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A multicentre study reveals 
dysbiosis in the microbial 
co‑infection and antimicrobial 
resistance gene profile 
in the nasopharynx of COVID‑19 
patients
A. Sayeed. M. Mahmud 1, Christine A. Seers 2, Aftab Ali Shaikh 1, Tarannum Taznin 3, 
Mohammad Samir Uzzaman 4, Eshrar Osman 4, Md. Ahashan Habib 1, Shahina Akter 1, 
Tanjina Akhtar Banu 1, Md. Murshed Hasan Sarkar 1, Barna Goswami 1, Iffat Jahan 1, 
Chioma M. Okeoma 5, Md. Salim Khan 1* & Eric C. Reynolds 2*

The impact of SARS‑CoV‑2 infection on the nasopharyngeal microbiome has not been well 
characterised. We sequenced genetic material extracted from nasopharyngeal swabs of SARS‑CoV‑2‑
positive individuals who were asymptomatic (n = 14), had mild (n = 64) or severe symptoms (n = 11), as 
well as from SARS‑CoV‑2‑negative individuals who had never‑been infected (n = 5) or had recovered 
from infection (n = 7). Using robust filters, we identified 1345 taxa with approximately 0.1% or greater 
read abundance. Overall, the severe cohort microbiome was least diverse. Bacterial pathogens were 
found in all cohorts, but fungal species identifications were rare. Few taxa were common between 
cohorts suggesting a limited human nasopharynx core microbiome. Genes encoding resistance 
mechanisms to 10 antimicrobial classes (> 25% sequence coverages, 315 genes, 63 non‑redundant) 
were identified, with β‑lactam resistance genes near ubiquitous. Patients infected with SARS‑CoV‑2 
(asymptomatic and mild) had a greater incidence of antibiotic resistance genes and a greater microbial 
burden than the SARS‑CoV‑2‑negative individuals. This should be considered when deciding how to 
treat COVID‑19 related bacterial infections.

Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is the virus responsible for coronavirus disease 
2019 (COVID-19), a condition with a diverse range of pathological changes, our understanding of which is con-
tinually  evolving1–3. Secondary viral, fungal, and bacterial infections in people with SARS-COV-2 infection can 
influence disease progression and death rate, thus affecting  prognosis4–9. The reported SARS-CoV-2 co-infection 
rates with pathogenic microorganisms vary from less than 1% up to 50%. This variance is likely due to testing 
regimens, with some patient samples tested during hospitalization with culture confirmation and other samples 
tested retrospectively using molecular  methods10,11, with no confirmation of disease- relating to identifications. 
The rate of co-infection in COVID-19 patients increases with time of nosocomial  exposure12. Case studies and 
large-scale surveillance analyses of various respiratory pathogens have shown SARS-CoV-2 co-infection with 
Mycobacterium tuberculosis, dengue, and influenza  virus13–15 and it has been reported that 50% of COVID-19 
deaths were associated with bacterial and fungal co-infections16. However, it is often not confirmed if coinfecting 
species were also causing an associated disease pathology, morbidity and mortality.
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Antibiotic therapies are frequently used prophylactically with hospitalized COVID-19 patients however 
there are contraindications for use of antibiotics as a  treatment12,17. Survey of patients admitted to hospital with 
COVID-19 showed bacterial co-infection was uncommon, yet the use of antibiotics was high with lower survival 
rates in patients given antibiotics, except for those prescribed  macrolides12. A retrospective analysis of antibiotic 
use by COVID-19 patients in the two years prior to admission to hospital showed poorer outcomes relative to 
patients who had no prior use of antibiotics 17. Although the advantage of the intake of antibiotics during a 
viral respiratory infection is that individuals can protect themselves against secondary bacterial infection, con-
versely antibiotic intake may cause microbiome dysbiosis by repressing health-associated species and allowing 
the emergence of antibiotic-resistant  pathogens18. The upper respiratory tract (URT) microbiota is known to 
be a gatekeeper of respiratory health, preventing or resisting the intrusion of invasive respiratory  pathogens19, 
including opportunistic pathobionts 20 such as Streptococcus pneumoniae21, Haemophilus influenzae 22, Neisseria 
meningitidis23 and Staphylococcus aureus 24 which may exist as harmless commensals or as highly invasive and 
deadly pathogens. It was suggested that respiratory infections are associated with a nasopharyngeal microbiota 
 imbalance25,26 with pneumonia in both old and young adults due to the overgrowth of a single species in the 
URT and the absence of distinct anaerobic  bacteria26.

Prior to the emergence of SARS-CoV-2 acute respiratory infections, especially pneumonia, were among the 
leading causes of death. Worldwide in 2016 alone there were 2,377,697 pneumonia-associated deaths  reported27,28. 
S. pneumoniae was the leading cause of lower respiratory tract infection, morbidity and mortality causing more 
deaths than all other aetiologies combined in  201627. Understanding the relationships between organisms such 
as S. pneumoniae and SARS-CoV-2 when they co-inhabit the nasopharynx and lungs would be important to 
understanding the progression of disease in a COVID-19 patient. On 8 March 2020, the first coronavirus case 
was reported in Bangladesh and by January 2022 more than 1.5 million individuals were confirmed as infected, 
with over 28,000 deaths (https:// covid 19. who. int/ region/ searo/ count ry/ bd). In developing countries such as 
Bangladesh antibiotics can be obtained without the requirement for a prescription from a medical practitioner 
which leads to widespread ad hoc intake. Analysis of the prescribing practices in Bangladesh revealed that 83% 
of patients who visited doctors were prescribed two or more antibiotics without the benefit of laboratory testing 
indicating a need for such a  therapy25,29. Unfortunately half of the patients usually stop taking the antibiotic as 
soon as symptoms  abate30. This self-medication with antibiotics combined with over-prescription may be con-
tributing to the rising occurrence of anti-microbial resistant bacteria in  Bangladesh31. In the context of treatment 
for COVID-19, the prevalence of antimicrobial resistance genes within the microbiome could negatively impact 
treatment outcomes for patients.

The aim of the present study, was to use DNA sequencing to determine if SARS-CoV-2 infection impacts the 
nasopharynx microbiome and the profile of antimicrobial resistance genes..

Materials and methods
Patients, controls, and sample collection. This study was approved by the National Institute of Labo-
ratory Medicine & Referral Centre (NILMRC) Dhaka, Bangladesh; approval number NILMRC/2020/001. The 
study methods were carried out in accordance with the relevant guidelines and regulations and complied with 
the National Statement on Ethical Conduct in Human Research 2007 (Updated 2018). All participants and/
or their legal guardians gave informed, written consent for the nasopharyngeal swab samples to be used in 
the study. Samples were processed at the Genomic Research Lab, Bangladesh Council for Scientific and Indus-
trial Research (BCSIR), Dhaka, Bangladesh. Nasopharyngeal specimens were taken from suspected COVID-19 
patients and volunteer control subjects in the cities of Narayanganj, Dhaka, and  Chattagram32. Specimens were 
kept at 4 °C before and during transport when sampled and processed on the day of collection or stored at −20 °C 
and transported on ice for processing within 24 h of collection.

SARS‑CoV‑2 detection and shotgun sequencing. SARS-CoV-2 in nasopharyngeal swabs was 
detected following protocols in the Novel Coronavirus (2019-nCoV) Nucleic Acid Diagnostic Kit (Sansure Bio-
tech). Nasopharyngeal swabs were immersed in Sample Storage Solution for transport and storage. On receipt in 
the laboratory samples were lysed by addition of Sample Release Reagent. An aliquot of this lysis mix was used 
for real-time reverse transcription polymerase chain reaction (rRT-PCR) to detect the SARS-CoV-2 N- and ORF 
1ab transcripts as per the manufacturer instructions. A second aliquot of lysis mix was centrifuged at 4000 × g 
for 5 min. The supernatant was removed to a clean vial and nucleotides extracted using the Purelink Viral DNA/
RNA Extraction Kit (Invitrogen) and used to make sequencing libraries. Sequencing libraries were made using 
a “shotgun” method with the Illumina TruSeq Stranded Total RNA Library Workflow with an average insert size 
of 151 bp paired end (Illumina Inc., San Diego, CA). Libraries were sequenced with an Illumina NextSeq 550 
instrument according to the manufacturer’s protocol.

Bioinformatic analysis. Bacterial, fungal, and viral species were identified from raw fastq files using the 
Chan Zuckerberg ID (CZ ID) portal (formerly IDseq)33,34. The CZ ID pipeline performs adapter trimming, 
data quality control (QC), host DNA subtraction, then alignments using Bowtie  235 to match the raw fastq 
file’s reads to the National Center for Biotechnology Information (NCBI) national nucleotide collection (NT) 
and translations to the NCBI non-redundant protein (NR) databases. We created a background dataset using 
SARS-CoV-2-negative control samples (dataset New BCSIR NSP Background 23 01 2021 in CZ ID). By default, 
CZ ID ranks taxa based on an aggregate score derived from comparisons to NT/NR z scores and reads per 
million (rpm). However, this method alone was insufficient to distinguish specific taxa from a list of possible 
pathogens and non-specific taxa for the given samples. To enable pathogen discrimination, we applied criteria 
of nucleotide reads per million (NT %id ≥ 95, NT rPM) ≥ 40, NR rPM ≥ 40, nucleotide length (NT L) ≥ 100, NR 

https://covid19.who.int/region/searo/country/bd
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r (total reads) ≥ 40, and NR value E E−15. After selecting the background model, the NT z-score was set to 1 to 
compare the relative abundance of the taxon in the samples to the background model. To reduce the possibility 
of reporting taxa that result from kit, handling and environmental contamination, which could become over-
represented, particularly in low biomass  samples36, we set a cut-off of > 0.1% non-host read abundance for taxa 
used in comparative analyses. Anti-microbial resistance genes (ARG) were detected using software  SRST237 on 
the CZ ID platform. The number of matching and non-matching bases at each location in each ARG alignment 
was determined with a binomial test against the reference allele with a hit retention threshold set to > 25% per-
cent gene coverage. For comparison, lower stringency filtering at NT rPM ≥ 10, nucleotide length NT L ≥ 50 was 
also conducted.

Statistical analysis. Microsoft Excel (Microsoft 365, version 2212) and the statistical programming lan-
guage R (version 4.2.2; R) were used to conduct the statistical analyses. The R packages used were imported 
into RStudio (Studio Team (2020). RStudio: Integrated Development for R. RStudio, PBC, Boston, MA, URL 
http:// www. rstud io. com/) from The Comprehensive R Archive Network repository (https:// cran.r- proje ct. org/). 
Heat maps were generated using the R package pheatmap version 1.0.12, (https:// CRAN.R- proje ct. org/ packa 
ge= pheat map) whereas  Venn diagrams were drawn using  the VennDiagram package, version 1.7.3 (https:// 
CRAN.R- proje ct. org/ packa ge= VennD iagram). Microbiome compositions were assessed by Shannon diversity, 
H = −∑[(pi) * ln(pi)] where pi is the proportion of each species based on read counts; Simpson’s Index, N(N−1)/
sum[n(n−1)] where N is all taxa count and n is count by taxon; and evenness, H/ln (number of species). The 
Wilcoxon signed-rank test was performed using R package vegan to determine differences in values between 
the species in each group. Pearson correlation (r) was used to calculate linear dependency between pathogens 
and ARG or all taxa and ARG. The Kendall rank correlation coefficient and Spearman’s rho statistic were used 
to approximate a rank-based correspondence between pathogens and ARG, or all taxa and ARG. The Kruskal–
Wallis H-test was performed to compare continuous variables between groups. Boxplots with overlaid signifi-
cance in p-value format were generated using Microsoft Excel.

Ethics statement. This study was approved by the National Institute of Laboratory Medicine & Refer-
ral Centre (NILMRC) Human Research Ethics Committee Dhaka, Bangladesh. Ethics approval number 
NILMRC/2020/001. The study methods were carried out in accordance with the relevant guidelines and regula-
tions and complied with the National Statement on Ethical Conduct in Human Research 2007 (Updated 2018). 
All study participants or their legal guardians gave informed, written consent.

Results
Participant demographics. Nasopharyngeal swab samples were obtained from 89 individuals with con-
firmed SARS-CoV-2 infection as determined using rRT-PCR, with Ct of 16.33 to 29.6 for the N gene and Ct 
of 18.64 to 29 for ORF 1ab (Supplementary Table 1). The SARS-CoV-2-positive subjects were categorized into 
three cohorts based on the severity of COVID-19 symptoms, 14 were Asymptomatic, 64 were Mild (including 2 
re-infections) and 11 Severe with admission to an intensive care unit (ICU), where two patients died. COVID-19 
symptomatic patients had fever along with other symptoms, including cough, anosmia, breathlessness, head-
ache, and malaise. The SARS-CoV-2 Negative cohort (total n = 12) was derived from 5 healthy individuals who 
had never reported symptoms of SARS-CoV-2 infection and who had never tested positive for SARS-CoV-2 by 
rRT-PCR (Never-infected cohort) and 7 individuals who had previous SARS-CoV-2 infection but had recov-
ered and were subsequently SARS-CoV-2-negative by rRT-PCR screening (Recovered cohort) (Supplementary 
Table 1).

The majority of the study participants were male (71%) with ages from 9 to 74 years, while the ages of the 
female participants ranged from 20 to 65 years. The patient age in the Severe group did not substantially vary 
from the Asymptomatic and Mild (p > 0.05); however, male gender bias was more pronounced in the group with a 
severe disease where 90% of the patients were male. Only two individuals below 20 years of age in the participant 
cohort were diagnosed with SARS-CoV-2 infection. (Supplementary Table 1).

Metatranscriptomic sequencing data output. The nucleotides extracted from nasopharyngeal swabs 
were sampled with a reverse transcription step used to convert extracted RNA to cDNA. The DNAs were then 
used to generate shotgun sequencing libraries that were sequenced using an Illumina NextSeq 550 instrument. 
Obtained reads per library ranged from 17,724 to 22,501,710 with 83.4% to 99.8% of reads passing QC and 
no library failing this screening step. Only 76 of 89 samples that were SARS-CoV-2 positive by rRT-PCR had 
sequences that mapped to SARS-CoV-2, with 9 samples, 2 samples, and 2 samples from the Mild, Asymptomatic 
and Severe symptom cohorts respectively having no reads discovered. When detected, SARS-CoV-2 reads in 
the libraries ranged from 2 to 723,812 nucleotides per million total nucleotides sequenced, with an average 
of 73,918 ± 159,416 (Supplementary Table 1). The number of SARS-CoV-2 sequences identified varied widely 
within the SARS-CoV-2-positive cohorts but on average was lowest for patients in the Severe group with the 
Mild cohort having more SARS-CoV-2 reads per sample (p < 0.005) than other groups (Fig. 1a). In some libraries 
more than half of the nucleotides sequenced were assigned to SARS-CoV-2, but for more than 80% of the sam-
ples, SARS-CoV-2-derived nucleotides formed less than 5% of the obtained sequences (Supplementary Table 1).

After the final QC the non-host reads (which included SARS-CoV-2 reads) were extracted, revealing as few as 
140 and up to 4,047,703 reads per sample in the dataset. Average read abundances per sample were found in the 
order Mild > Asymptomatic >  > Severe > Negative (Fig. 1b). The Asymptomatic cohort had the highest percentage 
of all reads per sample being non-host (p < 0.001). The Mild cohort also had more non-host reads per sample 
than the Severe disease and Negative control groups (p < 0.001), which were not significantly different from each 

http://www.rstudio.com/
https://cran.r-project.org/
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=pheatmap
https://CRAN.R-project.org/package=VennDiagram
https://CRAN.R-project.org/package=VennDiagram
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other. However, the Never Infected group had a lower percentage of non-host sample reads than the Recovered 
group (Fig. 1c, Supplementary Fig. 1). Comparison of total reads from non-SARS-CoV-2 microbial taxa with 
SARS-CoV-2 read frequency showed no linear relationships thus, a high SARS-CoV-2 load did not correlate 
with reduced potential to identify other non-host sequencing reads in the dataset and vice versa (Fig. 1d). Few-
est non-host reads per sample were obtained for sequencing libraries produced from the SARS-CoV-2 Negative 
controls (3,856 ± 4,509) indicating low microbial loads in the sampled material. Patients with Severe COVID-
19 symptoms also had low non-host reads per sample (22,673 ± 54,306) indicative of low microbial loads. In 
terms of total reads, Severe disease samples produced fewer reads than those obtained from Asymptomatic and 
Mild disease subjects (p < 0.005). Notably, the Never-infected negative controls had an absolute lower number 
of non-hosts reads and a lower percentage of non-host reads relative to total reads than the Recovered group 
(p < 0.05) (Supplementary Table 1) potentially indicating an impact of the prior SARS-CoV-2 infection. Overall, 
the data suggest the cohort microbiomes accessible to sampling using nasopharyngeal swabs were in the order 
Asymptomatic > Mild > Severe/Negative.

The microbiome of the nasopharynx identified within the NGS libraries. We examined the 
mNGS data for non-SARS-CoV-2 taxa using filter criteria NT rPM ≥ 40, NT L ≥ 100, and NR value E -15. Using 
this high stringency filter set gave confidence in identifications and limited hits to the more abundant taxa. 
It has been demonstrated that with low biomass samples, contaminating taxa introduced into the sequencing 
library from extraction kit materials, the environment and during handling can result in over-representation of 
contaminants in both 16S and metagenome shotgun  sequencing36. Therefore, to reduce potential false-positive 
identifications we set a taxon read abundance cut-off of > 0.1% for comparative analyses. This was particularly 
important for the Severe and Negative cohorts where total reads obtained for all but one of these 23 samples had 

Figure 1.  Cohort sequencing reads in relation to identification of non-host sequences. (A) Comparison of 
SARS-CoV-2 reads identified relative to COVID-19 symptom severity, showing that the Mild cohort had the 
highest SARS-CoV-2 loads. Circles indicate the data points. Results of significance comparisons between groups 
are indicated by p-values; ns, not significant. (B) Reads that passed final QC, total reads versus non-host reads. 
High  R2 values indicate a direct relationship between number of non-host reads and microbiota detection. (C) 
Non-host reads as a proportion of all reads that passed QC for COVID-19 cohorts. SARS-CoV-2 -negative 
control Recovered and Never Infected cohorts are discriminated. Circles indicate the data points. Results of 
significance comparisons between groups are indicated by p-values; ns, not significant. (D) Number of taxa 
identified in cohorts relative to SARS-CoV-2 reads. Library screening parameters were NT rPM) ≥ 40, nucleotide 
length (NT L) ≥ 100, and NR value E−15. Low  R2 values indicate poor linear relationship between SARS-CoV-2 
load and identification of taxa. Data was analysed and charts produced in Microsoft Excel version 2212.
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raw reads in the lowest 35 samples. There were 17,224–568,692 raw reads, which reduced to 2912–81,153 after 
QC, indicating low biomass was obtained from these individuals.

In all, there were 1,345 instances of taxa hits, of which 183 were non-redundant (Supplementary Table 2). 
Excluding SARS-CoV-2 reads from the analysis, reads for each taxon identified in the Negative and Severe 
cohorts comprised at least 0.1% of reads for that cohort whilst 97.8% and 98.3% of reads for the Mild and Asymp-
tomatic cohorts had abundances ≥ 0.1% (Supplementary Table 2). There were 35 taxa classified for the Severe 
cohort of which 10 were non-redundant, 956 for the Mild cohort (126 non-redundant), 263 for the Asymptomatic 
(93 non-redundant), and 91 for the Negative (20 non-redundant) (Table 1). The majority of species identifications 
in the Mild cohort were obtained from less than one-third of the samples (Fig. 2a), whereas the Asymptomatic 
cohort species identifications were of reasonably similar numbers for each sample (Fig. 2b). There were some taxa 
in the Asymptomatic cohort samples with elevated reads relative to other identifications, suggesting colonisation 
and potential infection. These species were Rheinheimera sp. D18, Pseudomonas sp. LPH1, Pseudomonas men-
docina, Pseudomonas oleovorans and Enterobacter hormaechei. Few taxa were identified from the Severe cohort 
(Fig. 2c). Notably, more taxa were identified in Recovered individuals than Never-infected, with a potential 
Pseudomonas stutzeri infection in a COVID-19 recovered individual (Fig. 2d, 2e). Shannon diversity calculation 
supported the indication that overall, the cohorts had even diversity (Fig. 2f, Supplementary Table 3). However, 
low sequencing reads and subsequent low taxon identifications for the Severe cohort would bias the diversity 
calculation. In agreement with the suggestion from the heatmaps the Shannon evenness calculation indicated 
overall moderate evenness in the taxa identifications in the sequencing libraries (Table 2) but this derives from 
samples between which evenness varies substantially (Supplementary Table 3). Simpson and Shannon diversity 
values were also calculated, using taxon identifications at lower filter stringencies giving similar findings to that 
observed with the high stringency filters (Supplementary Table 4). The Simpson diversity index also indicated 
diversity within cohorts, with the Severe cohort less diverse than the other groups.

Shared taxa between groups were not frequent, for example only 10 taxa were common to 20 or more samples 
(Fig. 3a) and only Saccharomyces cerevisiae and S. pneumoniae were identified in all 4 cohorts (Fig. 3b). Excluding 
SARS-CoV-2, seven taxa occurred in 3 cohorts, an uncultured bacterium, Staphylococcus epidermidis, Streptococ-
cus mitis, Haemophilus influenzae, Staphylococcus aureus, Pseudomonas stutzeri, and Gemella haemolysans. The 
most frequently identified non-SARS-CoV-2 taxon was S. cerevisiae with 72 hits. The next most abundant taxon 
was an uncultured bacterium with 40 classifications, followed by S. pneumoniae, Streptococcus mitis, Prevotella 
melaninogenica, Veillonella dispar, Veillonella parvula, Neisseria meningitidis, and Prevotella oris (Supplemen-
tary Table 2). In addition to S. cerevisiae, only four fungal species were identified, Saccharomyces pastorianus, 

Table 1.  Carriage of taxa, pathogens and ARG in COVID-19 cohorts. Severe, n = 11; Mild, n = 64; 
Asymptomatic, n = 14; Negative_All, n = 12; Never Infected, n = 5; Recovered, n = 7. Bold text, not significant; 
Welch’s t test, unequal variances; na, not applicable.

COVID-19  cohorta
Total taxa (non-
redundant) Range per sample Mean Standard Deviation Median Mode Per sample p-valueb

Taxa Severe ild Asymptomatic Negative

Severe 35 (10) 0–5 3.2 1.5 3.2 1.5

Mild 956 (127) 1–77 14.9 19.4 14.9 19.4 5.3E−06 1.1E-02

Asymptomatic 263 (102) 2–36 18.8 13.2 18.8 13.2 3.3 E−04 1.9 E−01 5.7 E−03

Mild + Asymptomatic 1219 (174) 1–77 15.6 18.4 15.6 18.4 5.1 E−08 3.6 E−03

Negative_All 91 (30) 0–17 7.6 6.7 7.6 6.7 2.3 E−02

Never Infected 10 0–5 1.0 0.7 1.0 0.7 6.7 E−04 1.60 E−07 1.5 E−04

Recovered 81 8–17 12.3 4.5 12.3 4.5 6.9 E−04 1.9 E−01 9.3 E−02

Pathogens

 Severe 15 0–3 1.4 1.1 1.4 1.1

 Mild 605 0–48 9.5 13.2 9.5 13.2 4.4 E−06 7.0 E−02

 Asymptomatic 146 0–29 10.4 9.2 10.4 9.2 1.4 E−03 3.7 E−01 7.4 E−02

 Mild + Asymptomatic 751 0–48 9.6 12.5 9.6 12.5 9.8 E−08 4.9 E−02

 Negative_All 73 0–14 6.1 5.3 6.1 5.3 5.3 E−03

 Never Infected 5 0–2 1.0 0.7 1.0 0.7 2.2 E−01 1.9 E−06 1.3 E−03

 Recovered 68 1–14 9.7 3.7 9.7 3.7 4.1 E−04 4.5 E−01 5.0 E−01

ARG 

 Severe 12 0–2 1.1 0.7 1 1

 Mild 238 0–31 3.7 5.1 1 1 1.0 E−04 3.4 E−07

 Asymptomatic 65 0–14 4.6 4.1 4 1 3.5 E−03 2.4 E−01 6.8 E−04

 Mild + Asymptomatic 303 0–31 3.9 4.9 2 0 5.1 E−06 2.5 E−09

 Negative_All 2 0–1 0.17 0.39 0 0 7.4 E−04

 Never Infected 0 na na na na na 2.1 E−04 1.0 E−07 6.1 E−04

 Recovered 2 0–1 0.3 0.5 0 0 5.6 E−03 1.1 E−06 1.0 E−03
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Figure 2.  Relative proportions of sequencing reads assigned to species in COVID-19 cohort samples. Heat 
maps indicate sequences assigned to species identified within (A) Mild; (B) Asymptomatic; (C) Severe; (D) 
Negative cohorts. The heat map was based on the NT rPM values and generated using pheatmap version 1.0.12. 
The colour coding and range of NT-rPM is indicated to the left of each heatmap (E) Stacked plot highlighting 
taxa identifications in the SARS-CoV-2-negative Never Infected and Recovered cohorts. The light green 
box indicates Never-infected subjects whilst the orange box indicates Recovered subjects. (F) The calculated 
Shannon diversity index of each cohort. Data was analysed and charts produced in Microsoft Excel version 
2212.
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Table 2.  Microbiome diversity in COVID-19 cohorts. Significant values are in [bold].

Negative Asymptomatic Mild Severe

Shannon Diversity (H) 2.02 2.13 3.15 1.22

mean 1.02 1.07 1.01 0.49

Sstdev 0.87 0.88 1.15 0.47

Gamma 20 92 125 9

beta range 0–20 2.49–92 0–125 0–9

Shannon Evenness 0.67 0.47 0.65 0.55

Simpson Reciprocal Index 19.23 76.90 76.08 6.91

p-values Shannon Diversity H

Negative Asymptomatic Mild

Asymptomatic 0.444

Mild 0.484 0.418

Severe 0.040 0.021 0.007

Figure 3.  Taxa identified within nasopharyngeal swabs of SARS-CoV-2 cohorts. (A) Taxa identified within 10 
or more samples. Data was analysed and chart produced in Microsoft Excel version 2212. (B) Venn diagram 
depicting the number of non-redundant taxa of each cohort that are also found within other cohorts. (C) Venn 
diagram depicting of the number of non-redundant taxa common to cohorts with Mild and Asymptomatic 
cohort data merged. Venn diagrams were generated using VennDiagram version 1.7.3.
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Aspergillus oryzae, Apergillus pseudoglaucus, and Malassezia restricta. Bacteriophages sequences were rare with, 
only three phage found, Klebsiella phage NJR15 (in one sample), Klebsiella phage KpKT21phi1 (in two samples) 
and Staphylococcus virus Sextaec in one sample.

Numbers of non-redundant taxa identified in the Asymptomatic cohort (93, range 2–38 per sample) and Mild 
cohort (127, range 1–77 per sample) were not determined to be significantly different despite different n of 14 
and 64 respectively, likely due to the large spread in sample taxa identifications between samples (Table 1). Both 
the Mild and Asymptomatic cohorts had more taxa per sample on average than the Severe and Negative control 
groups (Table 1; Fig. 3c). When the Negative control group was examined as the subsets of Never Infected and 
Recovered it was observed that the frequency of taxa identifications in the Recovered cohort was not different 
to that of the Mild and Asymptomatic cohorts.

The majority of the non-redundant (excluding SARS-CoV-2) taxa identified (130) were found as singletons 
occurring in only one sample or one cohort (Supplementary Table 2; Fig. 2 and Fig. 3), an observation which also 
held using lower stringency filter parameters of NT rPM-10 NT length 50 bp (Supplementary Table 4). Thus, the 
data suggest microbial diversity both within and between cohorts. At the genus level, there were 73 taxon clas-
sifications (Fig. 4a). A stacked plot of the proportions highlights the differences between the cohorts (Fig. 4b).

Pathogen carriage. Some evidence for pathogenicity was found in the literature for 839 taxa hits of which 
98 were non-redundant (Supplementary Table 1). The cohort with severe disease symptoms had a per sample 
average of significantly fewer taxa identified than the other three groups (p < 0.05), which were not significantly 
different from each other (Table 1). The significantly lower identification of taxa in the Severe cohort may be due 
to bias induced by prophylactic and therapeutic ICU treatment regimens. This confounding factor could have 
artificially altered the composition of the microbiota of these subjects. This could be a reflection on the total 
taxa carried and may also be influenced by antimicrobial treatment in ICU reducing carriage of sensitive taxa.

Antibiotic resistance genes. Antibiotic resistance genes (ARG) were identified with > 25% gene coverage 
in 83 of the 89 SARS-CoV-2 positive samples (Supplementary Table 1). Collectively these genes would impart 
resistances to 10 antimicrobial classes, including aminoglycosides (Agly), β-lactams (Bla), fluoroquinolones 
(Flq), fosfomycin (FM), phenicols (Phe), tetracycline (Tet), rifamycin (RM), trimethoprim (Tmt), sulphonamide 
(Sul), and macrolide-lincosamide-streptogramin (MLS) (Table 3). In all 326 ARG were identified of which 63 
were non-redundant genes. There was no relationship between the number of taxa identified within a sample 
and the number of ARG identified in that sample (Fig. 5a). The predominant non-redundant ARG would impart 
phenotypes of resistance to β-lactams (16 different genes in 79 samples) followed by MLS (15 genes in 34 sam-
ples) and tetracycline (10 genes in 21 samples) (Table 4). More than 10 different ARG with > 25% sequence cov-
erage were identified within many samples, and notably blaTEM-1D was in more than 80% of the samples (Fig. 5b). 
When the more stringent cut-off of excluding genes with ≤ 50% gene coverage was applied, 48 non-redundant 
genes encompassing 9 classes of ARG were still detected in 80 of the samples (Table 3). Four classes of ARG, 
including Bla, Phe, Tet, and MLS resistance coding genes were detected in 27 samples with 100% gene coverage 
(Table 3).

Discussion
The use of metagenome and metatranscriptome sequencing has proven to be an invaluable tool for our under-
standing of the diversity of microbial communities in relation to health and  disease38–41, with many uncultured 
and previously unknown species being identified through these  methods42. Defining the role of co-infecting 
bacteria in the pathogenesis of COVID-19 is extremely difficult, despite the prognostic knowledge already 
obtained for bacterial co-infections that occur during other viral respiratory  infections3,43. Bacterial and fungal 
co-infection rates with SARS-CoV-2 are reported to be proportional to disease  severity44 with increase in death 
risk 9,45 in accord with other viral pneumonias. The microbiome of the nose and nasopharynx in health and 
disease is poorly understood. In this study, we surveyed the nasopharyngeal microbiomes of healthy individu-
als, individuals who had active SARS-CoV-2 infection and individuals who had recovered from SARS-CoV-2 
infection. Although some samples show species richness many samples show identifications dominated by only 
a few species and genera regardless of whether an individual is infected with SARS-CoV-2 or not (Fig. 2). The 
Severe cohort contrasted with the Asymptomatic and Mild cohorts by having fewer taxa identifications. Bias 
induced by prophylactic and therapeutic ICU treatment regimens could have impacted the composition of the 
microbiota of these subjects. For this reason, in this study we have put greater emphasis on comparisons between 
the SARS-COV-2-negative and Mild and Asymptomatic group samples.

There are widely variant alpha and beta diversities with the resultant absence of statistically determined 
differences between cohorts and evenness in diversity calculations (Table 1, Supplementary Table 2, Supple-
mentary Table 3, Fig. 2). This high between-sample diversity is similar to that found in a recent large-scale 16S 
metagenome analysis of paired nose and nasopharynx microbiomes of healthy  individuals46. Both niches were 
shown to have uneven species distribution of low overall species richness with only a limited number of bacte-
rial genera  dominant46. Furthermore, distinct flora differences were found between the nasal and pharyngeal 
niches, with some genera such as Fusobacterium and Streptococcus never being found in the  nose46. In the samples 
examined here, Streptococcus was also a dominant genus (32 samples, all 4 main cohorts), as was Staphylococcus 
(37 samples, all 4 main cohorts) and Pseudomonas (17 samples, not found in the severe cohort) (Fig. 3, Supple-
mentary Table 2). Interestingly, the Recovered subjects had more diverse microbiomes identified than the Never 
Infected (Fig. 2) which could be due to an upshift in diversity during infection which has not yet returned to a 
health-associated low microbiome content or may be a SARS-CoV-2 infection-induced persistent change to the 
microbiota. Temporal analysis with larger cohort sizes where samples have been obtained from Never Infected, 
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then following subjects during and post infection would prove informative. We found that Acinetobacter spp. 
were frequent in the Severe cohort, as well as recovered individuals but were not identified within the samples 

Figure 4.  Taxa identified within nasopharyngeal swabs by genera. (A) Heatmap indicating sequencing read 
depths. The heat map was based on the NT rPM values and generated using pheatmap version 1.0.12. The 
colour coding and range of NT-rPM is indicated to the right side of heatmap. (B) Stacked plot of genera. Data 
was analysed and charts produced in Microsoft Excel version 2212. Cohorts are indicated by the colored sample 
names (panel A) or boxes (panel B): green, Negative for SARS-CoV-2; blue, Asymptomatic; black, Mild disease; 
red, Severe disease.
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from individuals with mild disease, despite the larger sample size (n = 64) for this cohort. This could reflect 
the acquisition of Acinetobacter spp, particularly A. baumannii as nosocomial infections, which is a growing 
 problem47. Hospitalised patients with severe illness are more likely to undergo intrusive interventions, resulting 
in increased sensitivity to secondary infections, which can make them more vulnerable to nosocomial infection 
with multidrug-resistant pathogens such as A. baumannii, E. coli, P.aeruginosa, and Enterococcus spp.48. Infec-
tions with similar types of bacterial pathogens have previously been identified in patients with severe  influenza49.

To understand microbial population shifts as a result of disease via the metagenomic approach it may be 
more informative to consider only those species of greatest abundance in a sample, suggestive of actual colo-
nization, rather than all species identifiable. The upper respiratory tract (URT) is constantly bathed in airflow 
from the external environment, which contains  104–106 bacteria per cubic meter of air  inhaled50. As a result, 
taxa collected during nasopharynx sampling could be transient microbes or environmental contamination and 
not established colonizing  species51. This should be considered when interpreting the importance of taxon 
identifications within samples. Hoque et al., (2021) recently reported an RNA-seq analysis of nasopharyngeal 
swab samples from Bangladesh COVID-19 patients (n = 8), recovered individuals (n = 7), and healthy controls 
(n = 7) reporting identification of a total of 2281 non-redundant bacterial  species52. They concluded that there was 
dysbiosis causing a reduced species load in COVID-19 patients. Interrogation of the data of Hoque et al., reveals 
that the majority of taxa identified each had < 0.1% of the total reads obtained. Combined these low abundance 
sequences comprised 96.3%, 82.2%, and 92.9% reads in the healthy, COVID-19 and recovered metagenome 
reads respectively. Thus, the majority of the microbiome species reported in the study were of low abundances 
(Supplementary Table 5). When we lowered filter stringency, we also identified many taxa which occurred at low 
abundances (Supplementary Table 3). Filtering the Hoque et al.metatranscriptome data with taxon identifica-
tions at ≥ 0.1% of total non-host reads indicates the cohort who had recovered from COVID-19 had the most 

Table 3.  ARG identified in nasopharyngeal mNGS data. Antimicrobial resistances encoded by ARG: Agly, 
aminoglycoside; Bla, β-lactam; Flq, fluoroquinolone; FM, fosfomycin; Phe, phenicol; Tet, tetracycline, RM, 
rifamycin; Tmt, trimethoprim; Sul, sulphonamide; MLS, macrolide-lincosamide-streptogramin.

ARG Product ARG Class
No. of ARG in 
samples

Gene Coverage 
Range (> 25%) ARG ARG Class

No. of ARG in 
samples

Gene Coverage 
Range (> 25%)

Aac3-Ik Agly 2 42–45 MefA MLS 14 30–88

Aac6-Aph2 Agly 1 42 MphC MLS 2 34–36

AadC Agly 3 34–81 MphE MLS 4 26–100

Aph3-III Agly 3 26–43 MsrA MLS 5 32–45

APH-Stph Agly 3 27–78 MsrD MLS 23 29–100

Arr RM 4 28–98 MsrE MLS 5 38–100

BlaZ Bla 5 34–98 NorA Flq 2 30–90

BRO Bla 2 59–100 OXA-23 BL 1 51

CatA2 Phe 4 99–100 OXA-7 BL 3 30–93

CatA9 Phe 1 64 PBP1a BL 2 36

CatB7 Phe 2 28–30 PBP1b BL 7 28–96

CatQ Phe 2 42–52 PenA BL 2 28–41

CfxA Bla 16 30–100 PER-1 BL 2 54–99

Cmr Phe 2 30–99 QnrB Flq 2 73–87

Dfr Tmt 3 30–34 QnrVC1 Flq 4 39–97

DfrA1 Tmt 2 27–94 Sat4A Agly 2 42–53

DfrA5 Tmt 3 41–89 SPU BL 2 27–80

DfrC Tmt 6 27–86 StrA Agly 2 59–76

Dha1 Bla 1 58 StrB Agly 3 27–86

EBR-1 Bla 1 58 SulI Sul 1 36

ErmA MLS 4 33–45 TEM-1D BL 79 26–100

ErmB MLS 10 25–100 Tet-32 Tet 5 26–100

ErmC MLS 4 29–100 Tet-37 Tet 2 45–67

ErmF MLS 8 68–100 Tet-38 Tet 1 77

ErmX MLS 7 27–100 TetB Tet 1 100

Far1 Bla 2 30 TetK Tet 3 36–100

FosA2 FM 1 90 TetM Tet 18 26–100

FosB FM 1 90 TetO Tet 1 100

LnuA MLS 1 31 TetQ Tet 10 30–100

LnuC MLS 2 73–100 TetW Tet 4 27–100

LsaC MLS 4 44–98 TetZ Tet 1 58

MECA Bla 3 57–89
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richness with 91 bacterial species identified (mean 13 per sample), the COVID-19 subjects had 61 species (mean 
7.6 species per sample) and the healthy cohort the least richness with 30 species (mean 4.3 per sample). Only 
Pseudomonas putida was shared between all 3 cohorts (maximum abundance 0.47%) (Supplementary Table 5). 
Combined, the recovered and healthy cohorts (n = 14, the equivalent of our Negative cohort) at ≥ 0.1% abundance 
had 97 non-redundant species (mean 6.9 taxa per sample) with 24 in common. This agrees with our Negative 
cohort observation of 91 species of which 20 were in common with a mean of 7.6 ± 6.7 per sample. Acinetobacter 
indicus, Acinetobacter junii, and Pseudomonas stutzeri were identified in the cohorts in each study. We identified 
numerous Acinetobacter and Pseudomonas species within our samples. suggesting that they may be common 
genera in the oronasal environment. We have previously identified multidrug-resistant Acinetobacter sp. and 
Pseudomonas sp. in supragingival plaque in subjects from Pakistan, a country that like Bangladesh has limited 
restrictions on the use of  antimicrobials53.

Using the more conservative filter criteria both our, and the Hoque study, suggest on average more taxa in 
SARS-CoV-2 positive samples than in SARS-CoV-2-negative samples, thus suggesting a dysbiosis in which 
more species are able to colonize the nasopharynx of SARS-CoV-2 infected individuals. A dysregulated immune 
system, as is known to be associated with COVID-1954 is a likely factor in this dysbiosis. Overall, metagenome/
metatranscriptome sequencing of nasopharyngeal swab samples indicated a remarkable diversity in microorgan-
isms that colonise or pass through this niche, however most may have little relevance in the context of COVID-19 
and patient outcomes.

Figure 5.  Identification of ARG in COVID-19 cohorts. (A) Scatter plot of the number of ARG identified 
relative to the number of taxa identified by sample.  R2 indicate poor linear correlations. Data was analysed and 
chart produced in Microsoft Excel version 2212. Green, Negative for SARS-CoV-2; blue, Asymptomatic; black, 
Mild disease; red, Severe disease. (B) Heatmap showing ARG distribution with sequence coverage > 25%. The 
heat map was based on the NT rPM values and generated using pheatmap version 1.0.12. The colour coding 
indicating the percentage sequence coverage is shown to the right of the heatmap. The sample identification 
number is shown at the top and the identified gene product to the left.
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The conclusion of Hoque et al., (2021) using their full data set was of dysbiosis causing a reduced species 
load in COVID-19 patients, which is consistent with the conclusions of Mostafa et al. (2020)55. Using Nanopore 
sequencing Mostafa et al., found indication of coinfection using the criterion of the proportion in the micro-
biota > 50% above that expected from a healthy individual. The four clinically relevant species were found in 5 
of the 40 COVID-19 patient samples examined, 2 viruses, and 2 bacteria Haemophilus influenzae (n = 2) and 
Moraxella catarrhalis. Moraxella catarrhalis was also found in one COVID-19-negative sample. This would indi-
cate potential for coinfection pathology for these individuals albeit at a rate of ~ 12%. However unfortunately, 
standard-of-care testing was not performed so impacts on patient health from these species are unknown. In 
view of the beta diversity that we have demonstrated between samples of the same cohort, and noted by  others46, 
extrapolation to the conclusion of dysbiosis by examination of small sample sets should be considered with 
caution. Furthermore, the presence of many singleton identifications can make interpretation of datasets with 
population sampling of the size used here  inaccurate56.

Multiple potential confounding factors also need to be considered with the interpretation of the results 
reported herein. Data collection disparities between the collection sites used prevented confident allocation of 
matched controls to patients with respect to factors such as antibiotic use and comorbidities. Many subjects, 
who had volunteered use of their material including those in the Mild cohort, did not require hospital admis-
sion so no more than basic demographic data was available. Other confounding factors were that nasopharynx 
samples were collected by a range of operators with potentially different skill levels and techniques, the behaviour 
of subjects during collection is not known, other subject health factors such as chronic rhinitis or other URT 
conditions are not known, urban versus rural living and pollution could impact species exposure and colonisa-
tion and so on. Nonetheless, the sequence data provide a useful snapshot of the nasopharyngeal microbiome in 
a Bangladesh population.

S. pneumoniae was one of the most frequently found taxa in our study with all cases in individuals with current 
SARS-C0V-2 infection or who had recovered from SARS-CoV-2 infection. S. pneumoniae is known to increase 
in both density and frequency in the URT during viral infections with a positive association found between the 
occurrence of S. pneumoniae colonization and the amount of URT pathogens in a pathogen-dependent  manner57. 
The prevalence of multidrug-resistant S. pneumoniae infection is associated with increased mortality of patients 
infected with influenza  virus58,59. The potential for multidrug resistant S. pneumoniae infecting patients in our 
cohorts is of concern for patient outcomes.

Klebsiella sp. and Acinetobacter sp. were the most common coinfecting bacteria identified in a survey of 
COVID-19 cohorts in Wuhan, China, , while Aspergillus and Candida were the most common fungal  genera60. 
In our study four species of Klebsiella and four species of Acinetobacter were identified. Notably, Klebsiella sp. 
were almost exclusively in the Asymptomatic cohort. At least one of the Acinetobacter sp. including A. baumannii, 
A. indicus, A. junii and A. schindleri were in each of the Recovered SARS_CoV-2-negative cohort samples. A. 
baumannii was also found in 5 samples of the Severe cohort and A. indicus in 5 samples from the Asymptomatic 
subjects. However , numerous species were more common, including many species associated with periodontal 
 disease61, Prevotella intermedia (n = 16), T. forsythia (n = 8), T. denticola (n = 7), Fusobacterium nucleatum (n = 15), 
and Porphyromonas gingivalis (n = 8). This may simply indicate saliva contamination rather than nasopharyngeal 
colonisation because many organisms known to be abundant in saliva, e.g., Streptococcus salivarius (n = 12), 
Streptococcus mitis (n = 23), Gemella hemolysans (n = 11) and Rothia mucilaginosa (n = 9)62 were also frequently 
identified. However, it is believed that a range of genera including Prevotella, Sphingomonas, Pseudomonas, Aci-
netobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus form part of the healthy 
lung microbiome, thus the periodontal disease -associated species may indeed be natural colonisers of the 
nasopharynx in patients with periodontal  disease63–65.

Our research also explored the potential antibiotic tolerance of the nasopharyngeal swab microbiome in 
COVID-19 patients. A total of 63 ARGs were detected across 94.4% of the COVID-19 nasopharyngeal samples. 

Table 4.  Occurrence of non-redundant ARG sequences in COVID-19 cohorts. n = 101; Antimicrobial 
resistances encoded by ARG: Agly, aminoglycoside; Bla, β-lactam; Flq, fluoroquinolone; FM, fosfomycin; 
Phe, phenicol; Tet, tetracycline, RM, rifamycin; Tmt, trimethoprim; Sul, sulphonamide; MLS, macrolide-
lincosamide-streptogramin.

ARG Class
Non-redundant ARG with > 25% 
sequence coverage Samples with ARG 

Non-redundant ARG with > 50% 
sequence coverage Samples with ARG 

Agly 8 10 5 5

Bla 16 80 12 74

Phe 5 9 4 6

Tmt 4 12 3 5

MLS 15 35 10 24

FM 2 2 1 1

Flq 3 7 3 4

RM 1 4 1 2

Tet 10 21 9 15

Sul 1 1 0 0
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The most abundant resistance genes were β-lactams with 15 subtypes, MLS with 14 subtypes, tetracyclines 10 
subtypes and aminoglycosides with 10 subtypes. The bla (TEM-1D) gene is the most prevalent and confers 
amoxicillin  resistance66. In Bangladesh, amoxicillin is one of the most prescribed and highest self-medicated 
antibiotic (10.4%)67,68. It has been shown in several studies, (reported in a  review69) that amoxicillin resistance 
in E. coli, Klebsiella species, and methicillin-resistant S. aureus is found with a frequency of 95%, 91%, and 94%, 
respectively. The random use of antibiotics and resistance shown by several pathogens could explain the high 
number of bla (TEM-1D) genes detected in the Bangladesh nasopharyngeal samples. S. pneumoniae can exhibit 
resistance to multiple antibiotics, but the prevalence rate can differ by  region70. The most common ARG expressed 
by S. pneumoniae are 6 penicillin-binding proteins (1a, 1b, 2x, 2a, 2b, and 3) that allow β-lactam resistance, and 
macrolide resistance genes ermB and mefA70. The ermB and mefA genes were detected in 10 and 14 COVID-19 
patients respectively suggesting these genes may have been expressed by this pathobiont in the Bangladesh cohort.

We detected 166 of the 174 bacterial pathogens in only 30 of the COVID-19 patients who also had 64.8% of 
the detected ARG, thus proportional pathogen and resistance gene prevalence was observed in this subset of 
patients. The average number of ARGs per overall sample was 3.5 but was 7.2 in those 30 COVID-19 patients 
with high pathogen carriage. Based on these results, it is interesting to suggestthat the abundance of commensal 
flora was positively associated with pathobiont and ARG existence, which in turn was positively influenced by 
SARS-CoV-2 infection.

Conclusion
Sequencing of the material isolated from the nasopharynx has revealed that individuals infected with SARS-
CoV-2 (Mild and Asymptomatic) had more bacterial species in the nasopharynx and more ARG carriage than 
persons never infected with the virus. This would suggest people infected with SARS-CoV-2 are at greater risk of 
acquiring a secondary infection, which would be difficult to treat if the infecting organisms carried a multidrug 
resistance profile.

Data availability
The sequencing data generated during this study are available in the CZ ID portal https:// czid. org. After request-
ing access to CZ ID and sign in users can view the data in the public project Co-infection_19_01_2021 which 
can- also be accessed via the link https:// czid. org/ public? curre ntDis play= table & curre ntTab= sampl es& mapSi 
debar Tab= summa ry& proje ctId= 1402& showF ilters= true& updat edAt= 2023- 01- 31T13% 3A51% 3A49. 863Z& 
workfl ow= short- read- mngs.
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