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Dental image enhancement 
network for early diagnosis of oral 
dental disease
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Intelligent robotics and expert system applications in dentistry suffer from identification and 
detection problems due to the non-uniform brightness and low contrast in the captured images. 
Moreover, during the diagnostic process, exposure of sensitive facial parts to ionizing radiations 
(e.g., X-Rays) has several disadvantages and provides a limited angle for the view of vision. Capturing 
high-quality medical images with advanced digital devices is challenging, and processing these 
images distorts the contrast and visual quality. It curtails the performance of potential intelligent 
and expert systems and disincentives the early diagnosis of oral and dental diseases. The traditional 
enhancement methods are designed for specific conditions, and network-based methods rely on large-
scale datasets with limited adaptability towards varying conditions. This paper proposed a novel and 
adaptive dental image enhancement strategy based on a small dataset and proposed a paired branch 
Denticle-Edification network (Ded-Net). The input dental images are decomposed into reflection and 
illumination in a multilayer Denticle network (De-Net). The subsequent enhancement operations are 
performed to remove the hidden degradation of reflection and illumination. The adaptive illumination 
consistency is maintained through the Edification network (Ed-Net). The network is regularized 
following the decomposition congruity of the input data and provides user-specific freedom of 
adaptability towards desired contrast levels. The experimental results demonstrate that the proposed 
method improves visibility and contrast and preserves the edges and boundaries of the low-contrast 
input images. It proves that the proposed method is suitable for intelligent and expert system 
applications for future dental imaging.

Dental image analysis is an important tool for detecting and diagnosing oral and dental diseases. Infectious 
microbiological diseases (e.g., dental caries, dental plaque, etc.) result in the parochial disintegration and anni-
hilation of the compact ossified tissues. The most common causes of these dental diseases are associated with 
lifestyle factors and appear irrespective of age, caste, creed, sex, and location. In general practice, intraoral 
X-rays are often utilized when the patients are exposed to ionizing  radiation1. It provides a limited angle for the 
view of vision. Effective dental lesion detection technologies can determine the incipient carious lesion with the 
help of effective changes in the tooth  surface2. In most of the common dental diseases, an early-stage detection 
provides a better assessment for the  diagnosis3 and also limits the overall cost and  complications4. Moreover, the 
improvement in the visual quality of the captured images can assist significantly in improving associated tasks 
such as  segmentation5, computer-assisted oral and maxillofacial  surgeries6 and many image-guided robotics and 
intelligent expert system  application7 tasks.

Images captured with digital devices for preliminary diagnosis encounter low contrast and defy camera set-
tings to handle the issues and give rise to new challenges. In the case of dental spectral imaging, optical devices 
capture the images by using a light ring and a mobile spectral camera. Spectral imaging can record the reflection 
spectrum of the sample by using a ring illuminator. However, it limits the illumination intensity and reflection 
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reaching the  camera8. It also raises the acquisition time and demands hardware base adjustments (e.g., polar-
izers), resulting in over-exposure and under-exposures.

The input images captured with the digital devices require an adaptive enhancement operation to assist the 
early diagnosis besides the surgical operations in several dental and oral  diseases19. The extant contrast enhance-
ment methods for medical images are based on histogram  equalization10. The classic  solutions11, and deep 
learning-based  solutions1213 in medical imaging, and computer  vision14 rely on image pairs or large scale data-
sets and provide a fixed balance of contrast with limited adaptability towards the nascent conditions. Moreover, 
learning a new task from the beginning relies on a tedious training process, raising the computational complexity 
and overall cost in practical scenarios. Thus, new adaptive solutions are required to resolve these challenging 
problems to improve the performance of practical medical applications. The quality of the captured images is 
degraded due to several factors, including acquisition techniques and limitation of the processing  techniques15. 
Contrast enhancement techniques, such as histogram equalization (HE), contrast limited adaptive  HE1016 and 
several follow up of these  methods17 are widely used for the pre-processing of the medical images. Feature 
enhancement based on illumination weighting (FEW)18, simultaneous reflection and illumination enhancement 
(SRIE)19, and robust retinex-based simultaneous reflection and illumination (SLIMER)20 methods are proposed 
in the literature but fail in the case of robust changes.

The recent decomposition-based  approaches21, deep  retinex22, kindling the darkness method (KinD)23 and 
beyond brightening the low light images (BBLLI)  method14 are fundamentally dependent on a large scale dataset 
of images pairs. The dependency of these methods on a large scale, carefully designed, and even paired train-
ing images dataset limits these methods’ practical implication in the target domain. The improvisation in these 
techniques may significantly contribute to improving the performance of many deep learning-based  methods125 
including the improvement in the performance of the visual tracking and surgical  robots24. Moreover, in the 
target domain, the enhancement techniques help the physician for better assessment and early diagnosis, which 
saves the additional complications and overall  cost17. It is important to note that the two-dimensional representa-
tion of the three-dimensional object superposed the information. The challenges are more comprehensive than 
before when it comes to enhancing medical images. More adaptive and freestyle enhancement techniques are 
imperative to improve the performance of the associated tasks. Therefore, our work aims to provide an adjustable 
tool for enlightening dark images instead of providing fixed results.

In order to address the above-mentioned issues, we propose a novel clinically oriented contrast enhancement 
strategy to improve the visual quality of low-quality medical images. To the best of our knowledge, it is the first 
approach in the target domain. The proposed approach provides user-specific freedom of choice for luminance 
and contrast enhancement. A denticle edification network, denoted as Ded-Net, is end-to-end trained to obtain 
high-quality output images. The process is initialized by separating the reflection and illumination of the input 
images. In general, the direct image enhancement  methods2526 amplify the artifacts in some low-lighting sce-
narios, which get amplified at every step during enhancement and might result in vulnerable image quality. In 
contrast, we propose independent enhancement operations to remove the reflection irregularities and incon-
sistencies of illumination distinctively. In our method, the total variation operation is optimized following the 
proposed clinically oriented enhancement strategy to preserve the input images’ strong edges, boundaries, and 
structure. The main contributions of the proposed work can be summarized as follow:

• In this paper, we present a novel contrast enhancement technique to improve the visual quality of dental 
images obtained from the spectral images dataset. Our method handles the challenges of ill-posed image 
decomposition and preserves the strong boundaries and edges without amplifying the hidden degradations 
in the low-quality input images and producing high-quality output images.

• A deep learning-based framework denoted as Ded-Net is proposed to improve the visual quality of the low-
exposure input images. In our method, we pre-processed the spectral images and utilized only a few dental 
spectral images (i.e., 216 images only) for training our Ded-Net, and optimize the total variation loss function 
following image decomposition.

• Extensive experimental results based on subjective and objective evaluations demonstrate that our method 
outperformed the extant techniques. The proposed method improves the contrast and quality of poor-quality 
dental images and can also boost the performance of detection and segmentation besides early diagnosis of 
many dental diseases.

Related work
High-quality images are an essential part of modern intelligent applications in the domain of computer vision 
and image processing. But the images captured in robust environmental conditions often suffer from several 
artifacts due to the limitation in the capturing devices, camera settings, or variations in lighting conditions. 
Several methods have been proposed in the literature to encounter these artifacts and improve the images’ visual 
quality. These methods can be described mainly as direct enhancement  methods27, retinex based  methods22, 
deep learning-based  methods28, and dehazing  methods29. The retinex-based30 methods received comparatively 
more attention and have several  applications31. These methods consider dividing the input image into reflection 
and illumination components to independently handle the associated  artifacts3223. Given different illumination 
qualities, the ideal assumption that treats the reflection component as the enhanced result does not always apply, 
which could result in unrealistic enhancement like loss of details and distorted  colors33.

The recent deep learning-based solutions outperform traditional approaches in terms of accuracy, robust-
ness, and speed and gaining more attention. The deep learning-based methods can be classified as supervised 
learning-based methods, which utilize the image pairs for the training  process224, and unsupervised learning-
based methods, which work without paired training  dataset3435. Moreover, many other methods, including 
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semi-supervised  learning36 and deep reinforcement  learning37 based methods, have also been proposed in the 
literature. Some methods consider the illumination information and proposed illumination-based weighted fea-
ture fusion  methods18. Considering the illumination inconsistencies, decomposition-based methods are proposed 
for independent  processing32 based on retinex  theory38. Following the retinex theory, a lowlight image enhance-
ment method  LIME39 is proposed with illumination smoothness and prior information. A robust retinex-based 
 SLIMER20 method is proposed to improve enhancement while encountering minor noises.

The worst form of noise in the lowlight regions distorts the global structure of the images. A joint enhance-
ment and denoising (JED)40 method was proposed to counter noises. But the, denoising before enhancement 
produces blurry results, whereas after enhancement, it removes some of the important features. The learning-
based restoration method (LBR) for the back-lit  images41 is proposed to independently use front and backlit 
regions with an SVM classifier. On each of these regions, the optimal contrast tone  mapping42, the mechanism 
can act to expose the under-exposed regions. Similarly, multiview cameras  system43 based methods have also 
proposed to enhance the  contrast44 by using a single image. However, its a complex process and has a higher 
computational complexity. The deep learning-based methods, deep-retinex22, kindling the darkness (KinD)23, 
beyond brightening lowlight images (BBLLI), deep dark to bright view (D2BV-Net)32 divide to glitter  strategy45, 
retinex-inspired unrolling with cooperative prior architecture search for low-light image enhancement (RUAS)36, 
Zero-DCE46, attention guided lowlight image enhancement (AGLLIE)47 and Enlighten-GAN34 have been pro-
posed recently to encounter the aforementioned enhancement challenges.

The existing learning-based methods demand a large-scale and paired training dataset, whereas some others 
require a careful selection of the images, which raises the overall cost and latency of the network. In our method, 
we handle these challenges and produce significant results without large-scale and careful selection of data.

The proposed method
In this work, we propose an effective and practical method to improve the visual quality of the images captured 
with digital imaging devices, to compensate against the degradations of the poor quality images. The framework 
of our method is shown in Fig. 1. It demonstrates that a De-Net, based on several layers to separate the illumina-
tion (l) component from the reflection (r) component for input image (S), and subsequent enhancement opera-
tions are performed to compensate against the glitches of ill-posed image decomposition.

In order to avoid the amplification of the undesired artifacts (noise, texture, and structure), successive enhance-
ment operations are embedded in the network to adjust the irregularities and inconsistencies of r and l compo-
nents, respectively. Adaptive illumination enhancement operations are performed in encoder-decoder-based 
Ed-Net. In our method, we optimize the total variation operation to mitigate the structure and texture distortions 
and preserve the strong boundaries and edges. Finally, an inverse operation produces the visually pleasing output 
image. The proposed Ded-Net provides user-specific freedom of luminance in the final image without passing 
through the tedious training task.

The proposed clinically oriented enhancement operations on reflection and illumination. In 
this work, we use the oral and dental spectral image database (ODSI-DB)  dataset8, where it is a challenging task 
to capture such images without illumination and reflection frailties. The poor quality of the captured images 
often leads to several complications and hinders the early diagnosis of dental diseases. We proposed decom-
posing the captured images into reflection and illumination components to remove the irregularities of the 
reflection and illumination. We adjust the decomposition with a clinically oriented enhancement strategy and 
remove the undesired artifacts by embedding the proposed strategy in the deep network. The input images S of 
the subject, captured with radiance r, global light component a and light transmission component l, depict the 
image  formation29 with x, y pixel coordinates to formulate proposed scheme as follow:

(1)S = r · l
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Figure 1.  Framework of the proposed Denticle Edification network (Ded-Net).
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Moreover, capturing an image gives rise to several irregularities due to many uncontrollable factors, including 
lighting conditions and device capacity. These inefficiencies give rise to structure and texture irregularities when 
it comes to handling reflection and illumination. Where ‘a’ is measured with an estimation of 0.1% darkest pixels 
in the dark channel of S. For the reflection component, the intensity of brightness in a patch ω(x) , centered at 
x, y is defined below for R, G, and B channels, with a patch size p of 3× 3.

In the target problem, the input images are captured in a scenario where a ring illuminator and the camera 
are mounted on a platform that slides over the main platform. The subject’s movement is reduced during imag-
ing in combination with the main optical imaging platform. For an 8-bit haze image, whiteness depicts most 
of the pixels have maximum intensity (i.e., maximum N = 255), which is why it appears to be white. Thus, the 
darkening benefits the haze image. Consequently, the residual image is estimated as N - S(x, y) for low light and 
haze images. It shows that images in such conditions share the l(x, y) for 8-bit images. Thus the darkest regions 
contrast is possible to extract with an effective weighting strategy. The inversion of the decomposition compo-
nents produces a residue image following the proposed weighting strategy for reflection ṙ(x, y) = 1− r(x, y) , 
and illumination ̇l(x, y) = 1− l(x, y) components. The images captured from different viewing angles contain 
underexposed areas with low-intensity pixels in the backlighting regions. In such cases transmission coefficient 
with the lighting percentage reaching the camera is determined for optimal contrast adjustment.

Where the channel, c ∈ {r, g , b} . In order to provide the effective balance of luminance in the target scenario, we 
adjust the reflection and illumination components distinctively with the help of a clinically oriented contrast 
enhancement strategy as shown in Fig. 2. The reflection regularization weighting is proposed to mitigate reflec-
tion irregularities, and illumination weighting is proposed to maintain the per-pixel illumination consistency.

The proposed weighting parameters for the illumination wl and reflection wr provide strict control over the 
reflection and illumination. The respective adaptive adjustments reveal the hidden details of the underexposed 
pixels to revamp the balance of luminance.

Where, 0 < n, η ≤ 1 , and 0 < � ≤ 255 and 0 < m ≤ 255 , provide spatial adjustments. In Eq. (5), the values of n 
and η provide control over the brightness. We conduct extensive experiments to demonstrate the effectiveness 
of these parameters and find out that middle values are much more suitable for optimal results. Moreover, the 
lower values of n and η result in an increment in brightness and vice versa. The relationship between the bright-
ness control parameter η and intensity is shown in Fig. 3. The curve in Fig. 3 demonstrates that lower values of 
η promote brightness and vice-versa. Where this parameter act as a hyper-parameter to control the brightness 
directly in the final image without passing through the entire retraining process. The enhancement process fol-
lows the congruent decomposition mechanism rather than just inspired by the statistical data. Our clinically 
oriented enhancement strategy fits well to adjust the irregularities of reflection and inconsistencies of illumination 
in the target problem. It also disrupts objectionable artifacts, including structure and texture distortions. The 
intuitive weighting adjustment during training learns to enhance the ill-exposed input images for adjustments 
in the overall reflection (Sr) and overall illumination components (Sl).

(2)S(x, y) = r(x, y) · l(x, y)+ a (1-l(x, y))

(3)rdark(x, y) = min
c∈{r,g ,b}

rc(x, y)

(4)l(x, y) = 1− min
p∈ω(x,y)

(
N −max

c

N − Sc(x)

ac

)
, c ∈ {r, g , b}

(5)

wl =
expl(x,y)

n

wr =
exp

�−r(x,y)
m

η

(a) Input Image (d) Reflection(c) Illumination Enhancement (f) Output Image(b) Illumination (e) Reflection Enhancement

Figure 2.  The decomposition of the input into reflection and illumination with respective enhancement 
operations.
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The clinically oriented weighted adjustments in Eq. (5) are tailored in the proposed learnable architecture. It 
provides a novel paradigm of consistent learning derived through the decomposition of input data. The pro-
posed mechanism’s spatial adjustments and network regularization produce a pleasing visual quality with strong 
boundaries and edges based on the guidance provided through Eq. (9). The resulting images will significantly 
contribute to the early diagnosis of many oral dental diseases.

The proposed denticle edification network. The proposed denticle edification network is end-to-end 
trained, where it is comprised of two sub-networks, i.e., De-Net and Ed-Net. A multilayered De-Net separates 
the reflection and illumination components. The splitting process initiates the respective enhancement opera-
tions on the input image to update the r and l components independently. Following decomposition consistency, 
the proposed clinically oriented enhancement strategy is tailored in the network to mitigate the irregularities 
of the ill-posed image decomposition. The proposed strategy contributes to limiting objectionable artifacts and 
preserving the strong features. The input images are decomposed into reflection and illumination components 
with the help of a denticle net. In De-Net, the feature extraction is initialized with convolutional layers (3× 3) 
stack. The features are mapped following the rectified linear unit (ReLU) activation function with another stack 
of (Conv, ReLU, 3× 3 ). In order to provide a distributive adjustment for the decomposed constituents, the 
hyperbolic tangent function is independently applied across the r and l.

A tractable image representation is maintained in this network. The decomposed components are upgraded 
following Eq. (6), and the elementary knowledge based on clinically oriented up-gradation strategy is embed-
ded in the network to update loss functions. The loss functions are designed as distance terms to handle the 
irregularities of reflection and inconsistencies of illumination. These losses are constrained as the L1 norm of 
reflection and illumination. The overall loss function for the De-Net (LDe) is the sum of image split-loss that 
depicts the decomposition of the subject into r and l thus denoted as (Lslr) , the operational loss for reflection 
regularization (Lre) and a clinically adaptive loss ( Llcal ) for illumination awareness. Llcal work under the guid-
ance of the proposed weighting scheme for the target problem, which can promote illumination consistency, 
thus it is termed as a clinically adaptive loss.

The above equation presents the sum of the loss functions to defy the amplification of the objectionable arti-
facts, where the values of auxiliary variables αre and αcal are 0.004 and 0.3, respectively. The components losses 
in the above Eq. (7) are adjusted as reflection regularization loss l1 norm of the ‖r‖1 , and image split-loss (Lslr).

Llcal in the above equation is based on the edge-aware illumination consistency achieved in the guidance of 
the reflection component. The total variation (TV) operation is optimized to serve as a smoothness prior while 
removing its structure blindness. The corresponding TV loss, as shown in Figs. 4, and 5, disrupt the associated 
structure and texture artifacts. It can be seen in Fig. 4 that input images in the blue box are enhanced with and 
without the proposed strategy in the green and red boxes, respectively. In underexposed conditions, the color 
channel-based distortions can be observed in Fig. 6a to 6g for different input images. To overcome the challenges 

(6)
Sl (x,y) = l(x, y) · wl

Sr (x,y) = r(x, y) · wr

(7)LDe = Lslr + αreLre + αcalLlcal

(8)Lslr =
∥∥rx,ylx,y − S(x,y)

∥∥
1

Figure 3.  The effects of proposed enhancement parameter η on intensity.
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of illumination inconsistency, an encoder-decoder framework, which is termed an edification network, is pro-
posed. It is important to note that preserving the structure beside strong boundaries and edges is the key con-
straint for the edification of unevenly exposed input images. It contributes to providing structure and texture 
preservation with adaptive guidance, where the Llcal in the Eq. (8), is estimated as follows:

Whereas ϕ=10 provides trade-off control to adjust the gradient. The gradient operator 
�

 , in the Eq. (9) includes 
both the horizontal and vertical components expressed as ∂h , ∂v respectively for the r and l. The smaller derivatives 
define illumination consistency, and reflection regularities are considered as attributes of the larger derivatives. 
The impact of the improvements in the image quality due to the proposed TV optimization are shown in Fig. 8, 
where the impact of the proposed strategy is shown in terms of the PSNR of the network. It clearly demonstrates 
that the proposed clinically oriented strategy improves the network performance. The key structure and texture 
adjustments are embedded in the form of loss adjustments in the Ed-net.

The Ed-Net consists of an encoder-decoder unit. The encoder part consists of 3× 3 , upsampling, and the 
decoder part consists of 3× 3 , downsampling (conv+ReLU), and a stride of 2. Skip-connections maintain spatial 
consistency, and illumination is upscaled with a 3× 3 stack of convolutional layers. A multiscale concatenation 
operation is introduced to maintain the piece-wise illumination smoothness considering the local and global illu-
mination consistency. Moreover, the stack of conv-layers is finally introduced for nearest-neighbor interpolation 
adjustments across the stride of 1. Our Ed-Net disrupts illumination inconsistencies and induces illumination 
awareness while obtaining guidance through the clinically adaptive enhancement strategy. The overall loss of 
this network is adjusted as a sum of Llcal and image composition loss LSco , estimated as below.

The proposed strategy is clinically adaptive and preserves the image features to induce illumination and 
reflection consistency. The balanced contrast and enhancement of the luminance in the final image based on the 

(9)Llcal =

∥∥∥
�

lx,y · wl · exp(−ϕ
�

(rx,y) · wr)

∥∥∥

(10)LSco =

∥∥∥rx,y · l̃x,y − Sx,y

∥∥∥
1

(a) Input (b) Without ours (c)  With ours

Figure 4.  (a) Input images are shown with zoomed fragments, (b) shows the results without-ours method and 
(c) shows the results with ours method.

a b c d

Figure 5.  Adjustments in the illumination map for the (a) input, (b) is Original illumination, and, (c) & (d) 
shows the illumination map adaptations.

a b c d e f g

Figure 6.  The effects of various color channel-based distortions are shown in (a–g) for RGB space, handled by 
the proposed strategy to produce a clean image.



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:5312  | https://doi.org/10.1038/s41598-023-30548-5

www.nature.com/scientificreports/

learned adjustments is the distinct feature of the proposed framework. The medical practitioner can have the 
freedom of luminance adjustments to reveal the hidden features in the images by using the pre-trained model. 
The adaptive adjustments in the illumination and reflection components finally rectify the hidden artifacts, and 
at last, the product of reflection and illumination produces an output image. The final image is obtained as a result 
of enhancement operations tailored to the proposed network. The weighted adjustments in the illumination are 
obtained as a result of manipulation of various level appointments for the r = r̃(x, y) = r(x, y) · wr , and l = l̃(x, y) 
= l(x, y) · wl , without a tedious training process every time. The clinically adaptive weighting strategy provides a 
user-specific balance of contrast in the final image to visualize the various features in the output for an effective 
and early diagnosis of many potential dental diseases. Our strategy provides user-specific freedom of choice to 
adjust the luminance in the final image.

Datasets, experiments, and performance evaluation
Datasets. In the case of dental and oral dental imaging, the healthy and afflicted tissues exhibit various 
changes in the reflection spectra. Various data acquisition devices are available that store the data files in the 
grayscale, Red, Green, and Blue (R, G, B) and spectral images, as shown in Figs. 7 and 9. Spectral imaging analy-
sis may provide optimized solutions to detect the changes in dental tissues. The capturing scenario in Fig. 9a–c 
demonstrates that the weighting adjustments for various bands and wavelengths can optimize contrast with 
optical  filtering8. The available spectra can be utilized in training deep learning-based  systems5, intelligent expert 
diagnostic systems, and optical imaging  systems8.

Intelligent learning-based frameworks are becoming popular with the advent of time, but the availability of 
large-scale datasets in the medical imaging domains is a great challenge. The deep learning-based methods are 
data-hungry and the rare larger dataset repository in the dental domain. In this work, we utilized the oral and 
dental spectral image database (ODSI-DB)8. The database aims at spectral imaging in oral dental diagnostics. 
The database contains 316 images of human test subjects. This dataset captured the lower and upper teeth with 
oral mucosa and face surroundings. To the best of our knowledge, it is the only publicly available database for 
dental images, and the same has been reported by the authors  in8.

In this work, we simplify the spectral imaging pipeline as shown in Fig. 9e,f and utilize the ODSI-DB images 
to train the proposed Ded-Network. In our work, we propose to simplify the capturing assembly, as shown in 
Fig. 7, which may automate the capturing and diagnostic process. We selected a total of 232 images from the 
ODSI-DB and converted the Tagged Image File Format (TIFF) to portable network graphics (PNG). Moreover, 
we separated 16 test images out of these 232 images and utilized these images for subjective and objective evalu-
ation purposes. In this case, a reference ground-truth image is obtained with the help of a dental physician to 
reveal the true features necessary for the early diagnosis of oral dental diseases. The rest of the images (i.e., 216 
images only) are utilized for training the Ded-Net. Training a deep learning-based framework on such a small 

Input image Filter and sensorDevice lens (Mobile Phone camera) Color Interpolation Final view Captured Dataset views

Figure 7.  The principle of the proposed image capturing pipeline by using digital capturing devices.

Figure 8.  The effects of our strategy on total variation to improve PSNR.
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data sample is challenging. In addition, the adaptation of this framework to various scenarios to detect the desired 
features for early diagnosis is another challenge. Considering these key challenges, we proposed a framework 
capable of handling these issues. The subjective and objective evaluations in the next sections demonstrate the 
superiority of our method.

Experimental setting. Network Optimization: The proposed Ded-net is trained from scratch by using 
the Tensorflow framework, with Adam optimizer & back-propagation. Ded-Net utilizes a considerably small 
dataset for training under the guidance proposed scheme to update learning. The training proceeded for 100 
epochs, where the patch size is kept 128× 128 with a batch size of 16 and a learning rate of 0.0001 during the 
training process. The network gets regularized by utilizing only a few input samples for training only after a few 
epochs. The network predicts rapidly within a short time and becomes capable of producing adaptive results in 
various conditions. The overall comparison with the state-of-the-art approaches demonstrates that our method 
is more practical and suitable in the target domain. The suggested network is simple yet efficient and can be 
regularized without falling into the local optimal solution. It develops the ability to predict rapidly and precisely 
under a wide range of conditions.

Implementation Support: We utilized a PC core i7,6700K CPU@4GHZ 32GB RAM, NVIDIA 2080Ti GPU 
to perform the experiments. The comparison with competitor approaches demonstrates that the Ded-Net out-
performed the state of the arts in terms of subjective and objective evaluations.

Experiments. We pre-processed 216 input images and utilized them for training the proposed network. 
The proposed framework comprehensively resolves the data shortage challenges and is adaptable to robust con-
ditions. The performance of the proposed approach is measured by utilizing the test images separated from 
the pre-processed images. The challenging images from the available ODSI-DB were selected, and respective 
ground truth images (GTs) images were obtained. A reasonable visual quality for each image was obtained with 
manual adjustments in brightness and contrast. Auto-correct operation and brightness adjustment operations 
were employed to construct reference GTs in the adobe-photoshop. It is why because the full reference image-
based objective evaluation metrics (i.e., SSIM and PNSR) require a reference image for the evaluation. In order 
to generalize the performance, we utilize full reference image-based metrics, besides the non-reference image-
based metrics, and also present the visual comparison.

Subjective and objective performance evaluations. In this section, the proposed method is com-
pared with different state-of-the-art approaches. Subjective results are shown for visual comparison, and objec-
tive comparison is based on full reference image-based and non-reference image-based evaluation metrics. To 
provide an accurate comparison, we utilize structure similarity index measurement (SSIM) and peak signal-
to-noise ratio (PSNR) as full reference image-based  metrics48. A lightness order enhancement (LOE) metric is 
provided as a non-reference metric for the natural preservation of non-uniformly illumination  images49.

Similarly, a naturalness image quality evaluator (NIQE), a no-reference quality assessment method for con-
trast distorted images (NQAC)50, a standard and accelerated no reference screen image quality evaluation (SIQE), 
(ASIQE)  methods51 are used as non-reference image-based quality evaluation metrics. It is important to note 
that the reference image-based metrics require a reference ground-truth image (GT), designed in this case with 

(a) Spectral Imaging setup (b) Spectral Dataset Characteristics (c) Reflection Vs Wavelength

(d) Grayscale imaging (e) R,G,B image and dimension (f) Spectral image  dimensionalities
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Figure 9.  The Spectral imaging setup to characterize the wavelength and reflection distribution, with respect to 
the color imaging channels and spectral dimensionalities of the data.
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the help of dental physicians, to tackle the exigent glitches. To interpret the quality of the output images, the 
adaptive enhancement operations are shown in Figs. 2, 4 and 5. The ultimate purpose is to improve the final 
image quality based on our clinically oriented image enhancement strategy. In this regard, the comparison with 
the various state-of-the-art approaches is shown in Figs. 10, 11, 12 and 13. The visual comparison in the form of 
zoomed-in patches demonstrates the superiority of our method.

The quality of the output of our method demonstrates that our approach provides pleasing visual details. The 
overall quantitative comparison in terms of SSIM is shown in Fig. 14a and for LOE metric is shown in Fig. 14b. 
It depicts the overall superiority of the proposed approach in terms of visual and objective evaluations. The 
proposed improvements in the visual quality are very helpful in the early diagnosis of many oral dental diseases. 
The proposed adaptive enhancement operations can assist in image-guided robotics surgeries. In our method, we 
adaptively adjust the color channel-based operation, as shown in Fig. 6, which can assist in the edge preservation 
and detection tasks. In this Figure, various image samples (a-g) are shown in robust scenarios and suffer different 
distortions. We produce clean images that significantly improve segmentation and feature detection operations. 
In Fig. 15, we have shown the improvement in feature detection, but it is out of the scope of this work to explain 
detection and segmentation, which require a large-scale annotated dataset. To the best of our knowledge, no such 
dataset is available in the target domain. The proposed Ded-Net mitigates the hidden degradation and produces 
a pleasing visual balance with an adaptive contrast. The network consistently wipes out the reflection and illu-
mination irregularities as shown in Fig. 2, 4 and 5. The effectiveness of the enhancement operations improves 
the quality of the output images significantly. The visual comparison and zoomed-in patches demonstrate the 
effectiveness of the proposed approach.

The images captured with ordinary devices contain low contrast and face several artifacts, including color and 
contrast distortions. The extant enhancement approaches are hardly suitable for the target problem. Traditional 
approaches such as SRIE, SLIMER, and LBR methods are suitable for improving the low contrast but have high 
computational complexity and limited robustness. Such as, the SLIMER produces inconsistent reflection and 
can hardly handle heavy noises. The JED method proposed in the literature can handle the noises, but it removes 

Input Retinex SRIE Ours

Figure 10.  Comparison of the proposed method (ours) with decomposition-based approaches.

RetinexInput EGAN KinD

JEDSRIE SLIMER Ours

Figure 11.  Comparison of the proposed method (ours) with several state-of-the-art approaches.
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the fine details during denoising. Thus the order of denoising plays a key role in enhancing medical imaging 
to assist the associated operations. Considering these drawbacks, the recent deep learning-based methods are 
proposed in the literature. However, the deep learning-based methods are data-hungry, and some generative 
adversarial-based methods, such as  EGAN52 require a careful designation of the large-scale datasets, whereas 
other requires image  pairs23 or very large scale  data53. In contrast, our framework performs distinctively without 
any large-scale / carefully designed dataset. Our method is capable of working with minimal latency and memory 
footprint. The proposed scheme is embedded in the network, where we update the decomposition. It obstructs 
the amplification of the artifacts and improves the latency. In this way, a correlated consistency is maintained, 
where the network learns to decompose and update input. The subsequent adjustment operations improve the 
quality of the final image to extract the necessary details.

Our method consistently produces visually pleasing results with a wide range of adaptability to various 
practical scenarios. The comparison of our method shown in Figs. 10 and 12 illustrate that the deep retinex 
method suffers from texture transformation, and SRIE produces inconsistent results. In order to emphasize the 
zoomed-in patches shown, these patches demonstrate that our method consistently preserves the structure and 
texture details. The zoomed-in patches in Figs. 10 and 11 show that our method produces the best visual quality 
as compared to the state-of-the-art approaches. In Fig.10 we compare our method with the decomposition-based 
methods, and in Fig. 11, we generalize the performance and compare the proposed method with several states 
of the art approaches. It can be seen in these figures that Some approaches suffer texture transformation, while 
others result in color distortions besides under-enhancement. Similarly, in Fig. 13, the proposed Ded-Net is 
compared with several conventional state-of-the-art approaches, i.e., FEW, SLIMER, JED, and LBR methods.

The comparison demonstrates the lack of robustness of the extant methods in the target problem, where our 
method produces consistent results with more details. The objective comparison on the basis of PSNR, SSIM, 
and LOE is shown in Table. 1. The comparison based on NIQE, NQAC, SIQE, and ASIQE is shown in Table. 2. 
The higher values for the PSNR, SSIM, NQAC, SIQE and ASIQE depict higher image quality, whereas the lower 
values for the LOE and NIQE show higher image quality and vice versa. Moreover, it is important to note that 
the training time for the several extant deep networks ranges from several minutes to hours. In comparison, 
the training time for our Ded-Net is less than a minute. The comparison of the computational complexity of the 
proposed method with several state-of-the-art methods is shown in Table 3. Considering the application-specific 
requirements, we also present a comparison for feature detection in Figs. 15 and 16. We detect the features based 
on scale-invariant feature  transform54. The comparison demonstrates that the proposed method distinctively 

Table 1.  Comparison of PSNR and SSIM metrics with several methods.

Methods LBR SLIMER SBLI BBLLI JED Retinex SRIE Ded-Net

PSNR ↑ 15.6846 17.0082 13.9775 17.6423 18.0482 12.6957 13.97754 22.5831

SSIM ↑ 0.8038 0.8628 0.8549 0.8166 0.8148 0.8075 0.85495 0.9368

Table 2.  The comparison of non-reference image-based quality evaluation metrics.

Methods LBR SLIMER SBLI BBLLI JED Retinex SRIE Ded-Net

NIQE ↓ 8.7264 7.1658 8.2447 6.5284 7.6905 8.8635 7.0246 5.4237

NQAC ↑ 4.0195 4.7683 4.5318 4.3258 4.2718 3.9328 4.5682 5.6792

SIQE ↑ 0.6419 0.6742 0.6480 0.6946 0.6836 0.6594 0.6809 0.7186

ASIQE ↑ 0.6441 0.6486 0.6518 0.6980 0.6888 0.6605 0.6871 0.7238

LOE ↓ 2052 1805 2026 1796 1832 1904 1938 1667

Input Ded-Net (Ours)Retinex SRIEJED BBLLI

Figure 12.  Comparison with Retinex, JED, BBLI, SRIE, and Ded-Net (Ours).
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Input FEW SLIMER JED LBR Ours

Figure 13.  Comparison of our method on input images in the first column with several traditional state-of-the-
art approaches.

Figure 14.  Comparison in terms of (a) SSIM and (b) LOE evaluation metrics with several sate of the art 
approaches.
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improves the number of matches for the enhanced image (i.e., Fig. 15c,d) as compared to the original input 
image (i.e., Fig. 15a,b). In Fig. 16 we compare the proposed method with network based methods, i.e., KinD 
and retinex. The overall comparison with the state-of-the-art approaches clearly demonstrates that our method 
is very effective and outperforms the state-of-the-art approaches.

It is also important to note that, to assist the dental physician and robotics operations, minor details can play 
a key role in diagnosing many oral dental diseases. Thus, considering the target problem’s nature, the proposed 
clinically oriented enhancement strategy is of immense importance. The results produced by our method are 
consistent and more adaptive towards various expert system operations, including early diagnosis of several 
oral dental diseases.

Conclusion
In this work, a new dental image enhancement framework is proposed for the early detection and diagnosis of 
oral dental diseases. A practical and clinically oriented adaptive enhancement strategy is proposed to act adap-
tively in practical scenarios for the early diagnosis of dental diseases. This strategy is embedded in a denticle 
edification network (Ded-Net) to adjust the degradation of reflection and illumination. A practical trade-off is 
provided to maintain the balance of luminance in the final image. Unlike previous approaches, the proposed 
method does not require a large-scale / paired or carefully selected dataset and learns to predict dynamically in 
resilient situations. The decomposition of the input data into reflection and illumination components facilitates 
the desired adjustment in the final image, where the network is end-to-end trained to learn from the persistence 
of decomposition for successive enhancement operations. The proposed framework can also improve the perfor-
mance of intelligent and expert systems, including many robotic and surgical operations. The overall comparison 
with the state-of-the-art approaches illustrates the superiority of our method. In future work, we will consider 
incorporating the proposed framework for some segmentation and detection tasks.

Figure 15.  The features matching, (a), and (b) shows matched feature points for original and ground truth 
(GT) and, (c) and (d) shows matched feature points between GT and Ours.

Table 3.  Runtime comparison of various methods.

Methods Runtime Platform Methods Runtime Platform

SRIE 12 Matlab LBR 35.5 Matlab

SLIMER 26.5 Matlab Retinex 0.12 Tf-gpu

JED 7.5 Matlab KinD 0.002 Tf-gpu

FEW 3.5 Matlab Ded-Net 0.09 Tf-gpu

a b c d e f

KinD Input Input Retinex Ours Input

Figure 16.  The features matching comparison with Network based methods in red, green and blue boxes. 
Feature points are matched for (b, c, f) input images. (a) shows KinD, (d) Retinex and (e) shows results for 
matched feature points for ours.
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Data availability
The dataset used in this work was obtained from the oral and dental spectral image database(https:// sites. uef. 
fi/ spect ral/ odsi- db/).
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