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Structural controllability of general 
edge dynamics in complex network
Shaopeng Pang 1*, Yue Zhou 1, Xiang Ren 2 & Fangzhou Xu 3

Dynamic processes that occur on the edge of complex networks are relevant to a variety of real-
world systems, where states are defined on individual edges, and nodes are active components 
with information processing capabilities. In traditional studies of edge controllability, all adjacent 
edge states are assumed to be coupled. In this paper, we release this all-to-all coupling restriction 
and propose a general edge dynamics model. We give a theoretical framework to study the 
structural controllability of the general edge dynamics and find that the set of driver nodes for edge 
controllability is unique and determined by the local information of nodes. Applying our framework 
to a large number of model and real networks, we find that there exist lower and upper bounds of 
edge controllability, which are determined by the coupling density, where the coupling density is the 
proportion of adjacent edge states that are coupled. Then we investigate the proportion of effective 
coupling in edge controllability and find that homogeneous and relatively sparse networks have a 
higher proportion, and that the proportion is mainly determined by degree distribution. Finally, we 
analyze the role of edges in edge controllability and find that it is largely encoded by the coupling 
density and degree distribution, and are influenced by in- and out-degree correlation.

Complex networks containing interacting dynamic units are ubiquitous in social, financial and natural systems1–3. 
In recent years, the controllability of complex networks has received extensive attention and research4–8. Most 
studies of network controllability have focused on the nodal dynamics. However, the edge dynamics9,10, which are 
relevant to various real-world systems, are also important in network science. It is suitable for modeling networks 
where states are defined on individual edges, and nodes are active components with information processing 
capabilities. A seminal work addressing edge controllability is presented by Nepusz et al.9. They introduced the 
switchboard dynamics (SBD) model to describe the edge dynamics and study its structural controllability. Much 
interest has been stimulated toward exploring the controllability properties of edge dynamics. Representative 
studies of edge dynamics include its controllable subspace11, target control12,13, controllability optimization14, 
robustness15, and applications in multi-agent systems16–18.

Most of the existing work on the edge controllability describes the edge dynamics based on the SBD. The 
condition that the SBD requires all adjacent edge states to be coupled is too strong, which makes the SBD have 
certain limitations and cannot accurately describe various real-world systems. In this paper, we release this all-to-
all coupling restriction and propose a general edge dynamics (GED) model that can describe the edge dynamics 
with arbitrary coupling relationships between edge states, which generalizes the SBD. For example, in the system 
with computers and routers, edges represent the physical connections such as fiber optics and cables. A node 
(i.e., a computer or router) continuously processes information received from some of its upstream neighbors 
and transmits it to some of its downstream neighbors. The information received and transmitted by a node can 
be represented by the states on its incoming and outgoing edges. The switching matrix in each node controls the 
dynamic process, and the elements in the switching matrix determine which upstream and downstream neigh-
bors of a node to receive and transmit information. A social network can also be modeled as the GDE, in which 
people are nodes, the information transmitted between people are the edge states, and the switching matrix in 
each node controls the reception and transmission of information. The proposal of GED has caused a series of 
questions, such as the structural controllability of GED, the controllability characteristics, the role of coupling 
and the role of edges in the edge controllability, etc.

We study the structural controllability of edge dynamics based on the GED. Firstly, we give a theoretical 
framework to determine the minimum set of driver nodes and driven edges required to fully control the GED. 
We find that the set of driver nodes for edge controllability is unique and determined by the local information of 
nodes, which is fundamentally different from nodal controllability. Secondly, we find that the coupling density 
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among edge states plays an important role in edge controllability, where the coupling density is the proportion 
of adjacent edge states that are coupled. Specifically, there exist lower and upper bounds of edge controllabil-
ity, which are determined by the coupling density. Meanwhile, there is a vast range between the controllability 
bounds, in which a broad spectrum of edge controllability can be achieved by adjusting the coupling density. We 
analyze empirical networks and propose theoretical formulations to demonstrate that the controllability bounds 
generally exist in the edge controllability of arbitrary networks. Thirdly, we investigate the proportion of effective 
coupling when controlling the GED. Simulation finds that homogeneous and relatively sparse networks have 
a higher proportion of effective coupling, and the proportion is mainly determined by the degree distribution. 
Finally, we analyze the role of edges in edge controllability by classifying each edge into one of three categories: 
critical, ordinary, and intermittent. We find that the proportions of the three kinds of edges are largely encoded 
by the coupling density and degree distribution, and are influenced by in- and out-degree correlation.

General edge dynamics
The SBD9 provides a characterization of edge dynamics on a directed network G(V, E). Let y−v  and y+v  represent 
the state vectors corresponding to the incoming and outgoing edge states of node v, respectively. The factor that 
can affect y+v  is the vector y−v  , the damping vector τ v , and the external input vector uv . Then the switchboard 
dynamics can be described as:

where Sv ∈ R
k+v ×k−v  is the ‘switching matrix’. The number of its row and column are equal to the out-degree k+v  

and the in-degree k−v  of node v, respectively. σv is one if node v is a driver node and is zero otherwise. ⊗ denotes 
the entry-wise product of the two vectors of the same size.

A linear time-invariant system can be established by reformulating Eq. (1) in terms of the edge state xi , 
which is

where W ∈ R
M×M is the transpose of the adjacency matrix of the line graph L(G) of G, in which wij is nonzero 

if and only if the head of edge j is the tail of edge i. For the line graph L(G) converted from an original graph G, 
the nodes in L(G) correspond to the edges in G, and an edge in L(G) corresponds to a length-two directed path 
in G. T ∈ R

M×M is a diagonal matrix whose diagonal elements correspond to the damping terms for each edge. 
Note that T can be ignored in the edge controllability9,19. H ∈ R

M×M is a diagonal matrix where the ith diagonal 
element is σv if node v is the tail of edge i.

In the study of structural controllability4,9, both the state and input matrices are structural matrices, where 
their elements are either fixed 0 or independent free parameters. A system is called structurally controllable if it 
is possible to fix the free parameters in the state and input matrices to certain values so that the obtained system 
is controllable in the usual sense, i.e., the generic rank of the controllability matrix

has full rank rankg(C) = M , where the generic rank of a structural matrix is the maximal rank that the structural 
matrix achieves as a function of its free parameters.

However, the SBD requires all the elements in each switching matrix Sv are independent free parameters. 
The elements in Sv capture the coupling relationship between the incoming and outgoing edge states of nodes. 
The absence of 0 in Sv means that the incoming and outgoing edge states of each node are completely coupled. 
This restrictive conditions are too strong. We release this all-to-all coupling restriction and consider the GED, in 
which the elements in the switching matrix Sv are either fixed 0 or independent free parameters. The fundamental 
difference between SBD and GED is that GED allows 0 elements in the switching matrix. For example, An GED 
with 4 nodes and 5 edge states {x1, x2, x3, x4, x5} is shown in Fig. 1a. Its switching matrices {Sa, Sb, Sc , Sd} contain 
either fixed 0 or independent free parameters.

Structural controllability of general edge dynamics
We are interested in configuring an appropriate input matrix H so that the GED is structurally controllable. The 
theory9 no longer applies to the GED. We thus give a theoretical framework for the structural controllability 
of the GED, which is quantified based on the minimum number of driver nodes (i.e., the minimum number of 
nodes with σv = 1 ) and the minimum number of driven edges (i.e., the minimum number of non-zero columns 
of H) required to fully control the GED.

Equation (2) indicates that the GED of a digraph G is equivalent to the nodal dynamics of its trimmed line 
graph L(G′) , where the nodes in L(G′) correspond to the edges in G, and an edge in L(G′) corresponds to an 
independent free parameter in the switching matrix of G. This equivalence shows that the GED of G and the 
nodal dynamics of L(G′) have the same state set and state matrix W. For example, as shown in Fig. 1a and c, the 
GED of a digraph G contains 5 edge states {x1, x2, x3, x4, x5} and 4 switching matrices {Sa, Sb, Sc , Sd} . Its trimmed 
line graph L(G′) is shown in Fig. 1b, where each independent free parameter in the switching matrix corresponds 
to a directed edge of L(G′) . Taking Sa as an example, the independent free parameters in Sa correspond to edges 
ex2,x1 and ex2,x4 in L(G′) , respectively.

We give the first method for determining the minimum number of driver nodes and driven edges required 
to fully control the GED. Firstly, applying the minimum input theorem4 to the nodal dynamics of L(G′) gives 
us the bipartite graph H(G). The maximum matching method4 can determine the minimum unmatched nodes 
in H(G), which correspond to the minimum driver nodes required to control the nodal dynamics of L(G′) . For 

(1)ẏ+v = Svy
−
v − τ v ⊗ y+v + σvuv ,

(2)ẋ = (W − T)x +Hu,

(3)C = (H ,WH ,W2H , ...,WM−1H),
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example, the nodal dynamics of L(G′) and its bipartite graph H(G) are shown in Fig. 1b and d, respectively. The 
unmatched nodes x4 and x5 in H(G) is the driver nodes. How to controlling the nodal dynamics of L(G′) is shown 
in Fig. 1f. Secondly, the driver nodes in the nodal dynamics of L(G′) correspond one-to-one with the driven 
edges in the GED of G9. This allows us to determine the minimum number of driven edges needed to control 
the GED of G. For example, as shown in Fig. 1e and f, the driver nodes x4 and x5 in the nodal dynamics of L(G′) 
correspond to the driven edges x4 and x5 in the GED of G. Thirdly, the driver node required to control the GED 
of G is the starting node of the driven edge. As shown in Fig. 1e, the driver nodes are the starting nodes va and 
vd of the driven edges. The generic rank of the controllability matrix has full rank rankg(C) = 5 , indicating that 
the GED of G is structurally controllable. In summary, we can determine the minimum number of driver nodes 
and driven edges required to control the GED with the help of minimum input theorem.

We further propose a framework to determine the minimum driver nodes and driven edges based on the 
local information of nodes, since the minimum input theorem is computationally complex and requires global 
information of network. Firstly, a bipartite graph H(G) can be partitioned into N ‘matching blocks’ according to 
N switching matrices. The matching block corresponding to a switching matrix Sv contains the incoming edge 
states and outgoing edges edge states of the node v, where the incoming edge states and outgoing edges edge 
correspond to the left and right nodes of the matching block, respectively. Meanwhile the independent free 
parameters in Sv correspond one-to-one to the edges in the matching block. For example, as shown in Fig. 1c 
and d, taking Sa as an example, its matching block contains the edge states {x+2 , x

+
5 } and {x−1 , x

−
4 } . The independ-

ent free parameters in Sa have a one-to-one correspondence with the edges in its matching block. Note that the 
incoming (outgoing) edge state of a node in GED is only coupled with the outgoing (incoming) edge state of this 
node, which means that the edges in the partitioned bipartite graph H(G) only exist in each matching block, not 
between matching blocks. As shown in Fig. 1d, no edge spans any two matching blocks. This ensures that the 
maximum matching result of the partitioned bipartite graph H(G) remains unchanged. Secondly, we prove that 
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Figure 1.   Structural controllability of general edge dynamics. (a) A directed network G with 4 nodes and 5 edge 
states {x1, x2, x3, x4, x5} in GED. (b) The trimmed line graph L(G′) of G. The colors of edges in L(G′) correspond 
to those of the nodes in (a). (c) The switching matrices {Sa, Sb, Sc , Sd} in G. (d) The bipartite graph H(G) of L(G′) 
with 4 matching blocks. (e) Driver nodes ( va and vd ), driven edges ( x4 and x5 ) and input signals ( u1 and u2 ) for 
controlling the GED of G. (f) Driver nodes ( x4 and x5 ) and input signals ( u1 and u2 ) for controlling the nodal 
dynamics of L(G′).
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the matching block of Sv contains unmatched nodes if and only if Sv has no full row rank, i.e., rankg(Sv) < k+v  . 
Meanwhile, the number of unmatched nodes in the matching block of Sv is equal to k+v − rankg(Sv) . The detailed 
proof process is in Supplementary Note 1. Thirdly, the driver nodes (unmatched nodes) in the nodal dynamics of 
L(G′) correspond one-to-one with the driven edges in the GED of G9. It can be deduced that, for the structural 
controllability of the GED of G, a node v is the driver node if rankg(Sv) < k+v  , and the number of driven edges 
in the outgoing edge set of the driver node is k+v − rankg(Sv) . As shown in Fig. 1c and d, taking Sa as an example, 
it is the driver node due to rankg(Sa) < k+a  . Meanwhile, the number of driven edges in the outgoing edge set of 
a is k+a − rankg(Sa) = 1.

Based on the above analysis, we present our major conclusions. The minimum number ND of driver nodes 
required to control the GED is

where N(x) is the number of nodes that satisfy the condition x. Nβ is the number of connected components. βi = 1 
if the connected component is the full-rank component, and βi = 0 otherwise, where the full-rank component is 
a strongly connected component with each node in it satisfies k−v = k+v = rankg(Sv) . Note that the accumulation 
term 

∑Nβ

i=1 βi is to ensure reachability. Specifically, we randomly select a node in each full-rank component as 
the driver node, and randomly select an outgoing edge of the driver node as the driven edge. Then the minimum 
number MD of driven edges is

The above formulas allow us to determine the minimum set of driver nodes and driven edges required to control 
the GED based on the local information of nodes. The detailed proof process is in Supplementary Note 1.

Controllability characteristics
We study the controllability characteristics of GED based on real and model networks. The controllability is 
quantitatively described by the proportion nD = ND/N  of driver nodes and the proportion mD = MD/M of 
driven edges required for control. Since the switching matrix of GED contains 0 and independent free param-
eters, we introduce the coupling density P ∈ [0, 1] to quantify the probability that an element in the switching 
matrix is an independent free parameter.

Figure 2a–f give the variation of nD and mD in Erdős-Rényi (ER), exponential (EX) and scale-free (SF) net-
works according to the coupling density P, the average degree 〈k〉 and the power exponent γ , respectively. An 
important finding is that there are upper and lower bounds on nD and mD . Specifically, when P = 0 , there are 
no independent free parameters in the switching matrix, that is, there is no coupling between the incoming and 
outgoing edge states of any node, resulting in nD and mD reaching the upper bounds. Conversely, when P = 1 , the 
incoming and outgoing edge states of each node are coupled, resulting in nD and mD reaching the lower bounds. 
Further, the gaps between the upper and lower bounds are very large, except for the case of small 〈k〉 and γ . Any 
values of nD and mD between bounds can be achieved by adjusting P. This demonstrates that the coupling density 
has a significant impact on the edge controllability. Another finding is that nD of some ER networks shows a 
non-monotonic change with the increase of 〈k〉 in Fig. 2a, and larger value of P move the peak to the direction 
where 〈k〉 increases. The non-monotonic is caused by the different change rate of edges and couplings in these 
model networks with the change of 〈k〉 . We provide a theoretical analysis of the non-monotonic. The details of 
the theoretical analysis are shown in model networks.

Figure 2g and j give nD and mD of the GED constructed from real network topologies. We find that the results 
for nD and mD vary greatly with the coupling density P, but do not exceed the upper bound (when P = 0 ) and 
lower bound (when P = 1 ). Another important factor affecting nD and mD is the degree distribution. Therefore, 
we apply a degree-preserving randomization (rand-degree)4, which keeps the in- and out-degrees of each node 
unchanged but reconnects the nodes randomly. As shown in Fig. 2h and k, this procedure does not alter ND and 
MD significantly. Equations (4) and  (5) show that ND and MD are determined by the local network information 
(i.e., in- and out-degrees of each node and coupling density) and the full-rank component. The degree-preserving 
randomization can keep the local network information unchanged, but it can hardly generate new full-rank 
components. Therefore, ND and MD of a degree-preserving randomization are very close to those of its original 
network. This indicates that nD and mD are determined mainly by the coupling density and degree distribution. 
Furthermore, we bring the coupling density and the degree distribution of real networks into our theoretical 
formulas to give analytical predictions of nD and mD . As shown in Fig. 2i and l, for most real networks, a good 
agreement is obtained between the analytical predictions and the real results. The values of nD and mD of the 
real network are shown in Table 1. See Supplementary Note 3 for the details of theoretical predictions for real 
networks.

In summary, we find that the coupling density has a significant impact on the edge controllability, leading to 
the controllability bounds being pervasive in both model and real networks. We can estimate the edge control-
lability of the network based on the coupling density and degree distribution.

(4)ND = N(rankg(Sv)<k+v )
+

Nβ∑

i=1

βi ,

(5)MD =

N∑

i=1

(k+i − rankg(Si))+

Nβ∑

i=1

βi .
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The role of coupling
We study the role of coupling (i.e., independent free parameter) on the edge controllability. Firstly, we gradually 
increase the coupling density P until the number MD of driven edges required to control the GED reaches the 
lower bound. Let the coupling density at this time be PO , as shown in Fig. 3a, we find that the PO of most real 
networks is not high. This shows that most of the coupling are ineffective, that is, their absence does not affect 
the edge controllability.

This inspires us to study the proportion of effective coupling. Specifically, for a node v, we delete the independ-
ent free parameters in its switching matrix Sv one by one under the premise that the number of driven edges in 
its outgoing edge set remains unchanged. We find that the minimum number of independent free parameters is 
equal to the generic rank of the switching matrix. Therefore, the proportion of effective coupling is

where k+i k
−
i P is the number of independent free parameters in the switching matrix of a node, and rankg(Si) is 

the minimum number of independent free parameters that keeps the number of driven edges in the outgoing 

(6)PE =
1

N

N∑

i=1

rankg(Si)/(k
+
i k

−
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Figure 2.   Controllability characteristics. The variation of nD and mD in (a, d) ER networks, (b, e) EX 
networks, and (c, f) SF networks as the function of the coupling density P, the average degree 〈k〉 and the power 
exponent γ , respectively. The results of (g) nD and (j) mD in real networks with P = 0 , P = 0.2 , P = 0.4 , and 
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M

rand−degree
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the real results, respectively. The theoretical predictions of (i) Nanalytic
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edge set of this node unchanged. Figure 3b–d give the variation of PE in ER, EX and SF networks according to the 
coupling density P, the average degree 〈k〉 and the power exponent γ , respectively. An important finding is that 
PE and P are not positively correlated, as PE decreases with increasing P when P is large enough. This confirms 
the conclusion that PO is not high in real networks. Another interesting phenomenon is that PE shows a distinct 
peak for a specific value of P. Both the location and the height of the peak mainly depend on 〈k〉 , and larger value 
of 〈k〉 moves the peak to the direction where P decreases.

To further study the effect of network topology on PE , we give the trapezoidal numerical integral of PE in 
the interval [0, 1], denoted as PI . The integral operation allows PI to be independent of P and is only relevant to 
the network topology. As shown in the panels in Fig. 3b–d, we find that homogeneous (i.e., big γ ) and relatively 
sparse (i.e., small 〈k〉 ) networks have the highest PI . Then we analyze the effect of network topology on PI based on 
real networks. On the one hand, we give the dependence of PI of real networks on 〈k〉 . As shown in Fig. 3e, PI of 
relatively sparser real networks is higher, which confirms the results based on model networks. On the other hand, 
we give the dependence of PI of real networks on the correlation parameter6, i.e., β = 1− 1

2M

∑
i |k

+
i − k−i | . 

The parameter β ∈ [0, 1] captures the in- and out-degree correlation of a network. For example, β = 1 indicates 
the perfect positive correlation between in- and out-degrees of nodes, i.e., k+v = k−v  for each node. As shown in 
Fig. 3f, there is a basic positive correlation between PI and β , which further states that the homogeneous networks 
have higher PI . To analyze the dependence of PI in the real network, we apply degree-preserving randomization. 
As shown in Fig. 3g, this procedure does not alter PI significantly. This indicates that PI is determined mainly 
by the degree distribution. In other words, PI is determined mainly by the number of incoming and outgoing 
edges of each node and is independent of where those edges point. The values of PO and PI of the real network 
are shown in Table 1.

In summary, we find that most of coupling are ineffective in edge controllability. Homogeneous and relatively 
sparse networks have a higher proportion of effective coupling. The proportion of effective coupling is mainly 
determined by the degree distribution.
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The role of edges
We explore the role of edges in edge controllability by classifying each edge into one of three categories20: critical, 
ordinary, and intermittent. Specifically, critical means that an edge must be the driven edge; ordinary means that 
it is not the driven edge and intermittent means that it belongs to the set of driven edges with a certain prob-
ability. We neglect the possible presence of full-rank component, which is uncommon in directed networks and 
has little effect on the number MD of driven edges. Then the category of an edge depends solely on the switching 
matrix of its source node. Specifically, the number of driven edges in the set of outgoing edges of a driver node 
v is k+v − rankg(Sv) . Therefore, the judgment methods of the three kinds of edges are as follows: 

(1)	 An edge is critical if it corresponds to an all-zero row in the switching matrix of its source node. In par-
ticular, an edge is critical if its source node satisfies k+v > k−v = 0.
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(2)	 An edge is ordinary if rankg(Sv) > rankg(S
′
v) , where Sv is the switching matrix of the source node v of the 

edge, and S′v is the switching matrix of v after deleting the non-zero row corresponding to the edge.
(3)	 An edge is intermittent if rankg(Sv) = rankg(S

′
v).

We employ the real and model networks to substantiate the edge categories and offer analytical results. The 
proportions of critical, ordinary and intermittent edges in each real network with the coupling density P = 0 , 
P = 0.2 , P = 0.4 , and P = 1 are shown in Fig. 4a. A notable finding is that as P increases, the proportion of 
critical edges in each real network is drastically reduced and replaced by ordinary and intermittent edges. The 
reason is that as P increases, the all-zero rows in the switching matrix gradually sparse. This facilitates that most 
real networks are dominated by ordinary and intermittent edges when P is large enough. Note that the exist-
ence of a few star-shaped giants in the regulatory networks (No. 1 and 4 in Table 1) is responsible for their large 
number of critical edges.

The way of identifying edges can be used to derive analytical formulas for the expected fraction of three edge 
categories in real and model networks (see Supplementary Note 2 and 3 for the detailed procedures). As shown 
in Fig. 4b–d, a good agreement is obtained between the theoretical predictions and the real results. This shows 
that the proportions of three kinds of edges can be predicted by considering the coupling density and degree 
distribution. Note that the reason why the theoretical predictions deviate slightly from the real results is that the 
theoretical predictions are performed by assuming that in- and out-degrees of nodes have no correlation in real 
networks. Then we give the simulation and analytical results of model networks. One of the main findings is that 
P has a significant impact on the proportion of the three kinds of edges, especially in dense and homogeneous 
networks. For ER networks in Fig. 4e–g, we find that at low 〈k〉 , the networks are dominated by critical edges. 
The reason is that abundant nodes without an incoming edge exist in the networks. As the network grows, the 
fraction of ordinary and intermittent edges increases rapidly. As shown in Fig. 4h–j, the trends of the curves in 
EX networks are very similar to those provided by ER networks. But the fraction of ordinary edges is smaller, 
counterbalanced by a greater proportion of critical and intermittent edges. Figure 4k–m give the variation of three 
kinds of edges in SF networks with γ . We find that heterogeneous (small γ ) networks are dominated by critical 
edges. However, when P is large enough, the homogeneous network contains very few critical edges, replaced by 
ordinary and intermittent edges. The values of mC , mO and mI of the real network are shown in Table 1.

In conclusion, we find that the proportions of three kinds of edges are to a great extent encoded by the 
coupling density and the degree distribution, and are affected by the in- and out-degree correlation. When the 
coupling density is large enough, dense and homogeneous networks have lower proportions of critical edges, 
replaced by ordinary and intermittent edges.

Table 1.   Structural controllability of general edge dynamics in real network. For each network, we obtain 
its type, number, name, number N of nodes, number M of edges, the lower bounds 

(
n
L
D and m

L
D

)
 , the upper 

bound 
(
n
U
D and m

U
D

)
 , PO , PI and the proportions of the three kinds of edge 

(
m

P=1
C ,mP=1

O ,mP=1
I

)
. Note that, 

when P = 0 , we have mU
D

 = 1, mP=0
C

= 1 , mP=0
O

= 0 , mP=0
I

= 0.

Type No. Name N M n
L
D n

U
D m

L
D PO PI m

P=1
C m

P=1
O m

P=1
I

Regulatory

1 Ownership− USCorp21 8497 6726 0.136 0.159 0.924 0.384 0.022 0.601 0.034 0.365

2 TRN− EC− 2 22 423 578 0.220 0.274 0.829 0.348 0.068 0.223 0.062 0.715

3 TRN− Yeast − 123 4684 15451 0.052 0.064 0.947 0.356 0.011 0.113 0.009 0.878

4 TRN− Yeast − 222 688 1079 0.177 0.190 0.952 0.236 0.019 0.775 0.011 0.214

Trust
5 prison inmate24,25 67 182 0.403 0.940 0.319 0.372 0.374 0.121 0.500 0.379

6 WikiVote26 7115 103689 0.281 0.335 0.653 0.342 0.017 0.299 0.182 0.519

Foodweb 

7 St.Marks27 45 224 0.533 0.844 0.563 0.296 0.263 0.027 0.205 0.768

8 Seagrass28 49 226 0.449 0.816 0.518 0.286 0.262 0.027 0.252 0.721

9 grassland29 88 137 0.318 0.602 0.606 0.282 0.278 0.073 0.190 0.737

10 Ythan29 135 601 0.304 0.615 0.597 0.332 0.205 0.008 0.235 0.757

11 Silwood30 154 370 0.188 0.253 0.797 0.293 0.087 0.065 0.049 0.886

12 Little Rock31 183 2494 0.639 0.995 0.603 0.258 0.210 0.025 0.292 0.683

Electronic circuits

13 S208a22 122 189 0.451 0.918 0.344 0.329 0.446 0.011 0.370 0.619

14 S420a22 252 399 0.456 0.929 0.348 0.341 0.446 0.005 0.366 0.629

15 S838a22 512 819 0.459 0.934 0.350 0.382 0.452 0.002 0.364 0.634

Neorunal 16 C.elegans32 297 2359 0.549 0.990 0.374 0.349 0.249 0.041 0.326 0.633

Citation
17 Scimet33 2729 1041 0.360 0.653 0.623 0.424 0.188 0.189 0.200 0.611

18 Kohonen34 3772 12731 0.230 0.482 0.715 0.424 0.155 0.086 0.149 0.765

Internet

19 Political blogs 35 1224 19090 0.619 0.870 0.523 0.388 0.140 0.085 0.222 0.693

20 p2p− 136 10876 39994 0.334 0.454 0.591 0.398 0.134 0.004 0.121 0.875

21 p2p− 236 8846 31839 0.344 0.435 0.628 0.397 0.124 0.032 0.085 0.883

22 p2p− 336 8717 31525 0.343 0.429 0.625 0.391 0.130 0.018 0.087 0.895

Transportation 23 USair9737 332 2126 0.437 0.837 0.400 0.382 0.252 0.063 0.299 0.638
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Conclusion
Most existing research on edge controllability is based on the SBD. However, the SBD requires all adjacent edge 
states to be coupled. This restrictive conditions are too strong. In this paper, we release this all-to-all coupling 
restriction and propose the GED, which can describe the edge dynamics with arbitrary coupling relationships 
between edge states. We give a theoretical framework to study the structural controllability of GED. An important 
finding is that the set of driver nodes for edge controllability is unique and determined by the local informa-
tion of nodes, where the local information of a node includes in-degree, out-degree and the generic rank of its 
switching matrix. Then we find that the coupling density among edge states plays an important role, leading to 
the lower and upper bounds of edge controllability. At the same time, we can estimate the edge controllability 
of an arbitrary network based on its coupling density and degree distribution. Furthermore, we investigate the 
role of coupling and edges in edge controllability.

Our findings raise many open questions. For example, is it possible to achieve partial control of a subset 
of edge states in GED from a minimal number of driver nodes? Could a method be developed to implement 
target control of GED? How to optimize edge controllability with small perturbations of coupling and network 
structure? What is the energy cost of controlling GED?

Data availability
The data generated and analysed during the current study are available from the corresponding author on rea-
sonable request.
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