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A near real‑time web‑system 
for predicting fire spread 
across the Cerrado biome
Ubirajara Oliveira 1*, Britaldo Soares‑Filho 1, Hermann Rodrigues 1, Danilo Figueira 1, 
Leticia Gomes 2, William Leles 1, Christian Berlinck 3, Fabiano Morelli 4, Mercedes Bustamante 2, 
Jean Ometto 4 & Heloísa Miranda 2

Wildfires are aggravating due to climate change. Public policies need territorial intelligence to prevent 
and promptly fight fires, especially in vast regions like Brazil. To this end, we have developed a fire‑
spread prediction system for the Brazilian Cerrado, the biome most affected by wildfires in South 
America. The system automatically uploads hot pixels and satellite data to calculate maps of fuels 
loads, vegetation moisture, and probability of burning for simulating fire spread thrice a day for the 
entire Cerrado at 25 ha and for nine conservation units at 0.04 ha spatial resolution. In both versions, 
the model attains 65–89% of spatial match. Model results together with ancillary data, e.g., historical 
burned areas and annual  CO2 emissions from fires, are available on an interactive web‑platform that 
serves as a tool for fire prevention and fight, particularly in the selected conservation units where the 
platform is being used for daily operations.

High-impact fires are expanding in  Brazil1. Over the last two decades, those fires, characterized by extensive 
burned areas, frequent recurrence, high burning intensity and predominance in the dry season, have intensi-
fied, especially in the Brazilian Cerrado, by far the most affected biome in South  America2. And this trend is 
likely to exacerbate due to climate and land-use  change1. Wildfires highly impair the native  vegetation1 and the 
biodiversity it shelters, entailing greenhouse gas  emissions3, losses of ecosystem  services4–6, and also affecting 
regional  economies7 and human  health8,9. For example, high-impact fires between 2000 and 2019 imposed a 19% 
reduction in the photosynthetic activity of fire-affected plants in the Brazilian  Cerrado1, together with an annual 
drop of 5% in its biomass  stocks3, despite the fire-resilience ecology of this  biome10,11.

Unsurprisingly, firefighting has become increasingly difficult and costly all over the  world12. In response, new 
tools, including online platforms, are emerging to help prevent and combat wildfires. Some global initiatives, such 
as the  FIRMS2, provide satellite data on hot pixels (signal detection of radiance from fire flames at ± 1000 K)13, 
along with historical data on burned areas. Other regional initiatives put together high spatial resolution satel-
lite imagery with climate and topographic data to generate fire risk maps, e.g.: Digital Earth Australia Hotspots 
(DISARM)14; European Forest Fire Information  System15; Fire Information for Resource Management System 
US/Canada16; Amazon  Dashboard17; INPE-Queimadas18; Ontario Forest Fire Info  Map19; Wildland Fire Deci-
sion Support  System20, and Wildfire Risk to  Communities21. At the same time, market solutions for fighting fires 
are proliferating with private companies selling online services, including fire alerts based, for example, upon 
smoke plume  detection22–26.

Although the science of fire behavior has made great strides since the  1940s27, thus far most of the aforemen-
tioned systems basically provide maps of fire risk based on environmental and climatic conditions of a given 
time, which in general have a medium predictive  capability28. Therefore, there remains a need for near real-time 
systems capable of predicting the dynamics of fire behavior and thereby its propagation across vast regions as a 
function of terrain, vegetation structure and moisture, and fuel loads.

The science of fire behavior has a long tradition. Several models, such as  FARSITE29,  Prometheus30, and 
 Spark31, have been developed in order to help combat, prevent and manage forest  fires27,32–34. Those models hold a 
variety of approaches, encompassing from extremely simple representations, such as those of empirical  models35 
based on cellular automata  framework36–39, to very complex ones that represent the interactions between the 
atmosphere and  biosphere40–42. To illustrate some examples, the FARSITE model employs the Huygens principle 
to simulate the behavior of fire using equations of ellipses by assuming that a burning will have an ellipsoidal 
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shape determined by predictor variables, i.e., fuel loads, wind, moisture and vegetation structure, temperature 
and  topography29. The Prometheus model uses a cellular automaton to simulate fire spread based on predictor 
variables similar to those of  FARSITE30. In turn, the Spark model generates a fire probability surface using Monte 
Carlo simulation, also employing variables equivalent to those of the former  models31.

Despite the wide availability of fire spread models alongside the relative success of some in predicting fire 
behavior, such as  FARSITE43, their low usability can be an obstacle and even turn them impractical during emer-
gency  situations44, since they require lots of spatial data–e.g., topography, land-use, wind, vegetation structure 
and moisture, temperature and fuel loads– that must be obtained, processed and input by the user for running 
the simulations, what is usually time-demanding and needs expertise.

Currently, advancements in the science of fire, together with the readiness of remote sensed imagery and 
climate data in both high spatial and temporal  resolutions45, have allowed to model fire behavior specifically 
for the various environmental conditions of the terrestrial biomes. In addition, enhanced computer power at a 
low cost and the free availability of high-performance and user-friendly environmental modeling  platforms47, 
alongside advances in automated data acquisition and  processing3,48, have made it possible to develop near real-
time simulations of fire propagation across large geographic areas at a fine spatial  scale49.

Simulation results in the form of charts and maps available online and accessible to a broad range of users can 
thus be an effective means to help prevent and fight wildfires (e.g., PyreCast and  FireSim50,51). The underlying 
idea is that a user-friendly multimedia platform would allow access to a wide public who necessarily do not hold 
technical skills, so they could quickly interpret the visual results it portrays. With this in mind, we have developed 
a fully automated online platform (https:// csr. ufmg. br/ fipce rrado/ en/), which processes remote sensed imagery 
(MODIS and Sentinel-2) together with climate and terrain data to run near real-time (thrice a day) simulations 
of fire spread across the entire Brazilian Cerrado at 25 ha spatial resolution (500-m pixel) and at a fine spatial 
resolution of 0.04 ha (20-m pixel) for the encompassing regions of nine conservation units in this biome. Named 
as FISC-Cerrado (Fire, Ignition, Spread and Carbon Cycling), the system was developed under the auspices 
of the Forest Investment Program (FIP-Cerrado), a joint initiative by the Federal University of Minas Gerais 
(UFMG) and the National Space Research Institute (INPE) with collaboration of other research institutions, and 
sponsored by the World Bank Project no. P143185. Here, we report the underlying development, innovations, 
operation, and utilization of this system.

The FISC‑Cerrado system
The FISC system runs automatically, thrice a day, at 6 am, 10 am and 3 pm for the Cerrado as a whole and for the 
regions of seven national conservation units (CUs), under the management of the Chico Mendes Institute for 
Biodiversity Conservation (ICMbio), and two state parks. These specific hours were selected in accordance with 
the daily work schedule of CUs’ brigades. Those CUs are: (1) Chapada dos Veadeiros National Park, (2) Serra do 
Cipó National Park, (3) Serra da Canastra National Park, (4) Emas National Park, (5) Chapada dos Guimarães 
National Park, (6) Jalapão State Park, (7) Sempre-Vivas National Park, (8) Serra do Rola Moça State Park and 
(9) Serra Geral do Tocantins Ecological Station (Fig. 1).

The system steps consist of (1) download of hot pixels from ten satellites made available by INPE-Queimadas52 
(Table S1, Online Supplementary Materials),  MODIS46 and Sentinel-2  images45, and wind maps from the NOAA/
NCEP Global Forecast  System53; (2) image processing to generate maps of fuel  loads3, vegetation  moisture54 
and probability of  burning3 that are inputs for simulating fire spread; (3) execution of the fire spread model for 
the Cerrado and nine of its CUs thrice a day (simulations thus forecast fire spread for the next 8 h); (4) post-
processing of resulting maps for the Cerrado and for the CUs along with tabular data for display and download 
at a web-map server platform. In addition to maps of fire spread, the platform brings together a series of ancillary 
data which are constantly updated, such as hot pixels from Queimadas/INPE52, maps of fuel loads and vegetation 
 moisture54,  CO2 emissions from  fires3, historical records of burned areas over the last two decades per biome, 
municipality and conservation units, including their number of events, extent, recurrence, mean time interval 
between events and resulting fire  intensity1,55. Along with cartographic and chart visualization and querying, all 
outputs (maps and tables) are publicly available for download in format of csv, geotiff and kmz files, the latter 
for visualization on Google Earth (Fig. 2).

The model builds upon our previous experience in simulating in a spatially explicit way forest fires in the 
 Amazon56,57. Nevertheless, FISC-Cerrado brings up a brand-new design aimed to closely represent the fire 
ecology in the Cerrado as well as to improve the propagation mechanism based on empirical  experiments35,55,58. 
All model components are developed as submodels and stored as new operators within the fire library-tab of 
Dinamica EGO freeware (www. dinam icaego. com). Dinamica EGO version 7.* takes advantage of full parallel 
 processing59. Its execution system uses a variable number of execution threads (called workers) boosted by 
task-stealing algorithms to provide load balancing and flexibility for running simultaneous tasks. In theory, all 
model components can run in parallel, including independent operators, loops, and map  tiles60. This architecture 
reduces drastically the execution time of complex models that run either locally or on the cloud. For building 
the online platform, we employ our in-house map server (https:// mappia. earth/). Mappia freeware offers a set 
of customizable ready-to-use tools called elements that are assembled to develop map server platforms with 
various designs and layouts. Mappia elements allow a wide set of user interactions, such as inspect values, apply 
map algebra, display time-series maps and create interactive charts. Furthermore, Mappia can integrate multiple 
data sources from online databases, like the Planet imagery, also available on the FISC-Cerrado platform (Fig. 2).

https://csr.ufmg.br/fipcerrado/en/
http://www.dinamicaego.com
https://mappia.earth/
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Model inputs and setup
The fire propagation model uses as inputs: (1) hot pixel data; (2) a map of probability of burning given the 
availability of fuel loads and historical records of burned  areas3; (3) a map of dry biomass percentage used as 
fuel  loads3; (4) the Normalized Difference Water Index (NDWI) as a proxy for vegetation moisture; (5) a digital 
elevation map; (6) maps of wind speed and direction, and (7) combustion rates per vegetation  type61, and (8) a 
series of numeric constants from fire behavior experiments (Fig. 3, Table S2).

Ignition sources. As ignition sources for triggering the propagation of a fire, the model employs the hot 
pixels from INPE-Queimadas, which collects and makes available hot pixel data from the satellites Aqua, Terra, 
GOES-16, NOAA-18, NOAA19, MSG-03, METOP-B, METOP-C, and NPP-375 (Table  S1). These data are 
downloaded and filtered per every time interval between model runs.

Satellite imagery. We chose to employ data that could be updated and processed automatically. In this 
way, the platform downloads MODIS  images62, on a daily basis, and Sentinel-263, whenever new images are 
available (usually between three and five days). For the Cerrado as whole, the model employs MODIS images, 
bands 1, 2, 3, 4, 6, and 7 as well as the burned area  product62,64 at 500 m spatial resolution. For the selected CUs, 
the model uses Sentinel-2, spectral bands 2, 3, 4, 8, 11 and 12 at 20 m spatial  resolution63. Both sets of images are 
assembled to form continuous mosaics and then processed to generate the variables used as input for modeling 
fire behavior and propagation, namely: a vegetation moisture index, percentage of dry biomass (fuel loads) and 
the probability of burning.

Wind speed and direction. The model obtains every three hours wind data from the collection of Atmos-
pheric Models of the NOAA/NCEP Global Forecasting  System53. Their spatial resolution is 0.5° (≈ 50 km), and 
the wind is calculated at 10 m from the Earth’s surface.

Figure 1.  Cerrado biome and regions of the nine conservation units covered by FISC-Cerrado. 1– Jalapão State 
Park and Serra Geral do Tocantins Ecological Station; 2—Chapada dos Veadeiros National Park; 3—Chapada 
dos Guimarães National Park; 4—Emas National Park; 5—Serra da Canastra National Park; 6—Sempre-Vivas 
National Park; 7—Serra do Cipó National Park; 8—Serra do Rola Moça State Park. Map created in ArcGIS 10.1 
(http:// www. esri. com).

http://www.esri.com
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Figure 2.  FISC-Cerrado web interface. 1—home page depicting hot pixels; 2—high spatial resolution map of 
fuels loads; 3—zoom on the map of fire spread risk; 4—graphs from map query showing the frequency of fires 
for the year of reference (bars) and its historical average per municipality; 5—frequency of burned areas. Maps 
created using Dinamica EGO (https:// dinam icaego. com/).

Figure 3.  FISC-Cerrado main components. Input data (green), preprocessing of input data (blue) for feeding 
the cellular automata modules (gray).

https://dinamicaego.com/
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Elevation. Shuttle Radar Topography Mission (SRTM) data—spatial resolution of 30  m—66 are used to 
derive the up-and-down slopes from a fire front.

Fuel loads consumption rate per vegetation type. Estimate of combustion rates is key for modeling 
fuel loads dynamics during fire events as well as to predict the extinguishment of a fire. The rates of fuel loads 
consumption obtained from field experiments vary as a function of the Cerrato main vegetation  types32,61. We 
applied the map of vegetation height (h)66 to separate areas consisting mostly of grass (h ≈ 0 m), herbaceous 
plants (0 < h ≤ 1 m), shrubs (1 < h ≤ 2 m) and trees (h > 2 m), so as to assign their respective combustion rates 
(Table  S2).

Probability of burning. One of the challenges for modeling fire in the Cerrado is the inclusion of the 
human factor given that most fires are  anthropogenic67. To do so, we derived the probability of burning (the 
Bayesian post-probability) given fuel loads as the prior probability and the frequency of burning obtained from 
MODIS burned area product as the conditional  probability3. In such a way, we assume that areas that burn more 
frequently have a higher chance of burning again if enough fuel loads are  available3.

Percentage of dry biomass (fuel loads). We map the percentage of dry biomass as a proxy for fuel 
 loads3. In the Cerrado, its open vegetation formations, such as grasslands, shrubs and bushlands, allow the per-
centage of dry biomass to be gauged using remote  sensing68. To map the dry biomass percentage, we used the 
method by Oliveira et al.3, which is an adaptation from Franke et al.’s68 to generate a single map of continuous 
values, instead of a RGB composite. This method applies three spectral bands (Red, 640–670 nm; Near Infrared 
VNIR, 850–880 nm and Short-Wave Infrared SWIR, 1570–1650 nm) to produce a map of spectral mixtures 
between green and dry vegetation and soil, which is updated daily for MODIS and between 3 and 5 days for 
Sentinel-2.

Vegetation moisture. Vegetation moisture is a key factor for estimating the vegetation flammability and in 
the case of a fire the chances for its extinction. As there is a large variation over time, we inferred the vegetation 
moisture using a remote sensed index. The method applies the Normalized Difference Water Index (NDWI)—a 
combination of near-infrared (0.75–1.4 μm) and shortwave infrared (1.4–3.0 μm) bands—to estimate the water 
content in  leaves54, thereby allowing the mapping of vegetation moisture at a high spatial resolution (20 m for 
Sentinel-2) and high frequency as well, i.e., 3–5 days for Sentinel-2 and daily for MODIS (Fig. 3).

Simulation of fire propagation
The simulation of fire propagation is based on cellular automata (CA) (Table S3 and Fig. S1). The CA simulta-
neously analyzes the chances of all map cells to catch fire, or to go out, if they are on fire. In addition, the CA 
calculates the fire intensity (joules) and speed  (ms−1). The CA consists of five interacting modules (Fig. 3): (1) 
fire spread dynamics; (2) consumption of fuel loads; (3) fire front speed; (4) fire intensity; and (5) vegetation 
moisture dynamics (Fig. 3). The result of each module determines the results of all of them in the next time-step. 
The model equations and constants that govern the behavior of fire in relation to wind, elevation and fuel loads 
are developed from physical experiments and empirical  studies32,33,35,44,61.

Cell flammability. In a given step of the CA, for each map cell, the model performs five successive tests to 
determine whether a cell ignites or not. (1) First, it checks whether there is at least one neighboring cell (Moore-8 
neighborhood) on fire or holding a hot pixel (Fig. 4). (2) if true, the central cell may ignite if its fuel loads are 
greater than zero (Fig. 4A). (3) Next, the model calculates the combined flammability from the probability of 
burning (Fig. 4B); elevation fT36 (Fig. 5 and Eq. 1), wind fW (Fig. 5 and Eq. 2), vegetation moisture fM69 and the 
number of neighboring cells on fire (Eq. 3). 4) If the resulting value is higher than the minimum threshold (v1, 
Fig. 4B) obtained from historical records of burned areas (2001–2020, MODIS product MCD64A1), the cell may 
catch fire. 5) Finally, the model draws a random number between 0 and 1. A value < 0.42 then triggers the fire 
(Fig. 4C). This threshold was estimated interactively until the cellular automata could replicate a radial fire front 
under constant fuel loads, no wind and on a flat surface (Fig. S1).

The flammability effect due to elevation takes into account whether the neighboring cells on fire are below 
or above the central cell and the slope gradient between them (Fig. 5, Eq. 1).

where fe is the flammability effect as a function of the number of neighbors i on fire given their elevation in rela-
tion to central cell, ∅ is the angular slope, AΔ is positive when the neighbor i is below the central cell and negative 
when above, α is an empirical angular constant and f is a binary value, assuming 1 for neighbor i on  fire36. The 
flammability factor due to wind takes into account the direction and speed of wind coming from neighboring 
cells on fire. It is positive when the wind blows to the central cell and otherwise negative (Fig. 6).

(1)fe =

8
∑

i=1

(eα∅iA� ∗ fi)

(2)fW =

8
∑

n=1

(

cw1 ∗ e
(cw2∗Si∗(cos(Di)−1)

)

∗ Scw3i ∗ fi)
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where fW is the flammability effect as a function of wind speed and direction from the neighbors i, cw1, cw2 an 
cw3 are empirical constants, Si is the wind speed in m/s and Di the angle formed between the wind direction (in 
degrees) and neighbor i relative to the central cell and fi is a binary value for the presence of fire in the neighbor 
i69 (Eq. 2).fM is the flammability effect as a function of the vegetation moisture (Eq. 3), where b1 is a constant 
and M is the NDWI index from 0 to  169.

Figure 4.  The flammability module. (A) test for the presence of fuel loads; (B) flammability test combining the 
probability of burning, topographic and wind effects and vegetation moisture; (C) stochastic test to produce 
radial fire fronts.

Figure 5.  Down slope (A) and upslope influence on fire (B). The curves indicate the elevation effect (y axis) in 
relation to slope angles (∅) between central cell and its neighbor on fire (Eq. 1).
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Finally, fF is the combined flammability factor (Eq. 4), given p(B|D) the probability of burning; fe, the eleva-
tion effect; fW, the wind effect, and fM, the flammability from vegetation moisture.

Fire extinction. For a cell on fire, the fire will go out when there are no fuel loads left. If there are still 
fuel loads, the model calculates the chance of fire extinction (adapted from Alexandridis et al.69) (Fig. 7, Eq. 5) 
upon the rate of fuel consumption per vegetation type and moisture. If the vegetation moisture is lower than v2 
(Fig. 7), the fire goes out. The value of v2 is the highest vegetation moisture observed within historical burned 
areas (MODIS product MCD64A1 from 2001 to 2020).

where pE is the probability of fire extinction given the fuel consumption rate by vegetation type V, b1, b2 are 
empirical  constants69 (Table S2), and M the vegetation moisture.

Fuel loads dynamics. For a cell on fire, its fuel loads reduce according to Eq. (6)

(3)fM = e(−b1∗M)

(4)fF = p(B|D) ∗ fe ∗ fW ∗ fM

(5)pE = V ∗ 1/e(−b1∗M)b2

Figure 6.  Effects of wind direction (A) and wind speed (B). In (A) the wind effect is a function of the wind 
angle in relation to the fire direction towards the central cell at a constant wind speed of 10 m/s. The wind 
effect due to wind speed at different direction angles is shown in (B). Red and orange colors indicate the wind 
directions that favor the propagation of fire towards the central cell (Eq. 2).

Figure 7.  The fire extinction module. The algorithm tests whether the central cell on fire still holds fuel loads 
(A), or if the probability of fire extinction (B) given pE (Eq. 5) is greater than v2.
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where B is the amount of fuel loads at time t and t-1, C the consumption rate per vegetation type and I a flam-
mability factor as follows:

M is the vegetation moisture, and b1 and b2 empirical  constants36 (Table S2).

Fire spread speed. The model uses the ratio between the distance propagated by a fire front and its duration 
to quantify the speed of propagation (m/s). For doing so, the model first identifies individual patches of burned 
areas, hence the corresponding distance of propagation. Since in the CA, a cell size is fixed, the only variable 
that needs to be estimated is the model time-step. We used data from controlled experiments that measured fire 
 speed58 to estimate the CA time-step. For 20-m spatial resolution, the time step is equivalent to 38.61 s, while for 
500 m spatial resolution the time-step is 965.25 s.

Fire intensity. To estimate the fire intensity, we applied Eq. (8) from  Byram55, where In is the fire intensity 
in  KJm−1  s−1, C is rate of fuel loads consumption and D is the amount of fuel loads consumed in each time-step 
(Eq. 6) and S is the speed of fire propagation.

Vegetation moisture dynamics. Vegetation moisture fluctuates along the day, consequently there is a 
need to determine the vegetation moisture specifically for the hour of  burning70. To this end, we modeled the 
hourly vegetation moisture (Mt) by fitting a polynomial curve (Eq. 9) to a 10-years series of minute time-step 
observations from a set of met-stations located in the Serra do Cipó National Park (Fig. S2). The fit is weighted 
by the number of neighbors on fire and the fuel consumption rate per vegetation  type71 (Eq. 9).

where Mt is the moisture at hour t, M is the daily vegetation moisture, N the number of neighbors on fire, C the 
fuel consumption rate and e the Euler’s number.

Monte Carlo simulations
The fire spread model is strongly influenced by the predictor variables, most of which come from daily monitor-
ing systems. These variables vary along the day, hence may not represent the environmental conditions on the 
time a fire is being simulated. For example, wind as a strong determinant of fire behavior may undergo sudden 
changes in short time intervals and at a local scale, which are seldom detected by the available meteorological 
systems. An alternative to include these variations in fire predictions is the use of Monte Carlo simulations. By 
randomly varying the predictor variables (ignition sources, wind, vegetation moisture, and fuel-loads) within a 
given interval, one can simulate a range of fire propagation scenarios for some specific geographic region. For 
doing this, we developed offline simulations for each of the nine CUs by changing the predictor variables that 
are amenable to hourly variation (wind, fuel loads, and vegetation moisture) along with ignition sources, which 
in this case are allocated randomly. Values for these variables are drawn from a normal distribution centered on 
the average of observed values obtained from historical records of large fire events, including the spatial distribu-
tion of hot pixels. The Monte Carlo simulations have the advantage of generating a panorama of areas that most 
likely burn within a geographic region (Fig. S3). However, as a disadvantage, there is a high computational cost. 
For each CU, the 20-m resolution models took 24 h, on average, to run 1000 rounds. The resulting probability 
maps are used to indicate the most prone areas to fires as a means to plan firebreaks aimed at protecting sensitive 
woodlands under an Integrated Fire Management Program of ICMBio.

Local interactive version
For simulating fire spread from locations determined by the user in order to test the viability for prescribed 
burning, we provide a local interactive version of FISC-Cerrado. This version, also developed using Dinamica 
 EGO47, comes with a wizard-interface for easy and customized set up (Fig. S4). The user needs only to specify 
the geographic coordinates for ignition points and choose the dates and surrounding area for simulating a fire. 
The user-interface is simple and as such can be used by anyone without any specialization or previous training. 
Although the model runs on a local computer, the input data (wind, vegetation moisture, probability of burning 
and fuel loads) are constantly and automatically updated from the FIP-Cerrado online platform, hence eliminat-
ing the local processing of input data. For future date of simulation, the local model adjusts the input data (fuel 
loads and vegetation moisture) up to 20 days after the last satellite image acquisition by using polynomial curves 
fit to historical data (2015–2020) (Eq. S1).

Model validation
To test the predictive power of our model, we selected six wildfire events that occurred in the Cerrado between 
2006 and 2020 that were not tamed by fire brigades in order to avoid inflating overprediction errors (Table S4). 
Those selected wildfires located in the CUs of Serra Canastra, Emas, and Chapada dos Veadeiros (Figs. 8 and S5). 

(6)Bt = Bt−1 − (Bt−1 ∗ C ∗ I)

(7)I = 1/(e(−b1∗M)b2)

(8)In = C ∗ D ∗ S

(9)

Mt =
((

−4e− 20 ∗ t4
)

+
(

1e− 14 ∗ t3
)

−
(

8e− 10 ∗ t2
)

+ (2e− 05 ∗ t + 0.9734) ∗M
)

+M))∗
N

100
∗C
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As ground truth, we used the respective final burned areas from MODIS for validating our predictions as well as 
the Monte Carlo simulations. As the validation metrics, we applied a map comparison metric—i.e., the Reciprocal 
Similarity Comparison with exponential  decay47—, and the  accuracy72 and  sensitivity72 tests, which assess the 
overall hit and the presence hit rate, respectively. The methods only consider the area formed by union of the 
extents of both observed and simulated fires, hence eliminating the unchanged areas—a mandatory procedure 
for assessing spatial matching. The validation was performed for simulations with two spatial resolutions, 500 
and 20 m. To validate the Monte Carlo simulations, we calculated the Area Under the Curve (AUC)72, comparing 
the probability values with the maps of the same selected fire events.

As a result, the fire spread model showed a high predictive capacity for the 20-m resolution (reciprocal simi-
larity = 0.67, accuracy = 0.86 and sensitivity = 0.81) and the 500-m resolution version (reciprocal similarity = 0.65, 
accuracy = 0.89 and sensitivity = 0.71), hence with little difference in the predictive capacity for both resolutions. 
These values are higher than those obtained from a null model (i.e., with constant fuel loads and no wind, Fig. 
S6). However, the 500-m model yielded lower precision values due to overprediction (Fig. 8). The fire spread 
probability from the Monte Carlo simulations showed a high predictive capacity (average AUC = 0.92). The high-
est AUC was 0.98 for the Canastra Park, 2018 fire, and the lowest of 0.87 for Emas Park, 2019 fire.

Utilization of FISC‑Cerrado and future prospects
Our fire spread model holds a good predictive ability for large fires both in the Cerrado as a whole and for the 
CUs’ regions as well. Results from validation also point out that even without high precision wind data, the model 
can still make good predictions under different environmental conditions. Hence, FISC-Cerrado not only puts 
together the science of fire into a single modeling framework, it also validates many research  findings35,36,55,58,61,69, 
furthering new studies to overcome the main limitations of today.

In fact, none of initiatives to date, whether  global2 or  regional2,30,31,73, provide a whole set of solutions as those 
available on the FISC-Cerrado platform (both online and local versions), especially regarding the near real-time 
prediction of fire spread in a completely automated way. And even the most recent initiatives aimed at modeling 
fire spread over vast  areas74 do not come close to the spatial resolution (20 m) of our thrice-a-day simulations 
for the nine CUs’ regions that encompass about 6.1 Mha, not to mention the 213 Mha of the entire Cerrado. 
These simulations process 36 GB of data per run, on average, which takes from 30 min. to 2 h (depending on 
the number of ignition sources) on a server with 80 cores of 2.77 GHz (of which the model utilizes simultane-
ously 40) and 768 GB RAM. This efficiency in data processing is only possible thanks to Dinamica-EGO 7*. 

Figure 8.  Validation of FISC-Cerrado. Simulated fire scars (20 m) laid over burned areas from  MODIS64. 
Average validation values depicted on the right bottom. Map created in ArcGIS 10.1 (http:// www. esri. com).

http://www.esri.com
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Its architecture enables massive data processing by running on parallel multiple tasks and regions, such as the 
individual CUs, while simultaneously preparing the outputs for publication. Moreover, the integration of EGO 
operators with Python and R codes together with the Dinamica EGO visual programming interface allows the 
complete automatization of tasks, including data downloading, processing, and publishing. In addition, the Map-
pia map server enables the quick display of the massive dataset output from the model on an online dashboard 
containing interactive maps and charts. And all of this is freely available. In order to disseminate our expertise, 
all model components and submodels developed specifically for our project can be found at the EGO online 
library of operators. As such, they can be downloaded, promptly used or opened as an individualized model to 
be adapted and reused for new developments.

Unlike the requirements to operate fire models, such as the American  FARSITE29 and the Canadian 
 Prometheus30, the user-friendly interface of FISC-Cerrado Platform, alongside the automatization of the entire 
chain of tasks, allows its use by practitioners who do not have technical skills, such as GIS knowledge. The 
platform has been also developed tailored to end-users’ needs who requested the addition of a series of ancil-
lary information to help their daily field operation, such as the Planet high-spatial resolution images. Finally, to 
support the utilization of the Platform, we have a carried out a comprehensive training program that enabled its 
utilization by ICMbio technicians for planning integrated fire managing and guiding firefighting operations in the 
monitored CUs (https:// csr. ufmg. br/ fipce rrado/ en/). Thus, the FISC-Cerrado platform introduces an advanced 
territorial intelligence tool for the open and user-friendly access by a broad community of practitioners from 
operational fire brigades to policy makers. In face of ever-more destructive wildfires, such a tool is becoming 
increasingly needed to optimize prevention and firefighting campaigns both in terms of their costs and time-
response. Increasing our effectiveness in taming wildfires in vast regions is vital for biomes like Cerrado, which 
still shelters large tracts of native vegetation.

For doing so, there is a need for continued public investments in wildfire mitigation. Despite experiencing 
mounting wildfires, Brazil invests but ≈US$ 3  ha−1  year−1, on average, in fire prevention and mitigation in the 
national CUs of the Cerrado and  Amazon7. Although a paltry figure when compared with those invested in 
the Global  North7, it has made a difference in reducing fire occurrence in those areas. The Forest Investment 
Program of the Climate Investment Fund through the World Bank invested about US$ 2.5 M over 5 years in 
the development of the FISC-Cerrado platform. According to the Brazilian Association for Development, this 
project paid back in benefits to the society USD 5.89 for each dollar  invested75. However, the lack of continued 
investments puts in risk the future of FISC-Cerrado that has proven to be an essential tool for helping mitigate 
wildfires. This platform also needs to be expanded to the Amazon, where research on fire modeling has already 
made some  headway56,57, and Pantanal, which together with the Cerrado are the biomes where high-impact fires 
 occur1. In this respect, the use of physical principles of fire behavior as the basis for FISC-Cerrado makes it easy 
to adapt its architecture to other Brazilian biomes and regions of the world.

Well-funded research on the ecology of fire in the various terrestrial biomes will be central to underpin 
modeling development. There is also a need for higher spatial and temporal resolution wind data from an 
enhanced network of MET stations. In parallel, progress in computer performance to handle high spatial-
resolution simulations for large areas, e.g., 20 m, will be mandatory. Future enhancements could include, for 
example, the logistics for mobilizing fire brigades, especially in remote areas of the Amazon, parallel processing 
of individual fire propagation fronts, incorporation of burned areas from high temporal frequency sensors like 
VIRS, and the prompt and easy communication of alerts via social networking channels. And, as importantly, 
this must be attained at a moderate computer cost by continuing developing Dinamica EGO freeware that is 
tailored to take advantage of gaming computers, which in a distributed computing system can perform on a 
par with high-end computers and clouds. Under the current climate crisis, those innovative tools when used 
in concert with smart field operations not only will help mitigate the socioeconomic and ecological burden of 
wildfires, it will benefit the society as whole.

Data availability
FISC components are available as submodels on Dinamica EGO online store (www. dinam icaego. com), Map-
pia elements and code are available on https:// mappia. earth and data used in the FISC-model at FISC-Cerrado 
online platform.
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