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A deep learning architecture 
for energy service demand 
estimation in transport sector 
for Shared Socioeconomic 
Pathways
Siddharth Joshi 1,2,3*, Brian Ó Gallachóir 1,2,3 & James Glynn 1,2,3,4

Meeting current global passenger and freight transport energy service demands accounts for 20% 
of annual anthropogenic CO2 emissions, and mitigating these emissions remains a considerable 
challenge for climate policy. Pursuant to this, energy service demands play a critical role in the energy 
systems and integrated assessment models but fail to get the attention they warrant. This study 
introduces a novel custom deep learning neural network architecture (called TrebuNet) that mimics 
the physical process of firing a trebuchet to model the nuanced dynamics inherent in energy service 
demand estimation. Here we show, how TrebuNet is designed, trained, and used to estimate transport 
energy service demand. We find that the TrebuNet architecture shows superior performance compared 
with traditional multivariate linear regression and state of the art methods like densely connected 
neural network, Recurrent Neural Network, and Gradient Boosted machine learning algorithms when 
evaluated for regional demand projection for all modes of transport demands at short, decadal, and 
medium-term time horizons. Finally, TrebuNet introduces a framework to project energy service 
demand for regions having multiple countries spanning different socio-economic development 
pathways which can be replicated for wider regression-based task for timeseries having non-uniform 
variance.

Global efforts to contain atmospheric warming within 2 ℃ compared to pre-industrial era form the backbone 
of our response to mitigate the detrimental effects of climate change. Amongst the energy sectors, the transport 
sector accounted for 29% of the total global final energy consumption in 20181 and contributed to circa 20% of 
the total global anthropogenic CO2 emissions2. This makes accurate analysis of transport sector energy demands 
considerable with respect to the aim of climate change mitigation, while negotiating one of the basic needs of 
humanity—the need for mobility3. The United Nations estimates that the global population could grow from 7.7 
billion people worldwide in 2019 to around 9.7 billion in 2050. The additional population and economic growth 
will likely lead to increased demand for transport services.

To enable formulation, evaluation and refining of global and national energy policies, accurate representation 
of historical and future energy demands in transport sector is important. Additionally, projecting future energy 
demands in the transport sector is important for various applications ranging from energy system models that 
inform future energy scenarios for policy formulation, to infrastructure planning projects that requires future 
demand estimates to determine the scale of additional infrastructure requirements, to energy companies that 
use demand estimates to project energy commodities futures prices. In this context, increasing the accuracy of 
the transport sector’s energy demand projections become pertinent.

Projection of energy demand in the transport sector is a nuanced exercise, with infrastructure availability, 
behavioural aspects and geography of the countries making the prospect of creating a generalized projection 
method convoluted. In the context of energy systems modelling that inform the global and national climate 
mitigation efforts, the integrated assessment modelling (IAM)4 and energy system modelling (ESM) communi-
ties represent energy demand for the transport sector typically as a physical energy service demand metric in the 
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form of passenger kilometres (PKM) and tonne kilometres (TKM). The PKM metric is the product of the total 
number of passengers travelling and the total distance travelled by the vehicles for a specific mode of transport. 
Analogous to PKM, TKM is the product of total tonnes transported by a transport mode and the total distance 
travelled by the vehicles for that mode.

Projection of energy service demands (henceforth named as demands) requires three main components—
historical demands, drivers of the demand and finally mathematical relationships between the demand and its 
drivers. The drivers are the metrics that have historical coupling with the historical demands and have a sound 
methodology for their future projected values. Naturally, improving the projection accuracies of future transport 
demands will require improvement in all the three components. This was resonated in a paper by Yeh et al.5 where 
a renewed call to improve the future transport demands was documented. The paper also called for incorporation 
of transport sector related big data to improve the insights presented by the energy system modelling exercise. 
While big data can provide synergies for the development of transport sector in an IAMs and ESMs, equally 
important are the methods that model the relationships between demands and drivers.

To model the relationship between drivers and demands, various methods are used ranging from regression 
to simulation-based approaches. Regression based methods are the most common form of relationship analysis 
done by the energy system modelling teams to project transport demands6. In regression-based methods the 
energy demand (including transport demand) is modelled as dependent variable and drivers like Gross Domestic 
Product (GDP), population, fuel prices etc. are modelled as independent variables 7–10. The relationship between 
demand and drivers is calculated by mathematically modelling the historical demand-driver trends, which is then 
used to project future demand values. Simulation based approaches are used to simulate demands for a specific 
set of demand-driver assumptions and future growth narratives11–16. Here the demand projection is dependent on 
base year calibrations, elasticity of demands for different drivers, assumptions around how the drivers will evolve 
over the projection time horizon etc. The simulation of demands is also contingent on the demand dependence 
of one sector on another sector e.g., relationship between growth in electricity charging infrastructure to growth 
in electric vehicle ownership. In some studies, simulation-based demand projection is done by assuming the 
growth in drivers for the projection time horizon. These assumptions are often dependent on the narratives of 
a specific policy. In any case, Business as Usual (BAU) projections are done using a regression-based approach 
followed by simulation of demands for different scenarios17. Even outside the sphere of energy system modelling 
e.g., in the economic analysis of a project, infrastructure planning, etc. transport demand projections tasks are 
handled by a combination of regression and simulation based methodologies.

Recently, machine learning based approaches that use artificial neural network (ANN) architectures18–23 to 
project transport demand at country level have shown sizable gain in accuracy over traditional regression-based 
methods. The machine learning based methods have also shown advantages over nuanced transport demand 
forecasting methods like discrete choice24 and commuter mode choice modelling approaches25. Projecting trans-
port demand is a timeseries forecasting exercise and deep-learning architectures have shown promising results 
in this field26–30.

While the contemporary methods work well for projecting transport demands for a single country, projection 
of these demands for a region as a whole is complex due to non-uniform variance of the historical demand i.e., 
the demand cannot be accurately represented by a single regression line. This is because different countries in 
a region have different demand growth trajectories as they in different stages of socioeconomic development. 
One solution to mitigate this issue is to generate demand projection models for each country in a region and 
then aggregate projected demands for the region. To this further complexity in demand projection is added by 
different modes of transportation e.g., Air, Rail, Road and Marine and different classes like passenger or freight. 
It can be observed that generation of multiple individual country’s model is not the ideal solution as a region may 
have more than 30 countries e.g., African continent. At the same time, it is also important to analyse a region as 
a whole to account for interdependencies of demands between countries.

Acknowledging the complications in the projection of future regional transport demands it can be concluded 
that any method developed to mitigate this research gap would need to automatically group countries based on 
their demand trajectories in relation to the drivers and choose an accurate pathway for their demand projection. 
Additionally, the model should account for different modes and classes of transportation. This task cannot be 
accomplished by the contemporary artificial neural network methods as these methods learn from the historical 
demand and driver data, aggregating countries into a single regional time series and provide projections that 
are biased towards the mean of the aggregated data sets. Effectively, the issues highlighted in the introduction 
remains same for both traditional and contemporary methods.

Here, to mitigate the complexities around regional transport demand projection we introduce a novel machine 
learning architecture—TrebuNet (Fig. 1), that draws its design inspiration from firing of a trebuchet. The archi-
tecture can project the future transport demands of individual countries in a region by training on historical 
transport demand and driver relationships and further by automatically selecting accurate demand projection 
quantile for each country. We further evaluate this architecture on its (1) ability to learn from historical demand 
and driver data, (2) short term projection capabilities, and (3) decadal projection accuracy on recorded data. 
The architecture is then applied to generate (1) medium-term transport demand projection for Organisation for 
Economic Co-operation and Development (OECD) countries for both passenger and freight class of transporta-
tion and (2) medium-term global maritime freight transport demand projection. The medium-term transport 
demand projections are finally compared for their accuracies and fidelity. The machine learning based model 
architectures are often referred to as a ‘Black box’, where the internal working of the architecture is not exposed 
to the end user. We attempt to demystify the ‘Black Box’ perception by introducing relationship surfaces to aid 
in visualising the internal workings of the TrebuNet.
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Methods
In this study we explored and analysed the application of TrebuNet by projecting transport demands for OECD 
countries. We designed transport demand projection models for Air, Road, and Rail mode of transport for pas-
senger and freight classes. Further we applied TrebuNet to global maritime freight transport demand projection. 
TrebuNet architecture was evaluated for its accuracy with multivariate linear regression, ANN model, Recurrent 
Neural Networks (RNN), Gradient Boosted machine learning methods.

Demand and driver relationship.  We developed individual TrebuNet models for a combination of trans-
port modes and classes to mitigate the complexity around representing different transport configurations in a 
single projection architecture. The historical transport demand data for OECD countries was collected for six 
data series Aviation- Passenger (AP) and Freight/Goods (AG), Road-Passenger (RoP) and Freight/Goods (RoG), 
and Rail-Passenger (RaP) and Freight/Goods (RaG). The historical transport demand data for global countries 
was collected for Maritime Goods data-series (MI), Table 1. Spread of the collected data is shown in Fig. 2.

The historical demand data was collected from the United Nations and International Transport Outlook’ 
2018 reports. For drivers we used historical socioeconomic metrices in the form of Population31 and GDP32 
(Purchasing Power Parity (PPP), 2005$). We chose these drivers as they have sound methodology for their future 
estimation and have shown high correlation with historical transport demand17,33–35. The relationship between 
historical transport demand and drivers was established using TrebuNet architecture. A visualisation of trends 
between transport demand, GDP and Population is shown in Supplementary Figs. S.1–S.3. Statistical description 
of collected datasets is shown in Supplementary Tables S.1 and S.2.

Future projections of transport demands were based on the Shared Socioeconomic Pathway (SSP)36–38 data-
base. The SSPs39–41 were created by an international team of climate researchers, economists, and energy systems 
modelers to generate internally consistent pathways for future worlds across the physical sciences, impacts and 
mitigation research fields. SSPs are a framework to quantify and represent via socio-economic metrics the dif-
ferent worlds that are possible into the future. The framework for SSPs starts with a narrative defining five differ-
ent worlds based on challenges to adaptation and mitigation. SSP1 is the sustainable world, SSP2 is the middle 
ground, SSP3 is the world under regional rivalry having highest challenges to mitigation and adaptation, SSP4 
is the world of inequality with highest challenge to adaptation, and SSP5 is the fossil fuelled world with highest 
challenge to mitigation. The SSP narratives are quantified into different socioeconomic driver metrics, of which 

Figure 1.   TrebuNet Concept. (a) represents the physical process of learning during launch of a projectile, (b) 
represents the Learning Phase of TrebuNet where different projections for different quantiles are generated. (c) 
represents the physical process of firing the projectile accurately after learning, d represents the Firing Phase 
of TrebuNet where different quantiles are combined into one accurate projection based on errors in different 
quantile projections.
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we use GDP and population metrics which are proxy for economic and social development respectively to project 
transport demands using the TrebuNet architecture. SSP pathways were also used to generate scenarios for IPCC 
6th Assessment Report (AR6) reports42.

TrebuNet deep learning architecture.  The Trebuchet Network deep learning architecture or TrebuNet 
was designed to deliver on two main goals (1) to construct a model that was capable of learning from a pool of 
transport demand and driver data for a set of countries and (2) the trained model should be capable of accurately 
projecting transport demand for each country based on its drivers. While achieving the aims, the TrebuNet 
architecture was designed to work on sparse datasets that have incomplete temporal datapoints.

The inspiration for TrebuNet architecture was drawn from the physical process of hitting a target using 
trebuchet. In a trebuchet, the human operator initially learns by trial and error the different projectile pathways 
to hit a target and then chooses an optimal pathway to hit the target. To simplify, the physical process of firing a 
trebuchet can be divided into learning phase where the operator learns different projectile firing pathways and 
firing phase where the operator uses the learned knowledge to choose best pathway for the target. Correspond-
ingly, the TrebuNet architecture was constructed in two cascading phases—Learning and Firing (Fig. 3).

Table 1.   Description of data-series and their sources.

Data series Short name Transport metric Years covered URL

Aviation passenger AP PKM 2000–2017 https://​unsta​ts.​un.​org/​unsd/​mbs/​app/​DataS​earch​
Table.​aspx

Aviation goods AG TKM 1980–2017 https://​data.​world​bank.​org/​indic​ator/​IS.​AIR.​
GOOD.​MT.​K1

Rail passenger RaP PKM 1980–2017 https://​doi.​org/​10.​1787/​3272d​c99-​en

Rail goods RaG TKM 1980–2017 https://​doi.​org/​10.​1787/​b16cb​4da-​en

Road passenger RoP PKM 1980–2017 https://​doi.​org/​10.​1787/​3272d​c99-​en

Road goods RoG TKM 1980–2017 https://​doi.​org/​10.​1787/​b16cb​4da-​en

Maritime goods MI TKM 2000–2017 https://​unctad.​org/​system/​files/​offic​ial-​docum​ent/​
rmt20​18_​en.​pdf

Gross Domestic Product GDP N.A 1980–2017 https://​www.​imf.​org/​en/​Publi​catio​ns/​WEO/​weo-​
datab​ase/​2019/​Octob​er

Population PPLN N.A 1980–2017 https://​popul​ation.​un.​org/​wpp/​Downl​oad/​Archi​
ve/​Stand​ard/

Shared socioeconomic pathways SSP N.A 2015–2050 https://​tntcat.​iiasa.​ac.​at/​SspDb/​dsd?​Action=​htmlp​
age&​page=​about

Figure 2.   Boxplots showing the spread of the collected transpot demands. Boxplot shows the minimum, 
maximum, mean and interquartile range for the transport demand data collected for different data-series. The 
unit on x-axis is either PKM or TKM in billions depending on the data-series. The number of observations per 
data-series is shown on top of the respective boxplot.

https://unstats.un.org/unsd/mbs/app/DataSearchTable.aspx
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https://doi.org/10.1787/3272dc99-en
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https://population.un.org/wpp/Download/Archive/Standard/
https://population.un.org/wpp/Download/Archive/Standard/
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The Learning phase of the TrebuNet comprised of densely connected ANN layers, custom built for each 
data-series e.g. Aviation Passenger (AP) and Aviation Freight (AG). The densely connected layers had historical 
socioeconomic driver metrics as inputs (independent variables) and nine outputs (dependent variable) repre-
senting transport demands in quantiles from 0.1 to 0.9. The independent variables in this phase were GDP and 
Population metrics and the corresponding dependent variable were the transport demand metric. The Learning 
phase had either five or six densely connected input layers, each having neurons ranging from 100 to 3000. Each 
layer used uniform activation with ‘ReLu’43 transfer function for tracking non-linearities. In between each densely 
connect layer, BatchNormalization44 layers were added to increase learning rates and provide basic generalising 
tendencies. The output layer had 9 nodes corresponding to quantiles ranging from 0.1 to 0.9. The learning phase 
was trained on historical driver and demand data to reduce a custom quantile loss function. The custom loss (Et) 
for the Learning phase is defined as

where,

ŷτ (t) is the predicted value for the datapoint, τ is the quantile.
The Firing phase of the TrebuNet was constructed as a five-fold cross-validated architecture that takes the 

output of the learning phase as its input. The output was the projected transport demand. Here, the structure 
comprised of four densely connected layers with neurons ranging from 100 to 3000. Between each densely con-
nected layer ReLU activation was used. The densely connected layers in this phase were devoid of BatchNor-
malization layers due to processing overhead and relative uniformity and likeness of data points. The application 
of five-fold cross-validation methodology helps in reducing overfitting and subsequently in selecting the best 
model for projection. A combined learning and firing phases were optimised in a single step to realise the best 
possible model with lowest average Mean Squared Error (MSE) across five folds of the firing phase. Thus, each 
data-series had two models saved i.e. Learning and Firing arranged virtually as stacked model. A flowchart of 
the combined stacked TrebuNet model is shown in Fig. 4, and Supplementary Figs. S.4 and S.5.

TrebuNet was implemented using python programming language with Pandas45, Keras46 and Scipy47 modules. 
Keras module was used to implement the densely connected layers and Pandas was used to store, pre-process, and 
normalise the input driver and transport demand data. The physical process of firing a trebuchet was represented 
programmatically in the TrebuNet using a feed-forward and back-propagating architecture48–50. This method of 
learning customised the internal weights and bias of the TrebuNet architecture for countries in different quantiles 
of demand growth trajectory and helps in overcoming the problem of mean projections observed when learning 
to reduce the global Mean Squared Error (MSE) metric51. This method also aided in mitigating the problems 
caused by non-uniform variance in data across the time series and increases the dimensionality of features.

Hyper‑parameter optimization and model selection.  The model optimisation and selection were 
performed by iteratively testing the hyperparameters and selecting the hyperparameters that showed the lowest 
MSE at the output of the firing phase. The entire TrebuNet architecture was optimised as a single entity and the 
hyper-parameters were selected to obtain the best model with the least amount of average Mean Square Error 
from the five folds of the firing phase using Hyperopt module52 of python. In total the combined stacked archi-

(1)Eτ =
1

N

N
∑

t=1

ρτ (y(t)− ŷτ (t))

ρτ (u) =

{

τu if u ≥ 0

(τ − 1)u if u < 0

Figure 3.   TrebuNet Framework. (a) process flow diagram depicting the configuration of the TrebuNet 
architecture along with flow of independent and dependent variables. (b) presents the zoomed in view of the 
configuration of custom quantile loss function.
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tecture was optimised for (1) two losses—custom loss in learning phase and MSE in firing phase (2) number 
of layers in learning phase (3) number of neurons in learning and firing phase (4) number of epochs for both 
learning and firing phase. The Hyperopt module was run for 500 iterations for each data-series using dual GPU 
running in parallel comprising of Nvidia 2080Ti and Nvidia 2060Ti (See Supplementary document). The firing 
phase of the TrebuNet was designed for five-fold cross validation with the average MSE loss of the five-folds act-
ing as the metric to be reduced by the Hyperopt module. The dual GPU configuration aided in memory sharing 
between GPU which enabled the parallel five-fold cross validation in the firing phase. As the firing phase loss 
was internally connected to learning phase via virtual back propagation, the custom loss of learning phase was 
also optimised with the optimization of MSE. Details of the hyperparameters of the models are documented in 
Supplementary Tables S.3, S.4, S.5 and S.6.

TrebuNet model generation and evaluation.  We generated six different models based on TrebuNet 
framework for AP, AG, RoP, RoG, RaP, RoG data series using respective historical transport demand and his-
torical driver datasets for OECD countries. Additionally, a global maritime freight model (MI) was also created. 
Except for aviation and marine freight data-series (see “Application in global marine freight projections”) which 
have 15 years (2000–2015) worth of historical data, all other data-series had 35 years (1980–2015) of historical 
data to learn from. Each of the data-series generate custom TrebuNet models after choosing the best models 
during the training and hyperparameter optimisation steps of the TrebuNet architecture. At this stage all the 
models had learned the historical relationship between their respective transport demand and driver data and 
stored it inside the architecture as custom weights and bias. The trained models were then further evaluated 
for their short-term accuracy on unseen data for 2016 and 2017, followed by evaluation of their medium-term 
accuracy on unseen data from 2020 to 2050. To enable faster convergence to stability while training, both the his-
torical drivers and transport demands were normalised between 0 and 1 for their respective data-series. Similar 
normalisation was done for the SSP derived future drivers using the upper and lower bounds from the histori-
cal drivers. During evaluation process the projections from the models were rescaled based on their original 
demand data bounds, Fig. 5. 

Due care was taken to filter out countries from projections where the respective transport medium was not 
present e.g. land locked countries for marine freight transport projections. One caveat of this approach of pro-
jections is that some countries with limited historical data points during the learning phase will result in over 
or under projected results. One can circumvent this caveat by dropping the country from projection aggrega-
tions, but for this study, we kept the countries in the aggregation as it would have resulted in underestimation 
of regional transport metrics.

Maritime Freight model (MI) was a variant of TrebuNet where instead of OECD, global dataset was used for 
learning. Transport demand dataset for marine freight is not readily available and the geographical resolution 
is often limited to aggregated global level with yearly data points. International Energy Agency (IEA)53 provides 
extended energy balances at regional and country level that has an energy metric that tracks total energy used 
in international marine freight transport. The data from IEA is available in Exa Joule (EJ) and kilo-tonne of oil 
equivalent (ktoe) variants. The historical global transport demand was mapped down to country level transport 
demands using global tonne nautical mile to global ktoe relationship, where tonne mile metric was provided by 
United Nations Conference on Trade and Development (UNCTAD) and ktoe metric by IEA. Gaps are present in 
IEA data wherein the aggregation after down mapping does not add-up to global tonne mile metric. This model 
assumes that the down mapped aggregations are the one that TrebuNet learns and projects from. The TrebuNet 
model for marine freight also follows the same data pre-processing and hyper optimization steps as the other 
six TrebuNet models used for short-term evaluations.

The transport demand projections generated by the TrebuNet architecture-based models were compared with 
the results of multivariate linear regression, a densely connected ANN, RNN networks like Long Short Term 
Memory (LSTM), Gated Recurrent Unit (GRU), BiDirectional LSTM (BiLSTM), BiDirectional GRU (BiGRU), 

Figure 4.   TrebuNet Model flowchart. Learning and Firing phase of TrebuNet is connected in a stacked 
architecture. Each densely connected layer in both the phases have ReLU transfer function. BatchNormalisation 
is implemented between densely connected layers of Learning phase. The inputs to Learning phase are GDP and 
Population with output being constructed as nine nodes representing quantiles from 0.1 to 0.9. The Firing phase 
has nine inputs, and the output is represented by a single node which is the transport demand projection.
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and finally with gradient boosted method—XGBoost. Details of these models and their flowcharts are shown 
in Table 2, Supplementary Fig. S.6.

These comparisons were performed for (1) the ability of the models to learn from historical data and project 
historical transport demand, thereby objectively evaluating the training potentials of models (2) short term 
projection for unseen future drivers for 2016 and 2017. For comparison of historical learning accuracies between 
results from different methods, we used R2, Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) 
metrices. For short term projection comparisons, we used Absolute Error (AE) between recorded and projected 
transport demands, Absolute Percentage Error (APE) between recorded and projected transport demands, and 
MAE. These evaluation metrices are defined as follows:

where yi is the actual transport demand for test instance xi, λ(xi) is the projected transport demand for test 
instance xi, n is the number of test instances.

Comparison of TrebuNet based models with RNN based models is an involved task. The way RNN models 
are designed and trained allows for projection of only a single country’s transport demand. Additionally, RNN 
based models requires the training data and future drivers in a uniform time step e.g., when training data has 
yearly temporal resolution, the future predictions of transport demands can only be made at a per year basis. 

(2)AE =
∑n

i=1
abs

(

yi − �(xi)
)

(3)MAE =

∑n
i=1

abs
(

yi − �(xi)
)

n

(4)RMSE =

√

∑n
i=1

(

yi − �(xi)
)2

n

(5)APE =
abs(

∑n
i=1

�(xi)−
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i=1
yi)
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i=1

yi

(6)R2 = 1−

∑n
i=1

(
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)2

∑n
i=1

(
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1

n

∑n
i=1

yi
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Figure 5.   Flow of data and hyperparameter optimisation. Flowchart depicting the data pre-processing, 
normalization, hyperparameter optimization and prediction steps in a TrebuNet architecture. The training 
process starts with normalisation of historical drivers and demands. The normalisation information from 
historical data is saved and used for further normalising future driver values. Hyperparameter optimisation 
is performed to select the best performing architecture, which is saved as two models- one for learning phase 
and one for firing phase. The saved models are then used to project transport demands using normalised future 
drivers.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3522  | https://doi.org/10.1038/s41598-023-30555-6

www.nature.com/scientificreports/

This would effectively mean that if the future drivers are available at a five-year timestep (which is the default 
case for SSPs) then RNN based models cannot be used.

Nonetheless, RNN are currently the state of art in time-series projection and to enable a comparison between 
TrebuNet and RNN based models we aggregated the country-wise transport demand and driver data into a single 
regional timeseries. This single region time series was then used to train the RNN models. Thus, when comparing 
results with RNN, the transport demand projections from all the other models had to be aggregated on a per 
year basis. For regression-based models we used Ordinary Least Square multivariate linear regression model 
from SKLearn54 module. For RNN and ANN models we used Keras module, with XGBoost being implemented 
via XGBoost library for Python.

In addition to the previously created models. TrebuNet architecture was also used to construct three different 
models for AP, RoP, and RaP data series to evaluate the decadal projection accuracy. Here, historical drivers and 
energy service demand till 2005 instead of 2015 was used to train and tune the three models. The three TrebuNet 
models also followed the same data pre-processing and hyperoptimisation steps as the other six TrebuNet models 
generated for short-term projection evaluation. Projections of transport demand for one decade (2006–2015) 
were done using unseen recorded GDP and Population drivers for the decade. The projections and actual data 
were then compared to evaluate the performance of the models. A second set of projections were also generated 

Table 2.   Attributes of models used for evaluation. **Unless otherwise stated, all the other parameters to build 
the model use the “default value”. XGBoost V1.6.2, Keras V2.10.0, scikit-learn V1.1.1

Model name Model type
Independent 
variables (input)

Dependent variables 
(output) Spatial resolution

Locked 
parameters**

Hyperparameters 
used Training method

Reg Multivariate linear 
regression GDP, population Transport metric Individual countries N.A N.A N.A

ANN Deep learning artifi-
cial neural network GDP, population Transport metric Individual countries

Batch Size
Opti-
miser = RMSPROP
Activation_func-
tion = ReLU
kernel_initial-
izer = normal

Layers
Neurons in each layer
Epoch

Early stopping with 
MSE metric

TrebuNet Deep learning artifi-
cial neural network GDP, population Transport metric Individual countries

Batch Size
CV = 5
Random CV sam-
pling
Precision = 32 bit
Opti-
miser = RMSPROP
Activation_func-
tion = ReLU
kernel_initial-
izer = normal

Layers
Neurons in each layer
Epoch

5 Fold Cross Valida-
tion with custom loss 
function in Learning 
Phase and MSE in 
Firing Phase

LSTM Recurrent neural 
network GDP, population Transport metric Region

Units = 32
Dropout = 0.2
Batch Size = 32
Optimiser = ADAM
Patience = 10
Loss = MSE
Activation_func-
tion = TANH

Epoch

Early stopping with 
MSE metric. Training 
data uses current 
and previous year 
driver value i.e. 
TimeStep = N,N-1

BiLSTM Recurrent neural 
network GDP, population Transport metric Region

Units = 32
Dropout = 0.2
Batch Size = 32
Optimiser = ADAM
Patience = 10
Loss = MSE
Activation_func-
tion = TANH

Epoch

Early stopping with 
MSE metric. Training 
data uses current 
and previous year 
driver value i.e. 
TimeStep = N,N-1

GRU​ Recurrent neural 
network GDP, population Transport metric Region

Units = 32
Dropout = 0.2
Batch Size = 32
Optimiser = ADAM
Patience = 10
Loss = MSE
Activation_func-
tion = TANH

Epoch

Early stopping with 
MSE metric. Training 
data uses current 
and previous year 
driver value i.e. 
TimeStep = N,N-1

BiGRU​ Recurrent neural 
network GDP, population Transport metric Region

Units = 32
Dropout = 0.2
Batch Size = 32
Optimiser = ADAM
Patience = 10
Loss = MSE
Activation_func-
tion = TANH

Epoch

Early stopping with 
MSE metric. Training 
data uses current 
and previous year 
driver value i.e. 
TimeStep = N,N-1

XGBoost Gradient-boosted 
decision tree GDP, population Transport metric Individual countries

n_estimators = 10
Class = XGBRegres-
sor

Number of gradient 
boosted trees N.A
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for the decade which included all the OECD countries for the entire decade with all the transport modes aggre-
gated to compare the results with the IAM models. A summary of the models generated in this study and their 
evaluation paradigm is shown in Table 3.

Relationship surface.  The concept of a Relationship Surface was formulated to visually represent the inner 
working of the TrebuNet architecture. The idea behind this visualization was to highlight the learnings and his-
torical demand trends inside the saved models over the real historical data. The relationship surface was gener-
ated using historical GDP, population driver data and predictions from a trained model for transport demand 
based on historical drivers. We generated a new series of input driver data points that covered the entire histori-
cal GDP and population metrics by taking the minimum of each driver metric and incrementing it by one unit 
to reach maximum of the driver metric. We then ran these driver data points through the trained model and 
generated the 3D surface called a relationship surface. The three axes of the relationship comprised of GDP, 
Population, and projected transport demand metrics. Historical transport demands from countries in differ-
ent stages of economic development inside the OECD region were projected on to the relationship surface for 
visualization. These visualizations can help in understanding the approximation and smoothening being done 
while learning from historical trends and to compare the model against trends expected from other modelling 
frameworks. This visualization also aids in circumventing the “black box” notion of deep learning algorithms by 
closely monitoring trends with respect to each of the input driver metrics.

Uncertainties.  Due to the computationally exhaustive nature of machine learning training process, some 
randomness can always be attributed to the trained models. To minimise the uncertainties in the TrebuNet 
architecture, all the coding steps involving generation of random numbers both implicit and explicit were seeded 
with a constant value of 17 during model saving part of the algorithm. Even with setting of random number 
seeds inside the code, variance was observed with each subsequent runs of the model. To speed up the cross-
validation part of the firing phase, each cross-validation fold was designed to run as a parallel framework of 
original architecture to be analysed rather than the standard sequential framework. This method also included 
some randomness into the model as all the five neural networks representing each fold in the cross validation 
were processed in parallel with simultaneous back propagation. During model retraining after hyperparameter 
optimization rounds, multiple runs were performed and the best model with highest R2 value was chosen as the 
representative model. Due to the nature of transport demands, this randomness provides us with an opportunity 
to understand a spread of future values which was more practical rather than a set value which tends towards 
determinism. All other forms of uncertainties e.g. due to parallelization in workload, limited precision GPU 
based multiplication, and random weights initiation have been kept out of the scope of this research and can 
form base for future research work.

Results
Historical learning potential.  Once the models were prepared based on the TrebuNet architecture, they 
were evaluated on their potential to project the historical transport demand data that was used for training. 
This exercise was important to compare the different demand projection methodologies namely regression, 
ANN, RNN, XGBoost and TrebuNet based. Two separate tests were conducted to analyse the historical learning 

Table 3.   Models and their evaluation paradigm. *When comparing with RNN methods, the country level 
projections are aggregated to regional level.

Evaluation step Method Model Training years Testing years Spatial resolution

Historical

TrebuNet AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Country level*

ANN AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Country level*

Regression AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Country level*

XGBoost AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Country level

LSTM AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Regional level

GRU​ AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Regional level

BiLSTM AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Regional level

BiGRU​ AP, AG, RaP, RaG, RoP, RoG ≤ 2015 ≤ 2015 Regional level

Short term

TrebuNet AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Country level*

ANN AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Country level*

Regression AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Country level*

XGBoost AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Country level

LSTM AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Regional level

GRU​ AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Regional level

BiLSTM AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Regional level

BiGRU​ AP, AG, RaP, RaG, RoP, RoG ≤ 2015 2016, 2017 Regional level

Decadal TrebuNet AP, RaP, RoP ≤ 2005 2006–2015 Country level
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potentials. First test was at a regional level where country level historical projections from TrebuNet, ANN and 
Regression models were aggregated to regional level and compared with historical projections from RNN mod-
els. Second test was at a country level where historical projections from ANN, Regression models and XGBoost 
models were compared with historical projections from TrebuNet models. For all the test metrices, the projected 
historical transport demand was compared with the actual recorded transport demand. Here, it is important to 
note that the best models should not only provide accurate trends, but also improve on under and over projec-
tion tendencies usually associated with time series projection tasks.

From the Regional level tests, it was observed that TrebuNet based models showed a better R2, MAE and 
RMSE values than other three projection methods for AP, AG, and RoG data-series. For RoP, RaP, and RaG 
BiGRU based approaches showed better R2, MAE and RMSE values. From this we conclude that TrebuNet 
based models performed better in half of the data-series. For rest of the three data-series, TrebuNet was a close 
second contender.

From the country level tests, it was observed that TrebuNet based models showed a better R2, MAE and RMSE 
values than other three projection methods for AP, AG, RaG, and RoG data-series. For RoP, RaP XGBoost based 
approaches showed better R2, MAE and RMSE values. For RoP and RaP data-series TrebuNet based models 
were a close second.

Overall, from the historical learning tests both at regional and country level it was concluded that TrebuNet 
provides sizable increase in demand projection accuracies compared to other traditional and contemporary 
methods, see Table 4 with Supplementary Tables S.7 and S.8. This meant that TrebuNet was capable of accurately 
capturing the historical relationship between transport demand and its drivers both for a country level disag-
gregation and regional aggregations. Additionally better R2, MAE and RMSE compared to other methods meant 
that the TrebuNet based models were not only improving the absolute accuracy in projecting demand, but they 
were also tracking the demands in a way that reduced the under or over projection tendencies. The primary rea-
son for better performance of TrebuNet based models was the implementation of quantile-based disaggregation 
within the framework. It was observed during the initial runs of the data exploratory exercise using ordinary 
linear regression, that different countries produce better results in different quantiles e.g. USA performed best 
in circa 0.9 quantile of input data and Iceland in 0.1 quantile approximation. Other methods provided learnings 
and projections for only median quantile i.e. 0.5, which presented an opportunity to develop TrebuNet archi-
tecture. As such an ANN and RNN based approaches performed much better than a linear regression model in 
approximating historical data but implementing TrebuNet provided sizeable gains.

Short‑term projection evaluation.  Short term or a year look ahead transport demand projection is an 
important use case for development of novel demand forecasting models. While the historical learning capabil-
ity of the models aids in selection of the best model, short term demand projection accuracy delineates the gen-
eralisation capability of the trained models over unseen data. Using the same test methodology as the historical 
learning comparisons, we tested the short-term demand projection capabilities of all the methods at regional 
and country level. The short-term demand projection evaluations were performed for 2016 and 2017 using 
unseen socioeconomic drivers that were not exposed to the training steps. Here we used Absolute Error (AE), 
Absolute Percentage Error (APE) and MAE as the evaluation metrices which were calculated by comparing the 
projected transport demand with recorded transport demand for 2016 and 2017.

For the regional level tests, it was observed that TrebuNet based models performed better for AP, RaP, and 
RoG data-series compared to other methods, see Table 4 with Supplementary Tables S.7 and S.8. For country 
level tests, TrebuNet performed better for all the data-series except RoG where XGBoost based model performed 
better. The model suitability when evaluating historical trends also manifested in their suitability for short-term 
projections. Of importance was to note that ANN and regression-based models showed the least favourable 
results both in historical and short-term evaluations. For some data-series like RaP and RoP both in regional and 
country wise short term evaluations, TrebuNet based models showed better results compared to their historical 
evaluation performance. In terms of APE for different data-series, TrebuNet based models showed objectively 
better performance than ANN and regression-based methods and equal performance to RNN and XGBoost 
based methods especially in regional RaP and RoG data-series, Fig. 6. Large errors observed in case of RaG and 
RoG data-series can be attributed to function of transport demand being dependent on movement of goods, 
where even small GDP countries can record high volume of goods movement and dependence of some countries 
on predominantly road or rail as means of goods transfer.

Decadal projection evaluation.  To evaluate the performance of the TrebuNet architecture for multi-year 
projection tasks, we compared the decadal transport demand projection capabilities of the TrebuNet architec-
ture with the actual transport demand and further with benchmark SSP marker model IAM model results. 
We chose passenger mode of transportation for this comparison as this mode of transportation has relatively 
more complex transport demand and driver dynamics compared to freight class due to the dynamics of pas-
senger movement. Historical demand and driver data until the year 2005 for AP (year 2000–2005), RaP (year 
1980–2005), and RoP (year 1980–2005) were used to generate three models based on TrebuNet architecture, 
Supplementary Table S.5 and S.6. The trained models were then used to project the country wise demands for 
the years 2005–2015 based on the driver data.

All three models recorded an R2 > 0.97 when comparing decadal projected and actual transport demand, 
(Fig. 7a–c). These results demonstrated the accuracy of the architecture and highlighted its long-term projection 
capabilities. Further, we aggregated the projected transport demands for Air, Road, and Rail mode of transport to 
generate a single aggregated transport demand projection with yearly time step. This aggregated decadal transport 
demand projection enabled harmonised comparison with the results of the IAM modelling runs. Here, the results 
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compared well with the projections generated by the global IAM teams utilising different statistical modelling 
approaches (Fig. 7d). It was also worth noting that a future unseen event i.e., dips in demand due to the great 
recession induced drop in GDP for the year 2009 (Fig. 7e) was successfully captured by the TrebuNet architecture.

Inferring from the results of historical prediction, short term prediction and decadal predictions it was con-
cluded that TrebuNet based models show higher accuracy and better fidelity when projecting transport demands 
compared to ANN, RNN, Regression and gradient boosted methods for datasets having non uniform variance. 

Table 4.   Historical and short-term model ranking based on MAE. The green coloured cell represent TrebuNet 
models and red coloured cells represents top performing model. MAE values are in bracket and have units in 
billion TKM or PKM based on the data-series.

Regional Level Country Wise 

Series Historical Short Term Historical Short Term 

AP TrebuNet (57,982) TrebuNet (166,271) TrebuNet (9,443) TrebuNet (23,960) 

AP LSTM (187,057) BiGRU (226,042) XGBoost (12,089) ANN (30,164) 

AP BiGRU (187,078) BiLSTM (257,712) ANN (17,060) XGBoost (35,667) 

AP BiLSTM (188,377) GRU (362,542) Regression (29,243) Regression (41,356) 

AP GRU (207,135) ANN (364,822) 

AP ANN (242,429) LSTM (371,620) 

RoP BiGRU (240,146) BiGRU (301,518) XGBoost (18,988) TrebuNet (45,762) 

RoP BiLSTM (257,977) BiLSTM (304,709) TrebuNet (23,736) XGBoost (50,820) 

RoP TrebuNet (518,592) TrebuNet (644,432) ANN (43,475) Regression (71,940) 

RoP GRU (525,919) GRU (1,641,243) Regression (58,412) ANN (82,096) 

RoP LSTM (578,491) ANN (1,819,154) 

RoP ANN (691,897) LSTM (2,033,868) 

RaP BiGRU (36,366) TrebuNet (32,110) XGBoost (2,446) TrebuNet (4,525) 

RaP BiLSTM (41,414) ANN (109,535) TrebuNet (2,584) ANN (5,491) 

RaP TrebuNet (41,501) BiGRU (260,572) ANN (4,333) XGBoost (6,362) 

RaP GRU (57,160) BiLSTM (268,421) Regression (22,556) Regression (19,014) 

RaP LSTM (59,210) GRU (272,149) 

RaP ANN (105,547) LSTM (278,898) 

AG TrebuNet (2,064) LSTM (1,921) TrebuNet (225) TrebuNet (636) 

AG BiGRU (3,122) GRU (2,794) XGBoost (343) XGBoost (683) 

AG )568(NNA)145(NNA)484,3(URGiB)782,3(MTSLiB

AG ANN (4,815) TrebuNet (4,473) Regression (741) Regression (998) 

AG LSTM (9,213) BiLSTM (4,556) 

AG GRU (9,883) ANN (12,250) 

RaG BiGRU (80,086) GRU (372,453) TrebuNet (6,320) TrebuNet (19,953) 

RaG TrebuNet (118,654) BiLSTM (386,091) XGBoost (6,496) XGBoost (24,027) 

RaG ANN (153,763) LSTM (400,862) ANN (13,134) ANN (36,703) 

RaG BiLSTM (268,386) BiGRU (412,652) Regression (70,604) Regression (88,569) 

RaG LSTM (289,437) TrebuNet (417,824) 

RaG GRU (324,291) ANN (962,240) 

RoG TrebuNet (166,025) TrebuNet (321,730) TrebuNet (10,695) XGBoost (24,591) 

RoG ANN (389,483) ANN (674,452) XGBoost (10,885) TrebuNet (43,422) 

RoG BiGRU (417,701) BiLSTM (1,142,575) ANN (24,952) ANN (47,162) 

RoG BiLSTM (485,643) GRU (1,163,011) Regression (89,682) Regression (126,012) 

RoG LSTM (517,323) BiGRU (1,200,845) 

RoG GRU (526,371) LSTM (1,35,1167) 
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Decadal prediction accuracy also demonstrated that transport demand projection with sparse training datasets 
(e.g. AP here) can also provide good results with TrebuNet architecture.

Medium‑term projection application.  Medium-term projections were generated for years 2020–2050 
for all six data-series based on learning from historical transport demand and driver data until 2015. Here SSP 
derived future driver datasets were used to generate future transport demand projections. The training histori-
cal demand and driver data was provided at country level at yearly time step. The transport demand projections 
were generated at country level with five-year time steps. Here the flexibility of TrebuNet model over state of art 
RNN methods was apparent where yearly time step training data can generate the model which can be used for 
five yearly time step projections. From the projected transport demands, passenger and freight data-series were 
aggregated under respective modes i.e., Air, Road, and Rail to compare with the projections from IAM model-
ling runs. Further, saturation characteristic of the total transport demands with respect to GDP per capita were 
generated. These saturation curves are indicative of natural phenomenon in transport sector where a saturating 
trend in demand is observed with increasing GDP per capita. Here, SSP1 (Supplementary Fig. S.7), and SSP2 
(Fig. 8) narratives-based scenarios are highlighted to show demand trajectories. From the results we observed 
that the medium-term projections of transport demands generated by TrebuNet based models were within the 
range of values projected by global IAM teams55. Similar results were observed for saturation curves for both 
passenger and freight series highlighting that the TrebuNet architecture was capable of accurately recording the 
natural historic saturation trends in the transport demands.

Application in global marine freight projections.  To evaluate the application of TrebuNet architec-
ture, a seventh data-series was generated for the global marine freight transport which was not included in the 
medium-term transport freight projections. The marine freight demand projection is lacking in current energy 
literature due to the lack of historical country specific maritime freight transport demand data-series. However, 
the IEA does generate country-wise disaggregated total energy consumption for marine freight which provided 
a rudimentary method to increase the resolution of the transport demand data from global to regional and 
country levels.

A custom TrebuNet model was generated for marine freight at the global level instead of OECD level as was 
the case with the rest of the models. Generation of marine freight demand at the global level helps in comparing 
global medium-term projections with established reports from the international organizations56–58. The model 
generated an R2 of 0.86 for 2000–2015 years’ worth of historical learning. The projections of maritime freight 
demand until 2050 are shown for all five SSP scenarios with comparisons points depicting various international 
organizations (Fig. 9). Here it is pertinent to highlight that the model performed at par with other global reports 
based on just two input driver metrics i.e., GDP and population. As this sector contributed to 80% of global 
freight transport demand in 201659, applying TrebuNet architecture to this problem filled data gaps, improved 
data aggregation methods, and finally provided a new toolset to validate transport demands in other IAM models.

Relationship surface.  A Deep Learning architecture such as TrebuNet is often dismissed due to it being 
perceived as a ‘Black Box’, where the internal working of the architecture is not exposed to the end user. The 

Figure 6.   Absolute Percentage Error in short-term transport demand projection. (a) Absolute percentage error 
in predicting respective data-series using trained model over recorded 2016 and 2017 data-points for regional 
level assessments. (b) Absolute percentage error in predicting respective data-series using trained model over 
recorded 2016 and 2017 data-points for country level assessments.
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internal workings of a model are important to aid in validating the trends that the architecture has learned and 
hence to check the compliance of the model with the established knowledge base. When doing the demand pro-
jection, it becomes pertinent to check if the socio-economic drivers and demands are following proper historical 
relationships. Often this is represented in the form of polynomial relationship equations between driver and 
demand. We circumvented this “Black Box” perception by generating relationship surfaces between historical 
values of drivers and model projected historical demands and plotting how this relationship surface mimics the 
historical trends. Figure 10 showcases aviation cargo (Goods), Road Passenger and Road Freight relationship 
surfaces with zoomed in view of Germany and France. Here it was observed that the TrebuNet has accurately 
subsumed the country wise trends into its learnings. Any projection within the driver and demand input ranges 
will fall on the relationship surface which is fixed for every model.

Discussion
Accurate projection of transport demands can lead to improved accuracies in designing global energy system 
models which in turn inform the current climate change mitigation efforts. Not only are the accurate trans-
port demand projections important for energy system models, but they also act as backbone for global energy 
markets. Energy planners, infrastructure developers, energy technology companies require accurate demand 

Figure 7.   Decadal projection evaluation. (a–c) Figures showing the trend between actual recorded historical 
decadal demand and predicted historical decadal demand from the TrebuNet models. Three different models 
were used to generate predicted historical demand for RaP, RoP, AP data-series. The data series have data points 
for OECD countries. (d) Total aggregated decadal demand projections for three different sub-categories of 
passenger mode and comparison with IAM models. (e) Trends in GDP and Population metrices between 2005 
and 2015. Here Population is on the primary Y-axis and GDP on secondary Y-axis.
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Figure 8.   Medium-term projection evaluations. SSP2 narrative based transport demand projections in Trillion 
Passenger Kilometres units (a) and saturation curves (b) for passenger mode of transport for OECD countries 
with TrebuNet model and IAM comparisons. SSP2 narrative based transport demand projections in Trillion 
Tonnes Kilometres units (c) and saturation curves (d) for freight mode of transport for OECD countries with 
TrebuNet model and IAM comparisons. Bar graph in (a, c) represent the percentage contribution of each 
transport mode in total demand. Additional comparison with other methods used in this study are also depicted 
along with established global IAMs.

Figure 9.   Global Maritime Freight projections. Global maritime freight projections using TrebuNet architecture 
and its comparison with various world organization’s demand projections using fundamentally different 
modelling techniques.
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projections for conducting scenario feasibility and economic analysis. Until now, transport demand projection 
tasks were handled by simulating demands or by using regression-based analysis. Due to exponential increase 
in computational power, machine learning based methods have started augmenting the traditional methods. 
They provide improved accuracies, work with noisy data, and eventually aid in discovering hidden trends and 
relationships between variables.

Along with improvements in accuracy for projection of transport demands, machine learning methods can 
aid in simplifying the process of generating transport demand projection models for regions comprising of 
countries in different socioeconomic stages of development. The state of art in machine learning based demand 
projection methods like ANN and RNN requires building of individual models for each country in a region. This 
limitation manifests in longer transport demand prototyping time and precludes training of a pool of countries 
together to capture their mutual effects on transport demand.

The presented work has built upon the fundamentals of machine learning, to propose a methodology and an 
architecture that draws its inspiration from firing of a trebuchet. The method has shown through the analysis 
that it is highly suitable for demand estimation, surpassing performance of traditional methods like regression 
and simulation based transport demand projection. The models developed via TrebuNet architecture have shown 
superior performance and flexibility of prototyping over state of art machine learning methods like ANN, RNN 
and gradient boosted when comparing accuracy in learning from historical trends, projection of short term and 
decadal transport demand. The training of TrebuNet models, their benchmarking and demand projection have 
used two drivers, which in turn reduces the assumptions that goes into demand estimation tasks. The results 
have also shown that the architecture can perform equally well for small datasets which have breaks in the time 
series. Using quantile-based segregation inside the architecture, we have mitigated the issues related to projection 
being biased toward the mean. Since each country follows a different quantile in their growth, using a mean error 
metric will continually underestimate or overestimate that country’s demand projection. From the evaluations 
of models generated by TrebuNet, we have concluded that the framework developed in this study works equally 
well both for a country level disaggregation and regional aggregations in data-series. We have also shown that 
the applicability of the demand projection methods can be accurately scaled from regional level to global level.

Figure 10.   Depiction of relationship surfaces inside Trebunet. (a) Aviation Freight Relationship surface 
between GDP, Population, and Transport demand. (b) Road Passenger Relationship surface between GDP, 
Population, and Transport demand. (c) Road Freight relationship surface inside TrebuNet with zoomed in figure 
representing Germany and France trend curves.
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Finally, medium term projections using the trained models and marine freight series projection revealed 
promising results when compared with other established IAMs and more complex modelling done by interna-
tional organizations. These use cases have highlighted the utility of the TrebuNet architecture for fast prototyping 
of demand projections, without understanding and coding complex relationships—as is traditionally the case 
with the established IAM frameworks. With just two socio-economic input features, TrebuNet architecture was 
able to match the results of more complex models. Increasing the input training features (in our case drivers) 
and using higher resolution data with more data points will no doubt increase the accuracy of the results as the 
models will be exposed to more trends and missing data. Further work is being done to expand the algorithm 
by incorporating more drivers and to generate residential and industrial demands.

We have highlighted through this research, how a physical process can be mimicked on an established deep 
learning architecture and applied to a complex problem with a high degree of success. This work illustrates the 
utility of TrebuNet architecture in not only the present use case but also for other general regression tasks like 
residential, industrial, commercial etc. demand forecasting. Moreover, the fundamentals of TrebuNet framework 
can be applied to other disciplines where timeseries forecasting for a non-uniform variance dataset is required. 
TrebuNet models can also provide modularity to the demand projection tasks by using different models con-
taining groups of countries in different socio-economic stages of development, to project for different time 
horizons. This way, learnings from different groups can be used to emulate changes in demand due to economic 
progression of a country. Projecting future demands is an uncertain exercise with convergence towards certainty 
is aided by ensemble of different modelling techniques. Demand estimation has historically been the lesser 
focused albeit very important area of the energy systems. The architecture no doubt provides a new set of tools 
for the IAM community to experiment with and enrich the energy service demands for accurate energy systems 
model development.

Data availability
All data generated or analysed during this study are included in this published article, links for which are pro-
vided in Table 1.
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