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Astragalus‑cultivated soil 
was a suitable bed soil for nurturing 
Angelica sinensis seedlings 
from the rhizosphere microbiome 
perspective
Zhi‑Gang An 1,2, Feng‑Xia Guo 1*, Yuan Chen 1*, Gang Bai 1 & Ai‑Feng Guo 3

Angelica sinensis (Oliv.) Diels is an important Chinese medicinal plant. A. sinensis seedlings are 
grown on an undisturbed alpine meadow soil to ensure the high-quality seedlings, but these soils are 
disappearing year after year. Thus, selecting a suitable bed soil for A. sinensis seedlings could ensure 
their long-term sustainability. Using HiSeq sequencing of 16S and 18S marker genes, we investigated 
the rhizosphere bacterial and fungal microbiotas of the seedlings grown in wheat, astragalus, potato, 
and angelica-cultivated soils at a geo-authentic habitat. Co-occurrence network analysis, canonical 
correspondence analysis, Mantel test, and Envfit test were used to examine the relationship between 
the microbiotas and the surrounding factors. Astragalus-cultivated soils exhibited the following 
properties: the highest plant weight, the highest neighborhood connectivity in the bacterial network, 
the highest ratio of positive/negative relationship in both bacterial and fungal networks, the highest 
relative abundance of the arbuscular mycorrhizal fungi and the ectomycorrhizal fungi, the lowest 
relative abundance of Rhizoctonia solani, the suitable soil pH, and the close relationship between 
the rhizosphere microbiotas and the ecological factors. Moreover, each growth stage has its own 
major drivers in all crop-cultivated soils. Climate temperature and soil pH at 56 days after planting, 
precipitation at 98 days, and plant weight as well as microbial biomass C and N at 129 days were the 
major drivers of the bacterial and fungal microbiotas. Overall, the astragalus-cultivated soil was a 
suitable bed soil for nurturing A. sinensis seedlings to replace the undisturbed alpine meadow soils.

Angelica sinensis (Oliv.) Diels (Umbelliferae) is a fragrant and herbaceous perennial plant and is widely used as a 
natural medicine in China. Usually, A. sinensis has a three-year growth cycle in a geo-authentic habitat (Dingxi, 
Gansu province), with the seedlings nurtured in the first year. To ensure high-quality seedlings, A. sinensis seed-
lings are traditionally cultivated in an undisturbed alpine meadow soil with rainfed agroecosystems1. Traditional 
farming methods are no longer sustainable when the number of undisturbed meadow soils decreases. Therefore, 
it is critical to find a cultivated soil to replace the undisturbed meadow soil.

The importance of soil selection in agricultural production has been extensively researched2. Researchers have 
identified the most suitable soils for a variety of crops in various areas. For example, American ginseng (Panax 
quinquefolius L.) was shown to be appropriate for cultivation in a maize soil of three-year continuous cropping3. 
Wang et al.4, Jin et al.5, and Bai et al.6,7 investigated the impacts of the cultivated farmland from a geo-authentic 
habitat on A. sinensis seedling growth.

Moreover, many studies have shown that soil properties can influence the microbial community in the soil8. 
Tkacz et al.9 used model plants and crop plants to show that rhizosphere microbiota was influenced by the inter-
action of rhizosphere type and soil composition. Rhizosphere microbiota as a subgroup of soil microorganisms 
is considered to be the second genome of a plant, and they are closely linked to plant growth10. An et al1 reported 
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the characteristics of the rhizosphere bacterial and fungal communities of A. sinensis seedlings cultivated in an 
undisturbed alpine meadow soil from a geo-authentic habitat. Rhizosphere microbiota assembly is influenced by 
plant development11, soil pH12,13, and climate change14. Several previous studies have shown that different crops 
grown in the same soils can result in distinct responses of the soil bacterial and fungal microbiotas3,15. Rhizos-
phere microbiota are functionally diverse. Some microbes create beneficial effects on plants, such as phosphate-
solubilizing and potassium-releasing16, protecting plants against pathogen infection17, N and S cycling18,19, and 
indole acetic acid production20, while others create harmful effects, such as plant pathogens21.

The rhizosphere microbiome of A. sinensis seedlings grown in cultivated soils from a geo-authentic habitat is 
currently unknown. However, building such knowledge will assist the sustainable production of this important 
medicinal plant. Therefore, a field experiment on the rhizosphere of A. sinensis seedlings was conducted in a 
geo-authentic habitat (Dingxi city). This study explored the bacterial and fungal microbiotas in the rhizosphere 
and the surrounding ecological factors, with the goal to find a suitable crop-cultivated soil for nurturing A. 
sinensis seedlings.

Materials and methods
Terminology and statement.  The plots on which four crops had been cultivated and completed a life 
cycle were defined as “crop-cultivated soils”, including wheat-cultivated soils, astragalus-cultivated soils, potato-
cultivated soils, and angelica-cultivated soils. All materials and methods were performed following the relevant 
guidelines and regulations in China.

Study site and experimental design.  The study site was located in Min County, Dingxi City, Gansu 
Province, China (N 34°25′27′′, E 104°28′24′′) and was 2783 m above sea level. The site is mountainous with a 
rainfed agroecosystem, a cool and semi-humid climate, 5–6 °C of annual average temperature, 2,219 h of yearly 
sunlight, 90–120 frost-free days per year, and 451.4–817.8 mm of annual precipitation.

In the first year, broad bean (Vicia faba L.) was planted in the test plot (Fig. 1). In the second year, four crops, 
wheat (Triticum aestivum L.), astragalus [Astragalus membranaceus (Fisch.) Bge. var. mongholicus (Bge.) Hsiao], 
potato (Solanum tuberosum L.), and angelica [Angelica sinensis (Oliv.) Diels], were respectively cultivated in a six 
square metre plot under a single-factor randomized block design with three replications (Fig. 1). We maintained 
consistent plot management after cultivating four crops, and the crops were harvested on time. In the third year, 
the tests of nurturing A. sinensis seedlings were carried out on four crop-cultivated soils (four treatments) (Fig. 1). 
Before sowing A. sinensis seeds, we applied 1.5 kg of organic fertilizers to each plot. Each plot was seeded with 
10 g of seeds (thousand-seed weight of 1.63 g, seed purity of 97.7%). Each plot was covered with a 0.5 cm layer 
of soils. During the seedling nurturing stage, each plot was managed consistently.

Sample preparation.  In the third year, rhizosphere samples were collected from June to October during 
the plant growth stages of 56 days (AM), 98 days (BM), and 129 days (CM) after planting. In each plot, plant 
samples were comprised of five healthy plants that were randomly selected. After shaking off the loosely root-
attached soils, we collected the tightly adhered rhizosphere using a sterile brush. Rhizosphere samples from the 
same growth stage were mixed and stored at − 80 °C. Further, the shaken off soil from the same growth stage was 

Figure 1.   Schematic representation of the same field over time. The field was divided into three blocks. Each 
block contained four treatments, totaling 12 plots. The field were planted with broad bean in the first year, 
wheat, astragalus, potato and angelica in the second year, and Angelica sinensis seedlings in the third year.
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mixed, and the root residues were removed. After the rhizosphere samples were collected, the soil samples were 
used to determine the microbial biomass and the soil pH. The plants were used to determine the seedling weight.

Ecological factors.  In this study, the plant weight (PW), the soil pH (pH), the microbial biomass C (MBC), 
the microbial biomass N (MBN), the climate temperature (T) and the precipitation (PC) were considered eco-
logical factors affecting the rhizosphere microbiota. The plant weight was determined by weighing a seedling 
without the root soils. The soil pH was measured by a glass electrode in a water-to-soil ratio of 3:1 (v/w). The 
microbial biomass C and N were determined by the chloroform fumigation-extraction method22,23 and were 
estimated on the oven dry soil. The test process was as follows. The soil samples were sieved (2 mm), adjusted to 
40% of the water holding capacity, and incubated at 25 °C for seven days. Incubated soils that were equivalent 
to 10 g of the oven dry soil were transferred into a 50 mL tube and fumigated for 24 h in the dark with alco-
hol free CHCl3 (non-fumigated soils as a control group). Fumigated and non-fumigated soils were mixed with 
40 mL of 0.5 M K2SO4, shaken for 30 min, and filtered with qualitative filter paper under vacuum conditions. An 
automated carbon and nitrogen analyzer (Multi N/C 2100s, Jena, Germany) was used to estimate the microbial 
biomass C and N, and the value was calculated with conversion factors of 2.20 for the microbial biomass C and 
1.85 for the microbial biomass N. The information of the climate temperature and precipitation were collected 
from the Weather Station.

DNA extraction, Illumina sequencing and function prediction.  Total genome DNA was extracted 
by the cetyltrimethylammonium bromide (CTAB) method24. The region gene was amplified with the primer pair 
515F/806R for 16S rRNA V4 and the primer pair 528F/706R for 18S rRNA V4. PCR amplification was refer-
enced to the method described by An et al.1. The amplicons from each sample were mixed in equimolar amounts 
and then sequenced using IlluminaHiSeq (PE250, USA). Raw reads were treated by cutting off the barcodes 
and primer sequences, merging reads using FLASH25, filtering using QIIME26, and removing chimeras27,28 to 
obtain effective tags. Effective tags were clustered into operational taxonomic units (OTUs) using UPARSE (V 
7.0.1001) with ≥ 97% sequence identity29. The rarefaction curves were calculated using the vegan package in R (V 
3.5.0). Representative sequences in each OTU were selected, and blasted against the SILVA database (V 123) to 
annotate the taxonomic information for bacteria and fungi30,31. The multiple sequence alignment was conducted 
using MUSCLE (V 3.8.31)32. The functional prediction of microbiota was based on FAPROTAX database for 
bacteria33 and FUNGUILD database for fungi34. The sequences with a number of not less than one across all 
samples were selected and normalized to the maximum sequence count by calculating OTU relative abundances, 
yielding 35,042 bacterial sequences and 11,374 fungal sequences per sample.

Co‑occurrence network.  Before the co-occurrence network was built, the relative abundance of OTUs 
performed centered log-ratio (CLR) transformation. Each feature in a sample is divided by the geometric mean 
of all features in this sample, and then the natural logarithm of this ratio is taken35. The CLR transformation can 
be obtained as follows:

where j is each sample, Xj is the list of features in a sample, g(Xj) is the geometric mean of the features in sample 
Xj, X1j is the first feature in a sample, and XDj is the last feature in a sample of D values.

Co-occurrence networks were constructed based on Pearson correlation coefficients between the CLR trans-
formed values of OTUs and the ecological factors (PW, pH, MBC, MBN, T, and PC), with a correlation coeffi-
cient − 0.60 ≥ r ≥ 0.60 and P < 0.05 (two-tailed). Network visualization was performed using CytoScape (V 3.7.2), 
and the neighborhood connectivity was analyzed using CytoScape’s NetworkAnalyzer36,37.

Statistical analyses.  Ecological factors, the relative abundance of OTUs, and neighborhood connectivity 
were analysed using One-ANOVA with tukey’s test in Origin (2022). Mantel test (bray–curtis distance), canoni-
cal correspondence analysis, Envfit test, and functional prediction were performed using the Novogene Cloud 
Platform (www.​novog​ene.​com). Pathogenic microbes and mycorrhizal fungi were analysed using Kruskal–Wal-
lis ANOVA with Dunn’s test in Origin (2022).

Results
Changes of ecological factors.  Using One-ANOVA analyses, we investigated the effects of blocks and 
crop-cultivated soils on ecological factors. At AM, BM, and CM, the block had no significant effect on the plant 
weight, the soil pH, and the microbial biomass C and N (Supplementary Table S1). The crop-cultivated soils 
significantly affected the plant weight (F = 5.82, P < 0.05) and the microbial biomass C (F = 4.30, P < 0.05) at AM, 
the soil pH (F = 4.52, P < 0.05) at BM, and the plant weight (F = 11.35, P < 0.01) and the microbial biomass C 
(F = 4.15, P < 0.05) at CM (Table 1). In all crop-cultivated soils at CM, astragalus-cultivated soils had the highest 
plant weight, followed by wheat, angelica and potato-cultivated soils (Table 1).

Co‑occurrence networks.  A total of 1,492,560 bacterial reads and 1,145,232 fungal reads were obtained 
from 36 samples. After filtering, 1,261,512 bacterial and 409,464 fungal reads were used in the study. In the 
rarefaction curves, the number of sequencing data provided sufficient information on microbial diversity (Sup-
plementary Fig. S1). A total of 616 OTUs, 585 bacterial and 31 fungal, were obtained from 36 samples.
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In order to better understand the interactions between OTUs and ecological parameters, co-occurrence 
networks between them were examined throughout the growth time-series. Neighborhood connectivity of a 
network is used to illustrate its complexity. The effect of crop-cultivated soils on neighborhood connectivity was 
analyzed by One-ANOVA. The results showed that crop-cultivated soils significantly affected the neighborhood 
connectivity of bacterial networks (F = 57.690, P < 0.05) (Fig. 2), but did not significantly affect the neighborhood 
connectivity of fungal networks (F = 1.998, P > 0.05) (Supplementary Fig. S2). In the bacterial networks (Fig. 2), 
the neighborhood connectivity of astragalus-cultivated soils was higher than that of other soils. In the bacterial 
networks of astragalus-cultivated soils, the edges/nodes ratio of 2.09 was higher than that of other soils, and the 
positive/negative relationship ratio of 0.999 was also higher than that of other soils. These results showed that the 
bacterial microbiota in astragalus-cultivated soils was closely related to the ecological factors. Moreover, in the 
fungal networks of astragalus-cultivated soils (Supplementary Fig. S2), the positive/negative relationship ratio 
of 1.26 was higher than that of other soils. In terms of neighborhood connectivity, bacteria were more sensitive 
than fungi to the changes in the crop-cultivated soils.

Pathogenic microbes and mycorrhizal fungi.  FAPROTAX and FUNGUILD databases were used to 
predict pathogenic microbes and mycorrhizal fungi in the microbiotas. Using Kruskal–Wallis ANOVA with 
Dunn’s test, crop-cultivated soils obviously affect the relative abundance of arbuscular mycorrhizal fungi 
(H = 8.228, P < 0.05) and ectomycorrhizal fungi (H = 12.484, P < 0.05) (Supplementary Table  S2). The relative 
abundance of arbuscular mycorrhizal fungi in astragalus-cultivated soils was significantly higher than that in 
angelica-cultivated soils, and the same result was observed for ectomycorrhizal fungi in astragalus-cultivated 
soils. Astragalus-cultivated soils had the highest relative abundance of arbuscular mycorrhizal fungi and ectomy-
corrhizal fungi in all crop-cultivated soils. Additionally, we found that Rhizoctonia solani, one of the pathogens 
associated with A. sinensis, occupied all crop-cultivated soils throughout the growth stage, with the lowest aver-
age relative abundance in astragalus-cultivated soils.

Drivers of microbial communities.  Mantel test provides a means to test the correlation of multivariate 
data and is widely used in ecological studies. The correlations between the microbiotas and the ecological factors 
were investigated by the Mantel test (Tables 2 and 3). The bacterial and fungal microbiotas were significantly cor-
related with the plant weight in all crop-cultivated soils, showing that the bacterial and fungal microbiotas were 
intimately related to the seedling growth. In the study, only the pH of astragalus-cultivated soils was significantly 
related to both the bacterial and fungal microbiotas, implying that this soil pH may facilitate the assembly of the 
bacterial and fungal microbiotas. Except for the precipitation, all other ecological factors in astragalus-cultivated 
soils were significantly correlated with the bacterial and fungal microbiotas.

Canonical correspondence analysis is a nonlinear multivariate direct gradient analysis method in ecological 
studies. This method can easily determine the causal relationships between species distributions and environ-
mental variables. In this study, it was used to assess the association between bacterial and fungal microbiotas and 

Table 1.   Effect of crop-cultivated soils on ecological factors during the growth stage. Data are presented as 
standard deviation (SD), n = 3. Different lowercase letters represented statistically significant differences among 
crop-cultivated soils by One-ANOVA with Tukey’s test at P < 0.05. AM, BM, and CM represented the different 
growth stages at 56 days, 98 days, and 129 days respectively. PW the plant weight, pH the soil pH, MBC the 
microbial biomass C, MBN the microbial biomass N, T the climate temperature, PC the precipitation.

Factors Stages

Crop-cultivated soils

Wheat Astragalus Potato Angelica

PW/(g)

AM 0.16 ± 0.02a 0.07 ± 0.04b 0.06 ± 0.03b 0.10 ± 0.04b

BM 0.63 ± 0.16a 0.46 ± 0.02a 0.51 ± 0.24a 0.59 ± 0.12a

CM 1.51 ± 0.15a 1.76 ± 0.38a 0.82 ± 0.16b 1.02 ± 0.08b

pH

AM 8.33 ± 0.16a 8.40 ± 0.02a 8.38 ± 0.05a 8.42 ± 0.07a

BM 8.00 ± 0.06ab 7.94 ± 0.03b 8.14 ± 0.14a 8.10 ± 0.03a

CM 7.91 ± 0.32a 8.06 ± 0.05a 8.11 ± 0.19a 8.49 ± 0.45a

MBC/(mg kg-1)

AM 109.67 ± 37.92b 178.24 ± 11.19a 156.38 ± 12.85ab 181.30 ± 36.42a

BM 404.06 ± 80.88a 410.81 ± 37.85a 410.23 ± 47.18a 430.90 ± 69.17a

CM 334.71 ± 13.97b 346.19 ± 29.91b 381.89 ± 55.66ab 434.15 ± 39.84a

MBN/(mg kg-1)

AM 48.37 ± 7.93a 54.52 ± 7.77a 51.48 ± 7.90a 52.90 ± 5.00a

BM 87.39 ± 15.71a 90.29 ± 0.24a 82.36 ± 2.93a 88.81 ± 14.91a

CM 75.72 ± 12.55a 80.50 ± 6.33a 83.40 ± 10.10a 92.17 ± 4.08a

T/(℃)

AM 17.33 ± 1.78

BM 14.43 ± 3.47

CM 9.55 ± 1.90

PC/(mm d-1)

AM 2.64 ± 0.07

BM 4.47 ± 0.47

CM 2.11 ± 0.08
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Figure 2.   Co-occurrence networks between bacterial OTUs and ecological factors (PW, pH, MBC, MBN, T, 
and PC) in wheat-cultivated soils (a), astragalus-cultivated soils (b), potato-cultivated soils (c) and angelica-
cultivated soils (d). The filled colors in nodes indicate phylum level, and the filled yellow color in triangles 
indicates ecological factors. The solid lines are a positive relationship, and the dashed lines are a negative 
relationship. Nodes, the number of nodes in a network; edges, the number of edges in a network; edges/nodes, 
the ratio of edges to nodes; PR, the number of positive relationships; NR, the number of negative relationships; 
PR/NR, the ratio of PR to NR; neighborhood connectivity, the average neighborhood connectivity of a network. 
The order of neighborhood connectivity was astragalus(a) > potato(b) > angelica(c) > wheat(c), with superscript 
lowercase letters in parentheses representing statistically significant differences under One-ANOVA with Tukey’s 
test at P < 0.05.

Table 2.   Correlations between bacterial microbiota and ecological factors in crop-cultivated soils. Asterisk 
represented statistically significant differences between bacterial microbiota and ecological factors by Mantel 
test at P < 0.05 (*) and 0.01 (**). The meanings of PW, pH, MBC, MBN, T and PC were illustrated in Table 1. r, 
the correlation of two matrices.

Crop-cultivated soils

PW/(g) pH
MBC/
(mg kg-1) MBN/(mg kg-1) T/(℃) PC/(mm d-1)

r P r P r P r P r P r P

Wheat 0.66 0.004** 0.28 0.092 0.51 0.011* 0.42 0.01* 0.48 0.011 0.28 0.075

Astragalus 0.67 0.005** 0.66 0.004** 0.57 0.01* 0.60 0.008** 0.37 0.03* 0.19 0.134

Potato 0.44 0.014* 0.16 0.179 0.26 0.071 0.28 0.062 0.36 0.025* 0.35 0.03*

Angelica 0.66 0.001** 0.18 0.179 0.39 0.027* 0.48 0.011* 0.41 0.017* 0.25 0.093
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ecological factors. We found that each growth stage has its own major drivers in all crop-cultivated soils (Fig. 3 
and Supplementary Fig. S3). Climate temperature and soil pH at AM, precipitation at BM, and plant weight as 
well as microbial biomass C and N at CM were the major drivers of the bacterial microbiotas (Fig. 3). Similar 
findings were also found in the fungal microbiotas (Supplementary Fig. S3).

Envfit test was used to identify the environmental factors that significantly affected the microbial communi-
ties. The results described the drivers for the assembly of bacterial and fungal microbiotas (Fig. 3 and Supplemen-
tary Fig. S3). For all crop-cultivated soils, the plant weight and precipitation were two significant factors affecting 
the assembly for the bacterial microbiota (Fig. 3), while the microbial biomass C was only one significant factor 
for the fungal microbiota (Supplementary Fig. S3). These results indicated that the bacterial microbiota was more 
sensitive to ecological factors than the fungal microbiota. Additionally, the factors that significantly affected the 
assembly of the bacterial and fungal microbiotas from a crop-cultivated soil were distinct. We found that more 

Table 3.   Correlations between fungal microbiota and ecological factors based in crop-cultivated soils. Asterisk 
represented statistically significant differences between fungal microbiota and ecological factors by Mantel test 
at P < 0.05 (*) and 0.01 (**). The meanings of PW, pH, MBC, MBN, T and PC were illustrated in Table 1. r, the 
correlation of two matrices.

Crop-cultivated soils

PW/(g) pH MBC/(mg kg-1) MBN/(mg kg-1) T/(℃) PC/(mm d-1)

r P r P r P r P r P r P

Wheat 0.63 0.004** 0.22 0.149 0.77 0.002** 0.40 0.027* 0.32 0.05 0.09 0.274

Astragalus 0.66 0.004** 0.56 0.01* 0.54 0.011* 0.48 0.013* 0.37 0.026* 0.10 0.228

Potato 0.61 0.003** 0.37 0.056 0.59 0.015** 0.53 0.013** 0.34 0.048* 0.20 0.099

Angelica 0.71 0.001** 0.10 0.237 0.38 0.023* 0.46 0.011* 0.33 0.041* 0.05 0.359

Figure 3.   Canonical correspondence analysis between bacterial microbiota and ecological factors (PW, pH, 
MBC, MBN, T, and PC) in wheat-cultivated soils (a), astragalus-cultivated soils (b), potato-cultivated soils (c), 
and angelica-cultivated soils (d). AM, BM, and CM represented the different growth stages at 56 days, 98 days 
(AM), and 129 days respectively. In Envfit test results: R2, the coefficient of determination between factors and 
species distribution; P, the statistical difference.
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ecological factors that influenced the bacterial and fungal microflora in astragalus-cultivated soils, demonstrating 
a closer relationship between the microbiotas and the ecological factors in astragalus-cultivated soils.

Discussion
Properties of crop-cultivated soils are affected by the planting management of previous crops. It is well known 
that when former plants complete a life cycle, they can lead to soil properties that differ from bulk soils38–40. Dif-
ferent soil properties resulted in variations in soil basic fertility, which in turn led to differences in soil ecological 
factors. In this study, crop-cultivated soils at different growth stages differently impacted the ecological factors 
of the rhizosphere microbiota. The seedling weight in astragalus-cultivated soils was higher than that of other 
soils. Because the root system and growth power of seedlings were strong and the root disease incidence and 
disease index were low, which was discussed by Jin et al.5. Bai et al.6 explained the advantages of pea-astragalus 
alternate soil for cultivating high-quality angelica seedlings from the relative conductivity, amino acid leakage 
rate, automatic oxidation rate, soluble protein content, sugar content, malondialdehyde content as well as super-
oxide dismutase, peroxidase and catalase activities.

In the study, the number of bacterial OTUs was almost six times higher than that of fungal OTUs, and 
similar results in other plants had been reported41,42. Network analysis based on the correlation between factors 
is widely used in soil microbial ecology43, for example, between soil physicochemical properties and bacte-
rial communities44, and between plant growth age and microbial communities45. Network analysis could help 
researchers understand that the microbiome in complex systems was influenced by the gradient changes in 
ecological factors, and infer the assembly rules of microbial communities. However, there is a lack of theoretical 
models to explain complex relationships between organisms using network diagram parameters46. In this study, 
these correlations between OTUs and factors may reflect the changes in microbial ecological behavior (niche) 
caused by specific soil-driven environmental variations47,48. Chamberlain et al.13 found that corn-soybean rotation 
resulted in variations in nutrient availability, soil organic matter content and pH, and that had an impact on the 
structure of bacterial communities in the bulk soil, which differed from continuously cropped corn and soybean. 
Based on our findings, we concluded that crop-cultivated soils distinctly affected the interactions between the 
microbiota and the ecological factors. Using the neighborhood connectivity as an indicator of network complex-
ity, the bacterial network of astragalus-cultivated soils was more complex than that of other soils. The stability of 
this network may be higher than that of other networks49. Therefore, this bacterial microbiota may have a greater 
ability to resist external disturbances50,51.

Previous studies showed that root border cells, root exudates, and root deposits act as nutrient substances 
that recruit the members of rhizosphere microbiota52–54, which could explain our finding that the rhizosphere 
microbiota was closely associated with the plant weight. The similar result was also found in a new study, report-
ing that the rhizosphere microbial community composition of Medicago sativa was significantly correlated with 
M. sativa biomass55. By analyzing the results of Mantel test, we concluded that among crop-cultivated soils, the 
bacterial and fungal microbiotas in astragalus-cultivated soils were most closely related to their ecological factors.

In the study, the major drivers of the bacterial and fungal microbiotas in each crop-cultivated soil were differ-
ent, which may be related to soil properties caused by the previous crop growth process56. This mean that there 
is more environmentally-driven ecological variance in these plots. Previous studies have also reported that crop 
rotation or former crop cultivation had influences on soil microbial biomass57, enzyme activities58, and microbial 
microbiotas59. The pH is one of the most important soil properties. Many studies have shown that soil pH is a 
major driver for the assembly of soil bacterial and fungal microbiotas60–62. Soil pH was the major driver in the 
early growth stage, which should be an important factor to be considered when choosing the bed soil for the 
seedling growth. For example, soil pH was assessed in the farmland of tomato63, maize64 and haskap60. In our 
study, only the pH of astragalus-cultivated soils was shown to be closely connected to the bacterial and fungal 
microbiotas, as confirmed by Mantel test and Envfit test. Therefore, the pH of astragalus-cultivated soils was 
possibly beneficial to the assembly of the bacterial and fungal microbiotas. The location where the seedlings were 
nurtured is a rainfed agroecosystem. The results showed that precipitation was the main driver of bacterial and 
fungal microbiotas in the middle growth stage. Many studies have found that the amount of water irrigation 
affects the structure of soil microbiotas64,65. Previous studies showed that soil microbes were more responsive 
to soil management66, and their biomass as reservoirs of soil C and N parameters was an important indicator 
in soils67. Soil microbial biomass can be regulated by fertilization practices68,69. Tan et al.70 found that the soil 
microbial biomass C in a peanut cropping system was significantly increased by applying biochar plus organic 
fertilizer. Liu, et al.71 and Li et al.72 found that microbial biomass N was enhanced by N fertilization.

Additionally, in terms of the network neighborhood connectivity and Envfit test, we found that the bacterial 
microbiota was more sensitive to the changes of the crop-cultivated soils than the fungal microbiota. This dif-
ferential response could be due to the distinction in soil moisture73, soil organic carbon74 or root activity42. The 
balance between beneficial and harmful microbes in rhizosphere is one of the important factors affecting plant 
health75. Many studies reported the mycorrhizal fungi on legume plants76,77. Astragalus-cultivated soils were 
characterized by the lower relative abundance of the pathogenic bacteria and fungi as well as the higher relative 
abundance of the arbuscular mycorrhizal fungi and ectomycorrhizal fungi. This microbial ecology environment 
may be more beneficial to the seedling growth78,79.

Conclusion
We investigated the rhizosphere microbiome of A. sinensis seedlings cultivated in four crop-cultivated soils at a 
geo-authentic habitat. Overall, astragalus-cultivated soils exhibited the following properties: the highest plant 
weight, the highest neighborhood connectivity in the bacterial network, the highest ratio of positive/negative 
relationship in both bacterial and fungal networks, the highest relative abundance of the ectomycorrhizal fungi 
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and the arbuscular mycorrhizal fungi, the lowest relative abundance of R. solani, the suitable soil pH, and the close 
relationship between the rhizosphere microbiotas and the ecological factors. Therefore, the astragalus-cultivated 
soil was a suitable bed soil for nurturing A. sinensis seedlings to replace the undisturbed alpine meadow soils. 
The study increased the understanding of the rhizosphere microbiome of A. sinensis seedlings at a geo-authentic 
habitat.

Data availability
The raw data of the sequence had been deposited into the NCBI Short Read Archive under accession 
PRJNA720350 (https://​www.​ncbi.​nlm.​nih.​gov/​biopr​oject/​PRJNA​720350).
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