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Efficient noise mitigation technique 
for quantum computing
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Quantum computers have enabled solving problems beyond the current machines’ capabilities. 
However, this requires handling noise arising from unwanted interactions in these systems. Several 
protocols have been proposed to address efficient and accurate quantum noise profiling and 
mitigation. In this work, we propose a novel protocol that efficiently estimates the average output 
of a noisy quantum device to be used for quantum noise mitigation. The multi-qubit system average 
behavior is approximated as a special form of a Pauli Channel where Clifford gates are used to estimate 
the average output for circuits of different depths. The characterized Pauli channel error rates, and 
state preparation and measurement errors are then used to construct the outputs for different depths 
thereby eliminating the need for large simulations and enabling efficient mitigation. We demonstrate 
the efficiency of the proposed protocol on four IBM Q 5-qubit quantum devices. Our method 
demonstrates improved accuracy with efficient noise characterization. We report up to 88% and 69% 
improvement for the proposed approach compared to the unmitigated, and pure measurement error 
mitigation approaches, respectively.

Quantum Computation is an emerging field that sits at an intersection between computer science, electrical 
engineering and quantum physics. By now, scientists and engineers alike are optimistic of its computational and 
technological potential, achieving a so-called computational  supremacy1,2. Countless of applications for quan-
tum devices have been proposed from building a quantum  internet3,4 to enhancing and feeding into scientific 
 discoveries5 to revolutionizing  simulation6, neural  network7 and  optimization8. Some of these applications are 
already being tested and even practically  implemented9. That said, quantum computer implementation technolo-
gies are still a work in progress. Results on different qubit technologies, computer models, and interconnects and 
more have recently been  published10–12.

Building large-scale quantum computers is still a challenging task due to a plethora of engineering  obstacles13. 
One prominent challenge is the intrinsic noise. In fact, implementing scalable and reliable quantum comput-
ers requires implementing quantum gates with sufficiently low error rates. There has been substantial progress 
in characterizing noise in a quantum  system14–16 and in building error correcting schemes that can detect and 
correct certain types of  errors17–19.

Numerous protocols have been constructed to characterize the noise in quantum devices. Many of these 
protocols fail in achieving one of the following desirables: scalability to large-scale quantum computers and 
efficient characterization of the noise. Quantum Process  Tomography20 is a protocol that can give a complete 
description of the dynamics of a quantum black box, however, it’s not scalable to large-scale quantum systems. 
Randomized Benchmarking (RB) is another protocol that’s typically used to estimate the error rate of some set 
of quantum  gates21,22. Although RB is a scalable protocol in principle, it can only measure a single error rate 
that’s used to approximate the average gate infidelity thus providing an incomplete description of noise. Various 
other protocols based on RB protocol are able to characterize the correlations of noise between the different 
qubits, however, these protocols lack  scalability21,23,24. Quantum Error  Mitigation25 (QEM) is a recently emerging 
field that aims to improve the accuracy of near-term quantum computational  tasks26 many times through data 
post-processing. It is considered a much more feasible alternative, for the time being, to Quantum Error Cor-
rection (QEC) which revolves around encoding quantum states in multi-qubit entangled  states27,28 to achieve 
universal fault-tolerant quantum computation. QEM protocols include zero-noise Richardson  extrapolation29, 
probabilistic error cancellation through sampling circuits and taking their weighted  average30,31, and exploiting 
state-dependent bias through invert-and-measure techniques to map the predicted state to the strongest  one32. 
Others have worked on using diverse ansatzs/models to predict observables’ noise-free  values33, distribution 
correction  factors34 or even circuit noise metrics (to behave as an objective function for a quantum  compiler35). 
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To mention a few more, there is quantum subspace expansion, symmetry verification and countless learning-
based techniques available  recently36,37.

Measurement Error Mitigation (MEM) is a QEM protocol that models the noise in a quantum circuit as a 
measurement noise matrix Emeas applied to the ideal output of the circuit. The columns of Emeas are the prob-
ability distributions obtained through preparing and immediately measuring all possible 2n basis input  states38.

Recently, the authors  in39 developed a protocol based on the RB that relies on the concept of a Gibbs Random 
Field (GRF) to completely and efficiently estimate the error rates of the Pauli Channel and detect correlated errors 
between the qubits in a quantum computer. Their effort paves the way to enable quantum error correction and/
or mitigation schemes. Herein, we refer to their efficient learning protocol as the {EL protocol}. In this paper, we 
build upon the EL protocol and decompose the average noise of a quantum circuit of specific depth into State 
Preparation and Measurement (SPAM) error and average gate error. We propose a linear algebraic based protocol 
and proof to efficiently construct and model the average behavior of noise in a quantum system for any desired 
circuit depth without having to run a large number of quantum circuits on the quantum computer or simulator. 
We then rely on this model to mitigate the noisy output of the quantum device. Noise mitigation schemes are 
often categorized into two, either active involving online processing dependent on each run and operation, or 
passive in which it is independent of the run and operation. Our proposed technique is considered a passive one 
since only one noise characterization is made for the quantum device at hand and then used to mitigate errors 
for any arbitrary circuit of specific depth on that device. For an n-qubit quantum system, the average behavior 
of the noise can be well approximated as a special form of a Pauli  Channel40–42. A Pauli channel ε acts on a qubit 
state ρ to produce

where pi is an error rate associated with the Pauli operator Pi . The pi ’s form a probability distribution (
∑

i pi = 1) , 
and are related to the eigenvalues, � , of the Pauli Channel defined as

Thus, when a state ρ is subjected to the noisy channel ε , pi describes the probability of a multiqubit Pauli error 
Pi affecting the system, while �i describes how faithfully a given multispin Pauli operator is transmitted. p and 
� are related by Walsh–Hadamard transform, W where

While RB only estimates the average value of all �i of the Pauli Channel, the EL protocol estimates the individual 
�i . A complete characterization of the Pauli channel requires learning more than the eigenvalues or error rates 
associated with single-qubit Pauli operators such as σ (1)

z  or σ (3)
x  ; it requires learning all of the noise correlations 

in the system, that is, also learning the eigenvalues and error rates associated with multiqubit Pauli operators 
such as σ (1)

z ⊗ 1
(2) ⊗ σ

(3)
x  and how they vary compared to the ones obtained under independent local noise. 

Estimating these correlations is essential for performing optimal QEC and/or QEM. However, these correlations 
increase exponentially as the number of qubits increases, so having an efficient noise characterization protocol 
is crucial to direct the error mitigation efforts to capture the critical noise correlations.

Our method relies on the error rates vector p of the Pauli-Channel to decompose the average behavior of 
noise for circuits of depth m into two noise components: a SPAM error matrix denoted by the matrix N  and a 
depth dependent component comprising an average gate error matrix denoted by the matrix M . We evaluate 
our model for the average noise by predicting the average probability distribution for circuits of depth m and 
computing the distance between this predicted distribution and the empirically obtained one. Finally, we use 
our proposed decomposition to mitigate noisy outputs of random circuits and compare our mitigation protocol 
with the MEM  protocol38. We applied our noise characterization and mitigation protocols on the following IBM 
Q 5-qubit quantum computers: Manila, Lima, and  Belem43.

Results
Proposed protocol theory. The ideal output probability distribution of an n-qubit quantum circuit with 
depth m is perturbed by the SPAM and the average gate errors. Our aim is to construct a comprehensive linear 
algebraic model that takes into account both these errors for an arbitrary depth m. Matrix algebra can then be 
employed to mitigate the noise as follows:

where Qm is the characterized noise matrix for circuits of depth m, Cideal and Cnoisy are the ideal and noisy 
outputs of a given circuit of depth m, respectively. The straight-forward approach would be to construct Qm 
from empirical simulations in a similar fashion to the Emeas noise matrix that was characterized in the MEM 
scheme. The columns of Qm comprise the emperical average probability distributions for basis input states 
|in� ∈ {|0�, |1�, . . . , |2n − 1�} , denoted by q̂(m, |in�) , where q̂(m, |in�) are obtained through sampling a number 
of depth m circuits to incorporate the average gate and SPAM errors.

(1)ε(ρ) =
∑

i

piPiρPi

(2)�i = 2
−nTr(Piε(Pi))

(3)� = Wp

(4)Cideal = Q−1
m Cnoisy

(5)Qm =
[

q̂(m, |0�) q̂(m, |1�) . . . q̂(m, |2n − 1�)
]



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3912  | https://doi.org/10.1038/s41598-023-30510-5

www.nature.com/scientificreports/

Building Qm , however, through empirical simulations can be expensive especially when the circuit depth is large. 
Herein, we propose a method for an efficient estimation of Qm where the individual probability distributions 
q̂(m, |in�) are estimated as follows:

where N in and Min are input-specific matrices that represent the SPAM error matrix and average gate error for 
input |in� , respectively. Both Min and N in are extracted empirically using random circuits from a set of small 
circuit depths T and then used in mitigating the outputs for circuits with higher depths. We first show the con-
struction of N0 and M0.

The construction of N0 and M0 proceeds by estimating the error rates vector p associated with the Pauli Chan-
nel based on the assumption in Eq. 1 for the average behavior of the noisy quantum device at hand using the EL 
protocol. The protocol proceeds by constructing K random identity circuits of depth m ∈ T23,39. Each circuit is 
constructed by initializing the qubits to the all-zeros state |0� followed by choosing a random sequence s ∈ Sm , 
the set of all length m sequences of one-qubit Clifford gates applied independently on each qubit, followed by 
an inverse gate for the chosen sequence to ensure an identity circuit. It then estimates the resulting empirical 
probability distribution q̂(m, |0�) by averaging over all the empirical probability distributions q̂(m, s, |0�) for the 
constructed random identity circuits of depth m, that is,

q̂(m, |0�) is a vector with 2n entries each corresponding to the possible observed outcome. A Walsh–Hadamard 
transform is then applied on each q̂(m, |0�) to obtain

Each parameter �i(m) in �(m) is fitted to the model

where Ai is a constant that absorbs SPAM errors and the vector � of all fitted parameters �i is a SPAM-free estimate 
to the eigenvalues of the Pauli Channel defined in Eq. 2. Notice that we can rewrite Eq. 9 as

where A is a diagonal matrix where the diagonal entries are Ai and �m is an element-wise exponentiation of a 
vector. An inverse Walsh–Hadamard Transform is then applied on � to get the error rate vector p of the Pauli 
Channel as

p is then projected onto a probability simplex to ensure 
∑

i pi = 1 . Introducing the GRF model by the EL protocol 
allows the scalability of estimating p with the increase in the number of qubits. The GRF model assumes the 
noise correlations are bounded between a number of neighboring qubits depending on the architecture of the 
quantum computer at hand. Thus, decreasing the number of noise correlations to be estimated.

The final outcome p of the EL protocol represents the SPAM-free probability distribution of the average noise 
in the quantum computer. Each element pi ∈ p corresponds to the probability of an error of the form binary(i) 
on an input state |0� . For example, for a 5-qubit quantum computer, p0 corresponds to the probability of no bit 
flips on the input state, i.e., error of the form IIIII, p1 to the error of the form IIIIX, p2 to the error of the form 
IIIXI, etc...

In order to proceed with the proof for our proposed decomposition of Eq. (6) for input state |0� , we first state 
the following lemma (the detailed proof of the lemma can be found Section I in the supplementary):

Lemma 1 Let � and p be the respective eigenvalues and error rates of a Pauli Channel with n qubits, then 
�
m = WMm|0� where M is a 2n × 2n matrix such that Mij = pi⊕j ( i ⊕ j is the bitwise exclusive-OR operator).

Using Lemma 1 and Eqs. 8 and 10, q̂(m, |0�) can be estimated as

The transition matrix M = M0 represents the average error per gate while the N = W−1AW = N0 matrix 
represents the SPAM errors for an input state |0� . Notice that the average noise for depth m circuits on an input 
state |0� behaves as a sequence of m average noise gates M0 followed by SPAM errors N0.

The construction of N in and Min for input state |in� proceeds similar to the procedure of constructing N0 and 
M0 , however, a permutation of q̂(m, |in�) is required before applying a Walsh–Hadamard transform to ensure 
that each element pi(|in�) in the input-specific error rate vector p(|in�) corresponds to the probability of an error 
of the form binary(i) on an input state |in� . This permutation is done by applying an input-specific permuta-
tion matrix π in on q̂(m, |in�) ∀m where πinij = 1 if i ⊕ j = in and 0 otherwise. It must be noted that Qm can be 
nearly singular especially for large m as can be directly inferred from Eq. 12 ( |Mm| ∼ 0 ). In this case, the results 
are random hence the desire to use some enhancement technique to address this issue as much as feasible. For 

(6)q′(m, |in�) = N inM
m
in|in�

(7)q̂(m, |0�) =
1

K

∑

q̂(m, s, |0�)

(8)�(m) = Wq̂(m, |0)�

(9)�i(m) = Ai�
m
i

(10)�(m) = A�m

(11)p = W−1
�

(12)q′(m, |0�) = W−1AWMm|0�
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example, one way to do so is by utilizing unfolding  techniques44. In this work, we did not enhance the results as 
we only experimented with relatively smaller values of m.

Experiments. In this section, we evaluate the accuracy of the model in Eq. 12 in predicting the average 
probability output, q̂(m, |0�) , for identity circuits of higher depths by estimating A0 and p(|0�) using only sim-
ulations of lower depths identity circuits. Denote by q′(m, |0�) the predicted average probability distribution 
obtained using Eq. 12. We select a training set of depths T = {1, 2, . . . , mmax} to estimate A0 and p using the 
EL protocol followed by the construction of the average gate error matrix M0 and SPAM error matrix N0 where 
M0ij = pi⊕j(|0�) and N0 = W−1A0W . A new testing set of depths T ′ = {mmax + 1, mmax + 2, . . . , 100} is then 
selected where we compute the Jensen–Shannon Divergence (JSD) between q̂(m′, |0�) and q′(m′, |0�) ∀m′ ∈ T ′ . 
The JSD measures the similarity between the two probability  distributions45. The lower the JSD, the closer the 
two distributions are. More information about the JSD can be found in Section II in the supplementary. Figure 1 
presents the computed JSD for different quantum computers while varying mmax . Figure 2 presents the average 
and standard deviation for the test JSD values for the different quantum computers. The average test JSD var-
ies between 0.024 and 0.056 for the different mmax values with lower average JSD values noted for high m for 
mmax = 80 as indicated in Fig. 2b.

We rely on q′(m, |in�) to construct and evaluate the mitigation power of Qm for different depths. We first select 
a training set of depths T = {1, 20, 40, 60, 80, 100} to estimate Ain and p(|in�) for each input state |in� using the 
EL protocol followed by the construction of Min using p(|in�) and N in = W−1AinW . We then estimate q̂(m, |in�) 
as q′(m, |in�) for all inputs using Eq. 6 in order to construct Qm using Eq. 5. We then choose a new testing set of 
depths T ′ = {10, 30, 50, 70, 90} so that Qm is used in mitigating the outputs for circuits of depth m ∈ T ′ where 
for a given identity circuit of depth m with input |in� and sequence s of gates, the mitigated output q̂(m, s, |in�)mit 
in obtained as

q̂(m, s, |in�)mit is projected onto a probability simplex to ensure a probability distribution. The JSD between 
q̂(m, s, |in�)mit and the ideal output |in� is computed and then averaged over all input states and all random cir-
cuits of depth m. We also compare our proposed mitigation protocol using Qm with the MEM scheme (Fig. 3). 

(13)q̂(m, s, |in�)mit = Q−1
m q̂(m, s, |in�)

Figure 1.  JSD(q̂(m, |0�), q′(m, |0�)) for training sets of depths T and testing sets of depths T ′ with variable 
maximum training depth mmax ∈ {20, 50, 80} on different IBM Q 5-qubit quantum computers.

Figure 2.  The average and standard deviation of JSD(q̂(m, |0�), q′(m, |0�)) ; (a) over all depths 
m ∈ [mmax + 1, 100] and (b) over depths m ∈ [80, 100] while varying the maximum training depth mmax on 
different IBM Q 5-qubit quantum computers.
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We report upto 88% improvement in the JSD value for the proposed approach compared to the unmitigated 
approach, and upto 69% improvement compared to MEM approach. Note that for the results presented here, we 
rely on the average SPAM free error rate, pavg =

1
2n

∑2n−1
in=0 p(|in�) to construct Min = Mavg for all inputs. We 

compare the results using pavg and p(|in�) in the supplementary Section V. N in remains input specific. Further 
elaborations on the results are presented in supplementary Section VI.

Complexity. So far in the estimation of Min and N in for each input state |in� using the EL protocol, K random 
circuits are generated for each depth 1 ≤ m ≤ mmax where the EL protocol requires O(22n) for the Walsh–Had-
amard transform which can be reduced into O(n2) using fast Walsh–Hadamard transform. Thus, the overall 
complexity of the construction of Min and N in for all input states is O(mmaxKn

22n) . Furthermore, the GRF 
model factors the error rates vector into a product of ∼ O(n) factors, depending on the architecture of the 
quantum computer, where each factor depends on a subset of adjacent qubits of cardinality N << n (typically 
N = 4 ). Thus, the complexity is reduced further into O(nmmaxKN

22n) . The construction of Qm would be based 
on Eq. 6 for each input state |in� where Mm

in can be computed efficiently using the Singular Value Decomposition 
(SVD) of Min , thus the construction of Qm is O(23n) . For the MEM scheme, the construction of Emeas requires 
only generating K circuits with no gates for each input state |in� , thus the complexity is O(K2n) . For mitigation, 
both protocols are based on matrix inversion, thus the complexity for mitigation is O(23n).

Discussion
The proposed mitigation protocol builds upon the SPAM-free noise characterization protocols for low circuit 
depths to generate a SPAM-error matrix N in and an average gate error matrix Min for each input state |in� . It 
then constructs a noise mitigation matrix Qm for arbitrary circuit depths m where the columns of Qm are the 
estimated average probability distributions q′(m, |in�) = N inM

m
in . The mitigated output q̂(m, s)mit of a given 

circuit of depth m with sequence s of gates is obtained by applying Qm
−1 on the empirical circuit output q̂(m, s).

We evaluated the accuracy of our model in estimating the average probability distributions for high 
depth circuits and evaluated our mitigation protocol on the IBM Q 5-qubit quantum devices: Belem, Lima, 
and Manila. For the model accuracy evaluations, for the different mmax values, we reported on average a test 
JSD(q̂(m, |0�), q′(m, |0�)) value around 0.022–0.028 for Manilla, 0.03–0.055 for Lima, and 0.028–0.048 for Belem. 
For mmax = 20 , the test JSD values varied between 0.005 and 0.05 for Lima computer, 0.01 and 0.06 for Manila 
computer, and 0.02 and 0.09 for Belem computer. We note that for mmax = 20 the test spans m ∈ [21–100]. 
For higher depths m ∈ [80–100], on average mmax = 80 resulted in better model error than mmax = 50 and 
mmax = 20 . Results for IBM Q Athens are presented in the supplementary.

Finally, we report upto 88% JSD improvement for the proposed approach compared to the unmitigated 
approach with significant mitigation improvement compared to MEM at mid to higher depths. Specifically, 
for m = 90 , we reported 58%, 66% and 85% JSD improvement for the proposed approach compared to the 
unmitigated on Belem, Manilla, and Lima respectively. This is compared 12%, 17% and 51% respectively for the 
MEM. On average for all the test depths across the different machines, we report 68.4% JSD improvement for 
the proposed versus 38.2% for the MEM improvement compared to the unmitigated approach.

In addition, we compared the proposed mitigation technique against zero-noise Richardson extrapolation 
(ZNRE)  method29. Our results shows superior performance over ZNRE. the full details of the comparison and 
the results can be found in the supplementary file in Section VII.

Methods
In evaluating the accuracy of the model, we run K = 1000 random identity circuits with each submission request-
ing 1024 shots for each depth m ∈ {1, 2, . . . , 100} . In evaluating the mitigation power of Qm , we run K = 1000 
random identity circuits for depths m ∈ {1, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100} for each basis input state |in� 
with each circuit requesting 1024 shots. The constructed circuits contain single qubit Clifford gates only. We 
run the circuits on the following IBM Q 5-qubit quantum computers: Manila, Lima, and Belem. Theoretical 

Figure 3.  Average JSD between the ideal output |in� and each of the unmitigated output q̂(m, s, |in�) , mitigated 
output by the MEM protocol, and mitigated output by our proposed noise model for each depth m on IBM Q 
5-qubit quantum computers.
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derivations and numerical details essential to the study are presented in the Results section. More details can 
be found in the Supplementary Information. For the configurations and noise profiles of the IBM quantum 
machines, please go to IBM Quantum Experience at http:// www. resea rch. ibm. com/ quant um.

Data availability
The data that supports the findings of this study are available from the corresponding author upon reasonable 
request.

Received: 9 September 2021; Accepted: 24 February 2023
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