMS)6, have attracted much attention. Such systems have been known as a good platform 
for studying the interaction of light with matter in the regime where their quantum mechanical properties are 
manifested in the same  level7–11.

The optomechanical coupling generated by an external coupling laser between the optical mode of the cavity 
and the fluctuation of the collective excitation of the BEC (the so-called Bogoliubov mode)12,13, makes the sys-
tem behave effectively as a two-mode quantum system in which the phenomenon of optomechanically induced 
transparency (OMIT)14–17 can be observable while the cavity is also driven by another external weak probe laser. 
One of the most important features of a hybrid OMS containing a BEC is the nonlinear effect of atomic collisions 
which behaves as an atomic parametric  oscillator18–21 which brings more  controllability22,23 and can increase the 
quantum effects at the macroscopic  level24–26.

A remarkable feature of the OMIT phenomenon is the possibility of slow and fast light  realization27–35 which 
has important applications in quantum information and quantum communications. As is well-known in the 
standard OMIT phenomenon, the transmitted light intensity at the probe frequency in the cavity output is 
lower than or equal to that in the input where the equality (corresponding to 100% probe transmission) occurs 
when the damping rate of the mechanical oscillator is much lower than the optical damping rate. Nevertheless, 
there is a very interesting case in which the transmitted probe amplitude in the cavity output is stronger than 
that in the input of the cavity. In such a situation, the system exhibits a special kind of OMIT known as optom-
echanically induced gain (OMIG) or optomechanically induced amplification, so that it can be used as an optical 
 transistor36–44. More recently, it has been  shown45,46 that the phenomenon of OMIG can occur in a bare OMS in 
the unresolved sideband (URSB)  regime47 while the coupling laser frequency has been tuned on the red side-
band of the cavity (the red detuned regime of optomechanics). Although OMIG can be also achieved in the blue 
detuned regime of optomechanics, but the important problem is that OMSs are rarely stable in the blue regime.

Motivated by the above-mentioned investigations, in the present work we study a hybrid OMS consisting of 
an interacting BEC whose cavity is pumped by a coupling laser responsible for generation of an optical lattice 
inside the cavity. The optical lattice provides an effective optomechanical coupling between the cavity optical 
mode and the Bogoliubov mode of the BEC through a radiation pressure interaction. It is also assumed that the 
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cavity is exposed to an input optical signal which is modeled as a time-dependent perturbation (playing the role 
of a weak probe laser).

Our aim in the present work is to demonstrate that the present hybrid OMS can be used as an optical transis-
tor which can amplify the input optical signal in the output of the cavity. It is explicitly shown that in the URSB 
and red detuned regimes of optomechanics, the present hybrid OMS exhibits much larger gain in comparison to 
the previously studied  schemes36–44 while the system is stable. Furthermore, one of the most important advan-
tages of the present scheme in comparison to the previous ones is the controllability of the system gain which 
can be manipulated not only through the coupling laser pumping rate but also through the s-wave scattering 
frequency of atomic collisions, which itself is experimentally controllable through the transverse trapping fre-
quency of the  BEC48.

The structure of the paper is as follows: In section “System Hamiltonian” the Hamiltonian of the hybrid OMS 
is introduced. In section “Dynamics of the system” the dynamical equations of the system are derived based on 
the Heisenberg-Langevin equations and the response of the system to the input signal, which behaves as a time-
dependent probe perturbation, is obtained. Then, in section “Results and discussion” we present the behavior 
of the system response to the input signal and the cavity power reflection coefficient. Finally, the summary and 
conclusions are given in section “Summary and conclusions”.

System Hamiltonian
The studied system is a Fabry-Perot cavity with a length of L and a resonance frequency of ω0 containing a 
trapped one dimensional BEC as has been shown in Fig. 1. The BEC has been formed by N identical two-level 
atoms having transition frequency ωa and mass ma confined in a cylindrically symmetric trap with a transverse 
trapping frequency ω⊥ and negligible longitudinal confinement along the x direction. The cavity is driven by a 
strong external (coupling) laser with a power of Pc and frequency ωc at the rate of |εc| =

√
2κePc/�ωc  along its 

axis from the partially transparent mirror on the left side of the cavity which is responsible to produce a radia-
tion pressure coupling with the matter field of the BEC. In order to see how the present system acts as an optical 
transistor, it is assumed that a weak optical signal (playing the role of a probe laser) with frequency ωs enters the 
cavity as an input coherent field through the left mirror at the rate of εs.

In the dispersive regime, where the difference between the frequency of the coupling laser and that of the 
atomic transition is much larger than the atomic linewidth ( Ŵa ), i.e., �a = ωc − ωa ≫ Ŵa , the excited electronic 
state of the atoms can be adiabatically eliminated and spontaneous emission can be  ignored49,50, so that the second 
quantized Hamiltonian of the system can be written as

where �̂(x) represents the atomic field annihilation operator in position space and â indicates the cavity mode 
annihilation operator in momentum space. Besides, k = ωc/c is the wave number of the intracavity optical field, 
U0 = g20 /�a is the depth of the optical lattice potential per single-photon, g0 is the vacuum Rabi frequency, 
Us = 4π�2as/ma is the strength of the atom-atom scattering wherein as is the length of the two-body s-wave 
scattering.
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Figure 1.  (Color online) A Fabry-Perot cavity containing a trapped BEC is driven by a strong coupling laser 
along its axis from the left mirror of the cavity where a weak input signal is also entered. The system behaves 
as an optical transistor that can amplify the input signal in the output which emanates from the left side of the 
cavity.
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If the condition of U0�a†a� ≤ 10ωR is satisfied, in which ωR = �k2/2ma is the atom recoil frequency, the 
system is in weak optical lattice regime. Under this condition and using the Bogoliubov approximation, the 
matter field �̂(x) can be expanded  as51

where ĉ is the BEC’s first excited mode annihilation operator in the momentum space satisfying the commuta-
tion relation [ĉ, ĉ†] = 1.

By substituting Eq. (2) into Eq. (1), the system’s Hamiltonian in the frame rotating at the coupling laser 
frequency can be rewritten as

where δ = ωs − ωc is the detuning between the frequencies of the coupling and signal lasers. Besides, 
Q̂ = (ĉ + ĉ†)/

√
2 and P̂ = (ĉ − ĉ†)/

√
2i are, respectively, the position and momentum quadratures of the BEC 

satisfying the commutation relation [Q̂, P̂] = i . Furthermore, δc = �c + 1
2
NU0 is the Stark-shifed cavity fre-

quency due to the presence of the BEC in which �c = ω0 − ωc is the cavity resonance detuning with the fre-
quency of the coupling laser. In fact, the presence of the BEC makes the bare resonance frequency of the cavity 
be changed from ω0 to ω0 + 1

2
NU0 . As is seen from the second and third terms of Eq. (3), the BEC behaves as 

a mechanical oscillator (the so-called Bogoliubov mode) with the frequency �c = 4ωR + ωsw/2 that has been 
coupled to the optical mode of the cavity through the optomechanical coupling parameter of ζ = 1

2

√
NU0 . 

Besides, the effect of atom-atom interaction with the s-wave scattering frequency ωsw = 8π�asN/maLw
2 leads 

to the manifestation of the fourth term in Eq. (3), where w is the waist radius of the optical mode.

Dynamics of the system
In this section, we study the dynamics of the system with the Hamiltonian of Eq. (3) in the framework of open 
quantum systems which is described by the following Heisenberg-Langevin equations of motion 

 where 
√
2κeâin and 

√
2κi âint are the input and internal noises, which are respectively originated by the input-

output coupling and non-perfectness of the mirrors or light scattering of the remaining air molecules inside 
the cavity ( κi is the cavity internal decay rate). In principle, the dissipation of the intracavity field takes place 
in two different ways: the first one is the leakage that occurs through the left mirror with the rate of κe which 
appears as the output field of the cavity that is detected on the left mirror, and the second one is the loss that 
occurs through inaccessible channels with the rate of κi . Therefore the cavity field amplitude damping rate is 
κ = κe + κi

52. Furthermore, the output coupling ratio is defined by the coupling parameter (rc = κe/κ) and the 
damping rate of the Bogoliubov mode of the BEC is denoted by γB . Here P̂in is the BEC atomic field input noise, 
whose mean value is zero.

Assuming no correlation between any two system operators, i.e., �âb̂� = �â��b̂� , which is called the mean-field 
approximation, and supposing that �âin� = �âint� = �P̂in� = 0 , the mean-value equations of motion for â , P̂ , and 
Q̂ from Eqs. (4a–4c) can be obtained as 

 By eliminating �P̂� from Eqs. (5b) and (5c) the dynamical equation of motion for the mean-value of Q̂ operator 
of the BEC Bogoliubov mode is obtained as the following second order differential equation
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dâ

dt
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As is seen from Eq. (6) the Bogoliubov mode of the BEC behaves as a driven-damped simple harmonic oscillator 
with an effective resonance frequency of ωB =

√

(4ωR + 1
2
ωsw)(4ωR + 3

2
ωsw) , which is called the Bogoliubov 

frequency.
In the case where the signal field amplitude is much smaller than the coupling field amplitude, i.e., |εs| ≪ |εc| , 

the steady state solutions to Eqs. (5a) and (6), to the first order of |εs| in the frame rotating at ωc can be written as 

 The right hand side of Eqs. (7a) and (7b) contain three terms corresponding to the first three components of 
the Fourier expansion which are the steady state solutions at zero, first, and second order of εs , respectively 
oscillating at the coupling laser frequency ωc , signal field frequency ωs , and the four-wave mixing frequency 
2ωc − ωs in the laboratory  frame36. Now, by inserting Eqs. (7a) and (7b) in Eqs. (5a) and (6), the zeroth order 
components can be derived as 

 wherein � = δc + ζQ0 is the effective cavity detuning. Furthermore, by equalizing the coefficients with the 
same frequencies on both sides of the equations of motion, the following algebraic equations can be obtained 

 Assuming a0 is real, the solutions of Eqs. (9a–9d) are obtained as follows 

 wherein χ = �c

ω2
B−δ2−iγBδ

 is called the mechanical susceptibility of the BEC Bogoliubov mode and f is defined as 
f = χζ 2a20

−i(�+δ)+κ
.

Since we are going to derive the amplitude of the cavity output field emanating through the left mirror, we 
make use of the input-output relation, εout + εin = 2κe�â� , where εin and εout are, respectively, the cavity input 
and output field amplitudes. Similar to relations (7a) and (7b), the cavity output field amplitude in the rotating 
frame can be written as follows

where εout0 is the central band amplitude of the cavity output field oscillating at the frequency ωc while εout+ and 
εout− are the two sidebands oscillating, respectively, at frequencies ωs and 2ωc − ωs in the laboratory frame. Based 
on Eq. (4a), the input field amplitude is εin = εc + εse

−iδt . If we substitute the input field amplitude as well as 
�â� and εout from Eqs. (7a) and (11) in the input-output relation, the central band amplitude of the output field 
is obtained as εout0 = 2κea0 − εc , while the two sideband amplitudes are determined by εout+ = 2κea+ − εs , 
and εout− = 2κea−.

The cavity reflected field amplitude oscillating at the signal frequency is defined as the ratio of the cavity 
reflected field amplitude oscillating at the signal frequency ( εout+ ) to the input signal field amplitude (εs) , i.e., 
εR = εout+/εs . In the critical regime, where the rate of the cavity inaccessible loss (κi) is equal to the loss rate of 
the intracavity optical field (κe) , the coupling parameter is rc = 1/2 , and the cavity reflected field amplitude at 
the signal frequency is obtained as
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Finally, the cavity power reflection coefficient at the signal frequency is defined as the square of the reflected 
field amplitude at the signal frequency as

Results and discussion
In order to investigate how the present hybrid OMS behaves as an optical transistor that can amplify the input 
signal, we study the behavior of the real part of reflected field amplitude given by Eq. (12), which represents the 
cavity absorptive behavior at the signal frequency, as well as the cavity power reflection coefficient at the signal 
frequency (Eq. (13)) in terms of the coupling-signal detuning δ = ωs − ωc in the regime where the system is 
stable.

Here, our results have been obtained based on the experimentally feasible parameters given in Refs.53,54. We 
have considered a cavity with the length of L = 178 µ m, damping rate of κ = 106 Hz, and bare frequency of 
ω0 = 2.41494× 1015 Hz which corresponds to a wavelength of � = 780 nm. The cavity contains a trapped BEC 
formed by N = 106 Rb atoms having a transition frequency of ωa = 2.41419× 1015 Hz. The strength of the 
atom-field coupling is g0 = 2π × 14.1 MHz, the atom recoil frequency is ωR = 23.7 kHz, and the BEC damping 
rate of the Bogoliubov mode of the BEC is γB = 10

−4κ.
In order that the system is on-resonance, we obtain our results in the red detuning regime of � = ωB which 

leads to the following cubic equation in terms of ωc

For any specified value of ωsw the value of ωB and subsequently the square of the optical zero-order component, 
i.e, |a0|2 = |εc|2/(κ2 + ω2

B) are determined based on Eq. (8a). Since Eq. (14) is a third order algebraic equation, 
it has three roots for each value of ωsw . However, only for one of them the system is stable according to the 
Routh-Hurwitz  criteria55.

In Fig. 2, the stable and unstable regions of the system have been indicated based on the Routh-Hurwitz 
criteria as a contour plot in terms of two experimentally controllable parameters of the system: the normalized 
coupling laser pumping rate ( |εc|/κ ) and the normalized s-wave scattering frequency ( ωsw/ωR ). The stable and 
unstable regions have been shown, respectively, by blue and red colors. Experimentally, the coupling laser pump-
ing rate can be controlled by the power of the coupling laser while the s-wave scattering frequency of atomic 
collisions can be manipulated by the transverse frequency of the optical trap of the BEC?. Figure 2 shows that 
for |εc| ≥ 0.14κ the s-wave scattering frequency is bound to have a nonzero minimum value so that the system 
remains in the stable regime, where the mentioned minimum of ωsw increases by increasing |εc| . On the other 
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− 1.
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Figure 2.  (Color online) The stable (blue) and unstable (red) regions, derived from the Routh-Hurwitz 
criteria where the horizontal axis is the normalized coupling laser pumping rate ( |εc|/κ ) and the vertical axis 
is the normalized s-wave scattering frequency ( ωsw/ωR ). The parameters are given in the second paragraph of 
section “Results and discussion”.
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hand, for any fixed value of the s-wave scattering frequency, |εc| should be lower than a maximum value so that 
the system is stable.

To study the mechanism of the system response to the input signal, we have plotted in Fig. 3 the real and 
imaginary parts of the output (reflected) field amplitude as well as the cavity power reflection coefficient at the 
input signal frequency versus the normalized frequency detuning ( δ/κ ) when the system is in the red detuning 
regime of � = ωB . Here the coupling laser pumping rate has been fixed at |εc| = 0.10κ for two different values of 
the s-wave scattering frequency of atomic collisions: ωsw = 100ωR (Fig. 3a), and ωsw = 30ωR (Fig. 3b). For each 
value of ωsw the effective frequency of the Bogoliubov mode of the BEC, which plays the role of the mechanical 
mode frequency in the present hybrid OMS, is determined to be ωB ≈ 2.16κ in Fig. 3a and ωB ≈ 0.72κ in Fig. 3b. 
For each mentioned value of ωB one can solve Eq. (14) to find three roots for ωc which just one of them is accept-
able based on the stability condition of the Routh-Hurwitz criteria. In this way, in an experimental setup with 
specified values of εc and ωsw , the right value of the coupling laser frequency (ωc) can be determined so that if 
the cavity is driven at that frequency, the system response to the input signal appears as those demonstrated in 
Fig. 3a and 3b. Here, the three roots of Eq. (14) are approximately given by 2.41494× 1015 , 2.41419× 1015 , and 
2.41418× 1015 , where the first root satisfies the stability conditions. In this way, the right value of the coupling 
laser frequency is ωc ≈ 2.41494× 1015Hz.

In the present system, the input signal acts as a time-dependent perturbation (the last term in the Hamiltonian 
of Eq. (3)) where the absorptive and dispersive responses of the system to it are manifested, respectively, in the 
real and imaginary parts of the output (reflected) field amplitude. Since in Fig. 3a and b the enhanced effective 
optomechanical coupling ζa0 < κ/2 the system is in the OMIT  regime56 where a fairly narrow transparency 
window appears at δ = ωB . That is why the dip of the transparency window of the OMIT in Fig. 3a and 3b occurs, 
respectively at δ ≈ 2.16κ and δ ≈ 0.72κ . Besides, since at the center of the transparency window Im[εR] = 0 and 
Re[εR] ≤ −1 , the power reflection coefficient is determined by R = |Re[εR]|2 , which is in the range of R ≥ 1 . 
When the maximum value of the power reflection coefficient at the signal frequency is greater than one, the 
phenomenon of  OMIG45 happens and the cavity acts as an  amplifier57.

Since ωB is an increasing function of ωsw , for large values of ωsw , like the case of Fig. 3a, the system is in the 
resolved sideband (RSB) regime, where ωB > κ , while for small values of ωsw , like the case of Fig. 3b, the system 
is in the URSB regime, where ωB < κ . In this way, the position of the dip of absorptive response (the red curves) 
indicates whether the system is in RSB or URSB regimes. Therefore, the system regime can be switched from RSB 
to URSB or vice versa by manipulating ωsw which itself is controllable through the transverse trapping frequency 
of the  BEC48. As is seen from Fig. 3a, where the system is in the RSB regime, Re[εR] ≈ −1 and consequently 
R ≈ 1 which corresponds to the situation of the standard OMIT where the reflection of the input signal is nearly 
100% . However, in the URSB regime Re[εR] < −1 and consequently, R > 1 which corresponds to the OMIG in 
which the input signal is amplified in the output of the system. As is seen from Fig. 3b the input signal power 
can be increased more than two times in the output of the cavity since Re[εR] < −2 and consequently R > 2.

In Fig. 4, we have plotted the real part of the reflected field amplitude of the system (Fig. 4a) and the cavity 
power reflection coefficient (Fig. 4b) at the signal frequency versus the normalized coupling-signal detuning 
( δ/κ ) for |εc| = 0.10κ and three different values of the s-wave scattering frequency: ωsw = 5ωR, 10ωR , and 15ωR 
represented, respectively, by red thick, black dashed and blue thin curves. It should be emphasized that for 
|εc| = 0.10κ the values of ωsw have been so considered that the system is in the stable (blue) region of Fig. 2. 
Each curve in Fig. 4a, which is a dip of the OMIT transparency window like that of the absorptive response 
(red thick curve) in Fig. 3, corresponds to a specified value of ωsw for which the cavity is driven at the specified 
value of ωc determined based on Eq. (14). Figure 4b shows that there exists a peak of power reflection coefficient 
corresponding to each dip in Fig. 4a. Since all the dips of the OMIT transparency windows in Fig. 4a occur at 
δ = ωB < κ , the system is in the URSB regime in which it acts as an amplifier. As is seen, the deeper is the dip 

Figure 3.  (Color online) Re[εR] (red thick curve) and Im[εR] (blue thin curve) as well as the cavity power 
reflection coefficient R (black dashed curve) at the signal frequency versus the normalized frequency detuning 
( δ/κ ) for the coupling laser pumping rate of  |εc| = 0.10κ , in the red detuning regime of � = ωB for two 
different values of the s-wave scattering frequency: (a) ωsw = 100ωR , and (b) ωsw = 30ωR . The other parameters 
are the same as those of Fig. 2.
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of the transparency window, the larger is the peak of the power reflection coefficient of the system (the more 
amplification) so that for ωsw = 5ωR the amplitude of the input signal is amplified up to 70 times in the output 
of the cavity, i.e., 7000% amplification.

To see how the amplification capacity of the system can be enhanced, in Fig. 5a we have plotted the mini-
mum of the real part of the reflected field amplitude (corresponding to the minimum values of OMIT dips of 
Fig. 4a which occur at δ = ωB for every ωsw ), and also we have plotted in Fig. 5b the maximum values of the 
power reflection coefficient at the signal frequency (corresponding to the maximum values of peaks of Fig. 4b) 
versus ωsw/ωR for two different values of coupling laser pumping rate: |εc| = 0.10κ (the blue thin curves), and 
|εc| = 0.15κ (the red thick curves). It should be noted that the variation range of ωsw in Fig. 5 has been chosen 
so that the system is stable and in the URSB regime. According to Fig. 5a, by decreasing ωsw the negativity of 
the real part of the reflected field amplitude increases, and consequently the maximum power reflection coef-
ficient (amplification capacity) increases for each value of |εc| . Furthermore, as is seen from Fig. 5b at any ωsw 
the maximum value of the power reflection coefficient has a larger value for a larger |εc| (compare the red thick 
and blue thin curves). For example, at ωsw = 3ωR the maximum value of the power reflection coefficient is more 
than 2000 (corresponding to 2× 105% amplification) for |εc| = 0.15κ , while it is about 200 (corresponding to 
2× 104% amplification) for |εc| = 0.10κ.

Furthermore, to show explicitly how the maximum value of the power reflection coefficient at the signal 
frequency increases by increasing the coupling laser pumping rate, in Fig. 6, we have plotted Max[R] versus the 
normalized coupling laser pumping rate ( |εc|/κ ), for three different values of the s-wave scattering frequency: 
ωsw = 3ωR ( red thick curve), ωsw = 4ωR (black dashed curve), and ωsw = 5ωR (the blue thin curve). The inset 
of Fig. 6 shows Max[R] versus |εc|/κ for ωsw = ωR . As is seen from Fig. 6, Max[R] increases very rapidly by 
increasing the coupling laser pumping rate where the system gets near to the boundary of the instability region 

Figure 4.  (Color online) (a) The real part of the reflected field amplitude. (b) The cavity power reflection 
coefficient at the signal frequency, versus the normalized frequency detuning ( δ/κ ), for the coupling laser 
pumping rate at |εc| = 0.10κ and three different values of ωsw , in the red detuning regime where � = ωB . 
The red thick, black dashed, and blue thin plots correspond to the values of ωsw = 5ωR , ωsw = 10ωR and 
ωsw = 15ωR , respectively. The other parameters are the same as those of Fig.  2.

Figure 5.  (Color online) (a) The minimum value of the real part of the reflected field amplitude, (b) the 
maximum value of the cavity power reflection coefficient at the signal frequency versus ωsw/ωR for two different 
values of the coupling laser pumping rate: |εc| = 0.10κ (the blue thin curve) and |εc| = 0.15κ (the red thick 
curve). The other parameters are the same as those of Fig. 2.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3659  | https://doi.org/10.1038/s41598-023-30573-4

www.nature.com/scientificreports/

for each ωsw (the red region in Fig. 2). Besides, this increase is more intense for lower values of ωsw so that for 
ωsw = ωR (the inset of Fig. 6) the maximum value of the power reflection coefficient at the signal frequency 
exceeds 106 before the system enters the instability regime. It means that in the red detuned and URSB regime, 
the present hybrid OMS can amplify the input signal more than 108% while it is in the stable regime. This result 
is much greater than those obtained in the previously proposed  schemes36–41,45, and specifically three orders of 
magnitude larger than that obtained in Ref.39, where it has been shown that in the hybrid OMS (in which the 
effect of atom-atom interaction is neglected and no stability check has been presented) the maximum ampli-
fication that can be achieved is less than 2× 105% in the blue regime of optomechanics, where the system has 
usually stability problems.

Finally, it is worth reminding that another scheme for the generation of gain in OMSs has been already pro-
posed based on the coherent modulation of the mechanical  oscillator58. Such a scheme can lead to the generation 
of Casimir photons and  phonons59 which makes the system act as a quantum amplifier or  squeezer60 or behave 
as a quantum sensor for weak force sensing below the standard quantum limit (SQL)61–63. As an interesting out-
look for future researches, one can investigate the possibility of manifestation of OMIG in bare or hybrid OMSs 
whose mechanical modes are coherently modulated in the URSB regime. One of the best methods for studying 
the response of such driven-dissipative systems is the approach of Green’s function and the linear response 
 theory64–68which have been recently attracted much attention.

Summary and conclusions
We have studied the phenomenon of OMIG in a hybrid OMS consisting of a one dimensional BEC whose cavity 
is driven by a coupling laser tuned to the red sideband of the cavity in order to generate an effective optom-
echanical coupling between the optical mode of the cavity and the Bogoliubov mode of the BEC. It has been 
shown that if the cavity is exposed to a weak input signal behaving as an external signal laser which drives the 
intracavity mode perturbatively, the system acts as an optical transistor that can magnify the input signal in 
its output while the system is in the URSB regime. For this purpose, we have solved the Heisenberg-Langevin 
equations to obtain the reflected field amplitude in the cavity output whose real and imaginary parts represent, 
respectively, the absorptive and dispersive response of the system to the input signal. We have also shown that 
the system can switch from RSB to URSB by manipulating the s-wave scattering frequency which itself can be 
controlled by the transverse trapping frequency of the BEC. More importantly, we have shown that the amount 
of the system amplification can be enhanced and controlled by the coupling laser power as well as the s-wave 
scattering frequency as far as the system is stable and in the URSB regime. It has been shown that by decreasing 
the s-wave scattering frequency from one hand, and by increasing the coupling laser power from the other hand, 
the cavity power reflection coefficient at the signal frequency can be enhanced considerably before the system 
enters the instability region. Based on our obtained results, the input signal can be amplified more than 108% 
which is much larger than those obtained in previous studies.

Data availibility
All data that support the findings of this study are included within the article.
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