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Nondestructive thermographic 
detection of internal defects using 
pixel‑pattern based laser excitation 
and photothermal super resolution 
reconstruction
Julien Lecompagnon 1*, Philipp Daniel Hirsch 1, Christian Rupprecht 2 & Mathias Ziegler 1

In this work, we present a novel approach to photothermal super resolution based thermographic 
resolution of internal defects using two-dimensional pixel pattern-based active photothermal laser 
heating in conjunction with subsequent numerical reconstruction to achieve a high-resolution 
reconstruction of internal defect structures. With the proposed adoption of pixelated patterns 
generated using laser coupled high-power DLP projector technology the complexity for achieving 
true two-dimensional super resolution can be dramatically reduced taking a crucial step forward 
towards widespread practical viability. Furthermore, based on the latest developments in high-power 
DLP projectors, we present their first application for structured pulsed thermographic inspection 
of macroscopic metal samples. In addition, a forward solution to the underlying inverse problem is 
proposed along with an appropriate heuristic to find the regularization parameters necessary for the 
numerical inversion in a laboratory setting. This allows the generation of synthetic measurement data, 
opening the door for the application of machine learning based methods for future improvements 
towards full automation of the method. Finally, the proposed method is experimentally validated 
and shown to outperform several established conventional thermographic testing techniques while 
conservatively improving the required measurement times by a factor of 8 compared to currently 
available photothermal super resolution techniques.

Active thermographic testing as a nondestructive testing (NDT) method is a very efficient technique for contact-
lessly detecting surface defects as well as defects/inhomogeneities well below the surface of any object under 
test (OuT). In active thermographic testing the OuT is actively extrinsically heated, its temperature evolution 
is recorded and the resulting change in temperature is then evaluated to detect irregularities, which imply pos-
sible defects/inhomogeneities. While the capabilities of thermographic testing is constrained by the utilized 
hardware like the spatial and temperature resolution of the infrared camera used, thermographic testing is 
also fundamentally constrained by the diffusive nature of heat propagation unlike other methods, which rely 
on propagating waves such as ultrasonic testing or radiography. When it comes to the detection/resolution of 
internal defects/inhomogeneities deep below the surface, empirically it has been shown, that the ratio between 
the depth at which a defect/inhomogeneity occurs and its spatial extension should be close to unity for it to be 
fully resolved1. Exceeding this limit is one of the major challenges in modern thermographic testing and can be 
referred to as super resolution (SR) thermography.

Even though thermographic SR techniques are used in various fields within thermographic NDT, e.g., for test-
ing of biomaterials2, it is currently still mainly constrained to the spatial resolution enhancement of the utilized 
infrared cameras themselves3,4. Established defect resolution enhancing SR methods are currently either only 
usable for the reconstruction for one-dimensional defects5,6 or only approximate fully two-dimensional resolu-
tion enhancement by adding up multiple one-dimensionally structured illuminations7. Recently, we have been 
able to expand the method to a true fully two-dimensional reconstruction utilizing sequential scanning with a 
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single laser spot as the photothermal heat source8. While this technique already produces quite good results, the 
resulting measurement times are unfavorably high.

Within this work we show, how this issue can be overcome by the application of fully two-dimensionally 
structured illumination patterns using a laser-coupled digital light processing (DLP)-projector. The use of DLP 
projectors in thermographic testing so far has been constrained to mostly inline shape recognition within dif-
ferent fields of application9,10. Only in a very limited form they have already been applied as an excitation source 
for thermal wave based detection11,12. Due to the recent advancements in output power for laser-coupled DLP-
based projectors mainly driven by the additive manufacturing industry, it is now feasibly possible for them to 
be applied as illumination sources for photothermal heating of OuTs.

Motivation: Photothermal Super Resolution Reconstruction
The front surface temperature Tmeas(x, y, z = 0, t) of an OuT experiencing a pulsed external photothermal heat-
ing with a pulse length tpulse can be modelled in a Green’s function like form as follows:

Here, T0(x, y) resembles the initial temperature of the OuT at t = 0 s , �PSF(x, y, t) is the thermal point spread 
function (PSF) characteristical for the OuT and a(x, y) is the heat source distribution at play. The PSF constitutes 
the response to a spatially Dirac-like heating of the OuT’s front surface and can be defined analytically for the 
special case of a thermally thin plate knowing the material properties (thermal diffusivity α , density ρ , specific 
heat capacity cp ) and geometry (plate thickness L ) of the OuT as follows13:

Q̂ defines the amplitude of the external photothermally applied heat flux, ndim the dimensionality of the heat flow 
( ndim = 3 for a point-like heating), 

(
x̄, ȳ

)
 is the coordinate centroid, R the reflection coefficient for the thermal 

wave at the plate boundaries (for metals typically R ≈ 1 ), It(t) the temporal structure of the external heating 
(typically a rectangular function of length tpulse ) and ∗t indicates a convolution operation in time. The heat source 
distribution a(x, y) on the other hand consists of two parts, namely the external heat source distribution aext(x, y) , 
which is a distribution of Dirac-pulses encoding the position at which the external heating is acting onto the 
OuT and the internal heat source distribution part aint , which encapsulates the internal defect/inhomogeneity 
structure. Summing both parts and convolving the sum with the spatial structure of the external heating Ix,y(x, y) 
leads to the heat source distribution a(x, y) as follows:

where ∗x,y denotes the convolution operation in both planar spatial dimensions. The internal heat source distribu-
tion in this context can be imagined as a distribution of «apparent» heat sources, which can be phenomenologi-
cally described by the fact that a defect/inhomogeneity below the surface heated from above will impede the heat 
flow locally and therefore lead to a visible hot spot in the front surface temperature evolution, which qualitatively 
appears similar to how an active heat source embedded in the OuT would8. This internal heat source distribution 
consists similarly to the external heat source distribution aext of a distribution of unit Dirac-pulses attenuated by 
the corresponding contrast factor ζ ∈ [0, 1[ of the individual defect/inhomogeneity whose exact value depends 
on the effusivity contrast and depth of the defect:

The ultimate goal of photothermal SR reconstruction is then to solve Equation (1) for the internal heat source 
distribution aint and therefore acquiring a defect map of the examined region of interest (ROI) on the OuT. This 
reconstruction technique then achieves SR capabilities by performing multiple measurements m ∈ {1, . . . , nm} 
with varying external heating aext:

with Tm
diff(x, y, t) = Tm

meas(x, y, t)− Tm
0 (x, y) . This greatly increases the available information content about the 

internal defect structure since every measurement m contains the response of the OuT and its defects/inhomo-
geneities to a variety of different heating conditions and local heat flux directions.

However, in order to still be able to extract the effect of the internal defect/inhomogeneity structure inde-
pendently of the external heating the following condition needs to be fulfilled:

This very important condition ensures, that on average every part of the ROI is heated evenly and any devia-
tions from the mean can be attributed to the heat flow impedance by the internal defects/inhomogeneities. Since 
Equation (1) is a severely ill-posed inverse problem, solving for aint is not trivially possible. An approximative 
solution arec to this reconstruction problem can be determined by solving the following minimization problem 

(1)Tmeas(x, y, z = 0, t) = T0(x, y)+�PSF(x, y, t) ∗x,y a(x, y) .

(2)�PSF(x, y, t) =

(

2 Q̂

cpρ(4παt)
ndim
2

· e−
(x−x̄)2+(y−ȳ)2

4αt ·

∞∑

n=−∞

R2n+1e−
(2nL)2

4αt

)

∗t It(t).

(3)a(x, y) = Ix,y(x, y) ∗x,y
(
aext(x, y)+ aint(x, y)

)
,

(4)aint(x, y) =
∑

i

ζi · δ(xi , yi) .

(5)�PSF(x, y, t) ∗x,y am(x, y) = Tm
diff(x, y, t) ,

(6)Ix,y(x, y) ∗x,y

nm∑

m=1

amext(x, y) ≈ const. .
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that makes use of ℓ2,1 and ℓ2-regularization, which incorporate prior information about the defect/inhomogeneity 
structure to restrict the solution space:

where ‖arec‖2,1 is the ℓ2,1-norm defined as:

The regularizer coefficients �2,1 and �2 govern the overall strength of the regularization and need to be inputted 
by the user. Currently, those factors have to be still determined empirically for each individual testing scenario 
since no definitive algorithm for automated determination is known. However, there exists recent ongoing work 
to solve this issue using machine learning techniques14,15.

The severely ill-posed inversion problem in Equation (7) can be solved numerically using the iterative alter-
nating direction method of multipliers (ADMM) algorithm16 in the frequency domain as proposed in previous 
work (for a detailed explanation of the inversion process see 8).

Projection of two‑dimensionally structured patterns
Most currently established experimental implementations of photothermal SR reconstruction are based on 
the sequential heating of the ROI by projecting single spots or lines in a predefined grid pattern as the external 
photothermal heating7,8. This kind of structured heating can be easily performed using only basic tooling but 
comes at the great disadvantage, that in order to cover a large ROI a lot of independent measurements are neces-
sary. Furthermore, there exists the possibility to make use of interference patterns (e.g. laser speckle patterns) as 
two-dimensionally structured illumination patterns, but those are mostly suited for materials/parts, which can 
be sufficiently heated with the rather low optical irradiances this technique provides17. For the simplified one-
dimensional photothermal SR reconstruction technique, this problem has been already addressed by combining 
several laser lines as a heat source in order to cover a larger subsection of the ROI per individual measurement6. In 
this work we expand on this idea of combining several single excitations into a fully two-dimensionally structured 
illumination in order to achieve a significant improvement in the measurement times necessary.

The major disadvantage of using single laser spot excitation lies in the fact that each individual illumination 
only generates information about the OuT in the near vicinity around the projected laser spot. If now multiple 
simultaneous laser spot excitations are combined into one single illumination, a significant reduction of the 
amount of illuminations necessary nm can be accomplished.

If the combined spots are arranged in an evenly spaced rectangular grid with a grid spacing similar to the 
spot diameter, then the resulting pattern can be thought of as a pixelized binary pattern, where every grid posi-
tion (pixel) is either photothermally active (turned on) or not (turned off) as illustrated in Fig. 1. Each of those 
patterns can then be further described by their pixel size dpix and their fill factor β ∈ [0, 1] where β =

npix,on
npix,total

 , 
which is the ratio of photothermally active pixels npix,on and the total amount of pixels in the pattern npixel.

While for sequential laser scanning the necessary amount of measurements for scanning a ROI with area 
AROI is proportional to , in the limit, the projection of binary pixel patterns can reduce this 
down to the following requirement:

(7)minimize
arec

1

2

∥
∥�PSF(x, y, t) ∗x,y amrec(x, y)− Tm

diff(x, y, t)
∥
∥2

2
+ �2,1

∥
∥amrec(x, y)

∥
∥
2,1

+ �2

∥
∥amrec(x, y)

∥
∥2

2
,

(8)
∥
∥amrec(x, y)

∥
∥
2,1

=
∑

x,y

√
∑

m

|amrec(x, y)|
2 .

Figure 1.   Experimental Transformation: The left image shows qualitatively the arrangement of measurement 
positions (black dots) in sequential laser scanning based photothermal SR reconstruction. Here the ROI is 
covered by nm measurements where each measurement only covers a small subsection of the total ROI. The right 
image shows the proposed new experimental technique of projecting a total of nm different pixel patterns, which 
individually already span the whole ROI. The black colored pixels are photothermally active (turned on).
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This holds true as long as the pattern covers the whole ROI. Even though a large β will lead to a lower number 
of measurements, it has to be still considered that for the photothermal SR reconstruction method to achieve 
super resolution capabilities, a three-dimensional heat flow is necessary within the OuT. This is only the case for 
a sufficiently small β and dpix compared to the expected defects to be resolved18.

Illumination pattern design
For the creation of the projected patterns, a random sampling approach is utilized within this work. This is a well 
known strategy in the field of compressed sensing and helps to find a suitable subset of patterns from the overall 
set of all possible patterns, which in general is by far too large to test all combinations of. Nevertheless, it is still 
necessary for the patterns used in photothermal SR reconstruction to fulfill the homogeneity constraint stated 
in Equation (6). This constraint will be asymptotically fulfilled by random patterns for large nm ≫

⌈
1
β

⌉

 . However, 
for smaller nm the homogeneity constraint must be directly considered when constructing the patterns. Therefore, 
in this work we propose the adaption of a pseudo-random pattern generation strategy as presented in Algo-
rithm 1, which is largely inspired by the famous Bresenham’s algorithm in computer graphics19. Within this 
algorithm, all nm patterns are created in sequence. For each newly created pattern only those pixels are taken 
into consideration for activation, which are currently activated less than expected for the given fill factor β . If 
this subset of pixels is not large enough to reach the desired fill factor then the remaining pixels are activated at 
random until the desired fill factor is reached.

Since combining an arbitrary arrangement of multiple laser spots is not very feasible in practice, a laser-
coupled digital micromirror device (DMD)-based DLP projector can be utilized instead. Those projectors feature 
the possibility to individually turn on and off any arbitrary single pixels in their output image, which has the 
same effect as combining a multitude of single laser spots. Modern DLP projectors feature around 106 individual 
addressable pixels, which is more than enough for most use cases as a heat source for thermographic material 
testing. However, their biggest drawback is that currently commercially available DLP projectors only feature at 
maximum a rather low optical output power of < 100 W for a fully-activated ( β = 1 ) image resulting in typical 
irradiances of 5 - 25Wcm−2 . Furthermore, this output power linearly decreases with the fill factor of the projected 
image, which additionally sets a lower bound for β.

Due to the rather high pixel count of modern DLP projectors, each pixel conveys only a tiny amount of the 
total optical output power. To deal with this issue, it is possible to group neighboring pixels into larger pixel 
clusters, which are then turned off and on in unison. For a grouping of nclustered × nclustered pixels, a new pixel 
cluster of side length dspix = nclustered · dpix emerges while the total amount of available pixels is reduced to 
npix,total

n2clustered
 , which in turn increases the power per pixel to Q̂total ·

n2clustered
npix,total

 . To further illustrate the parameters of the 
pixel patterns and the grouping of pixels into clusters an overview is given in Fig. 2.

Numerical modeling: forward solution
The underlying mathematical model behind the photothermal SR reconstruction approach is based on the 
inverse problem as stated in Equation (1) for which an inversion for noisy measured data Tmeas(x, y, t) in order 
to determine the internal heat source distribution aint(x, y) (the defect map) is only possible using optimization 

(9)nm,pattern =

⌈
1

β

⌉

.
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algorithms. Due to the ill-posedness and the vastness of the solution space of the problem, any solution will 
always only be an approximation whose quality will be influenced by the proper choice of regularization as shown 
in Equation (7). However, for exploring the capabilities of the method numerically it would be highly beneficial 
to have the forward solution to the stated inverse problem. With the help of this forward solution it would then 
be possible to generate synthetic measurement data for a known OuT with known internal defect distribution 
D(x, y) . While such data can be obtained at high accuracy using finite-element simulations, this approach is also 
very computational expensive and it would be advantageous to have an approximative solution in closed form.

In order to find such an approximative forward solution, the heat source distribution a(x, y) and its parts 
aext(x, y) and aint(x, y) have to be properly modelled. For the external heat source distribution aext(x, y) , this 
already can be trivially achieved by inputting the external excitation pattern apattern . For the internal heat source 
distribution aint(x, y) , a more sophisticated modeling is necessary. Due to the internal defects not being active 
heat sources as described in the phenomenological «apparent» heat source explanation of the photothermal 
SR approach, the internal defect response is closely coupled to the external heating. This manifests itself in the 
fact, that the local strength of the internal heat source distribution aint(x, y) is dependent on the relative posi-
tioning between the external excitation and the defect distribution D(x, y) in lateral ( x, y ) and also transversal 
( z ) direction. The lateral positioning effect can be incorporated into the forward solution by element-wise 
multiplication of the defect distribution D(x, y) with the temperature field generated by the external heating 
�PSF(x, y) ∗x,y apattern(x, y) . This is necessary, since the internal defects can impede the heat flow as it is present 
at the defect location (no heating → no signal).

The depth information of the defect can then be added to the model by introducing a numerical scaling factor 
ζ ∈ [0, 1[ , which is attenuating the defect response according to the defect depth and effusivity contrast. Since 
this defect contrast factor is simplifying the involved physics of heat conduction quite substantially, it is quite 
hard to estimate and can be best determined by fitting the forward solution to empirical data generated by test 
measurements with sample defects at the desired depth.

Overall this leads to the following equation, which can be used to generate synthetic measurement data 
Tm
meas, sim(x, y, t) for a given set of illumination patterns ampattern , a known defect distribution D(x, y) , a known 

PSF �PSF(x, y, t) and a suitable value for ζ as follows:

where ⊙ denotes element-wise (Hadamard) multiplication and Nnoise(x, y) resembles an additional Gaussian 
measurement noise term.

For an exemplary test measurement on the OuT shown in Fig. 6, the performance of Eq. (10) can be seen in 
Fig. 3. Here, simulated measurement data for an illumination pattern with β = 0.5 and dspix = 0.2mm is shown 

(10)

Tm
meas, sim(x, y, t) =

�PSF(x, y, t) ∗x,y






ampattern(x, y)
� �� �

Ix,y ∗x,y aext

+ ζ · D(x, y)⊙
�

�PSF(x, y) ∗x,y a
m
pattern(x, y)

�

� �� �
aint







+ T0(x, y)+Nnoise(x, y) ,

Figure 2.   Overview over the different parameters of the proposed random illumination patterns. Every pattern 
consists of npix,total individually addressable pixels with width dpix , which can be grouped together in larger 
nclustered × nclustered clusters with width dspix . The fill factor β can then be calculated as the ratio of the number 
of activated pixels ( npix,on shown in black color) and the total amount of pixels npix,total and is independent of the 
clustering.
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in comparison to measured data over the same ROI using the same illumination pattern. The defect contrast is 
determined as best fit to ζ = 0.494 for the given defect size and depth within the ROI. Even though the forward 
solution stated in Eq. (10) only represents an approximation the model already features a high coefficient of 
determination of R2 > 0.9 for wide ranges of tested measurement scenarios20.

As already discussed in a previous section, the underlying model for photothermal SR reconstruction assumes 
a fully three-dimensional heat flow emerging in the OuT. This sets the upper limit for the choice of β and dspix 
(cf. 21, p. 69 setting the limit for a fully one-dimensional heat flow very conservatively at dspix > 20 · tdiff  ). For 
the choice of dspix this dependency is investigated in Fig. 4. Here, the coefficient of determination of the forward 
solution to a total of nm = 20 different measurements for different illumination patterns with β = 0.5 over the 
ROI shown in Fig. 6 for five different values of dspix is shown. In Fig. 4 it can be clearly seen, that for values above 

Figure 3.   Quality of the forward solution and estimation of ζ : Synthetic measurement data Tdiff,sim (blue line) 
generated for a ROI featuring a 2 mm wide defect 0.5 mm below the surface (see Fig. 6) and an illumination 
pattern with β = 0.5 and dspix = 0.2mm is shown next to measured data Tdiff,meas (black dots) using the same 
illumination pattern over the same ROI. The defect contrast factor ζ = 0.494 has been determined as best-fit. 
The measured data and the synthetic data lie in good agreement ( R2 = 0.902).

Figure 4.   Sparsity constraint for 3D heat flow: Influence of the pixel cluster size dspix on the quality of the 
presented forward model measured by the determination coefficient R2

dspix
 . For each dspix a total of nm = 20 

different patterns at β = 0.5 have been experimentally projected and the resulting temperature field has been 
compared to the prediction by Eq. (10). The presented data is normalized to the maximum achieved 
max

(

R2
dspix

)

= 0.723 value, which is calculated over the full ROI including all edge effects and overlay errors. 
The shown error bars indicate ±1σ standard deviation.
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dspix = 0.2mm the fit quality is deteriorating quite fast and the deviation between different illumination patterns 
increases. A similar argument can be made for the fill factor β.

Reconstruction quality and automated regularization parameter estimation
With the help of Equation (10) it is now possible to generate synthetic measurement data for numerical studies 
on the performance of photothermal SR reconstruction. For this to be feasible however, it is necessary to auto-
mate the generation and evaluation of different photothermal SR reconstruction results. Since the reconstructed 
internal heat source distribution aint is sparse in nature as well as the defect distribution within realistic OuTs, all 
signal-to-noise ratio (SNR)-based quality measures are not suited for evaluating the reconstruction quality. While 
there already exist quite sophisticated quality measures for determining the similarity between different distribu-
tions/images, which are also indiscriminant to small perturbations (e.g. the structural similarity (SSIM)22), no 
definitive answer for which quality measure is best exists since their performance is highly dependent on the 
given problem. Therefore, within this work we propose the following quality measure (comparative measure 
only) for a reconstruction result arec(x, y) of a known defect distribution D(x, y):

where {η′(x, y) ∈ R : 0 ≤ η′(x, y) ≤ 1 ∀x, y} is the normalized location dependant penalty mask η(x, y) defined as:

This measure C
(
arec(x, y)

)
∈ [0,∞[ combines the pixel-wise comparison of the reconstruction with the true 

defect distribution as performed by the normalized mean square error (NMSE) with a location-dependent term 
η′(x, y) , which penalizes false positive signals more that are further away from a true defect signal. This factor 
takes full effect for all false positive signals that are further away from the true position than the spatial width 
( � 3 σPSF ) of the PSF. In this context, smaller values of C

(
arec(x, y)

)
 indicate a better reconstruction result. The 

NMSE is given by the following equation:

With the help of this quality measure it is now possible to define a minimization problem, which maximizes the 
quality of the reconstruction of the internal heat source distribution arec(x, y) by choosing the optimal set of 
regularization parameters �best as input for Eq. (7) as follows:

This minimization problem stated in Eq. (14) is severely ill-posed and computationally very expensive since 
for every determination of C

(
arec(x, y)

)
 for a suitable candidate for �best the similarily ill-posed minimization 

problem stated in Equation (7) has to be solved. Therefore, applying a suitable heuristic search algorithm, which 
is able to efficiently search through the vast solution space is key in finding a (at best optimal) solution in a 
feasible time frame. While in the past this process has been carried out mostly manually on an empirical basis, 
in this work we propose the use of the differential evolution algorithm23 to find the (optimal) set of regulariza-
tion parameters �best in order to automate and speed-up this process significantly. While this search method 
is very robust and even works with non-differentiable problems since it only heuristically samples the solution 
space, it is not guaranteed that the optimal solution will be found. While this could possibly lead to insufficient 
reconstruction quality by settling on a local minimum far from the global one, for a sufficient amount of agents 
(population size for the heuristic search) nagents ≫ 10 this has not yet occured to be an issue.

Experimental setup
In order to validate the synthetic measurement data Tmeas,sim , which can be generated by Equation (10) as shown 
in Fig. 3 and in order to assess the overall capabilities of photothermal SR reconstruction, several measurements 
in the lab have been performed. Here, a laser-coupled DMD projector based on a DLP650LNIR DLP chip from 
Texas Instruments featuring npix = 1280× 800 (WXGA, 16 : 10 ) pixels at a pixel size of dpix, proj = 10.8µm has 
been utilized to project the illumination patterns for each measurement. This projector is coupled to a diode 
laser, which supplies the maximum necessary optical input power of Q̂optical,in = 270W to the projector at a 
wavelength of � = 940 nm resulting in an optical output power of Q̂optical = 86W at β = 1 . With the attached 
objective, which features a 1.85× magnification, a single pixel size of dpix = 20mm and an irradiance on the 
OuT of 21Wcm−2 has been achieved. Reaching such high irradiance with a DLP-based optical system lies on 
the upper edge of what is achievable with current DLP technology and requires serious cooling efforts within 
the device in order to savely operate the device. However, for testing metallic materials for defects an irradiance 
in the order of ~ 10 W cm−2 is necessary for sufficient heating.

To increase the transfered power per pixel, every 20 pixels have been clustered together within the scope of 
this work. This leads to a total clustered pixel size of dspix = 0.4mm , which is on the edge of the reasonable pixel 
size range for the automatic determination of the best regularization parameters (see Fig. 4) with the help of the 
forward solution. While also much smaller pixel cluster sizes have shown good results in the past, deliberately 
choosing the cluster size this close to the limit for the automatic regularization parameter determination has 
been performed to further give a hint on the robustness of the method to non-ideal experimental conditions.

(11)C
(
arec(x, y)

)
= NMSE

(
D(x, y), arec(x, y)

)
+

∥
∥
(
1− η′(x, y)

)
⊙ arec(x, y)

∥
∥
2
,

(12)η(x, y) = D(x, y) ∗x,y �PSF(x, y) .

(13)NMSE (xtrue, xrec) =
�xtrue − xrec�

2
2

�xtrue − xtrue�
2
2

.

(14)�best =
(

�
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2,1 , �best2

)
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(
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The resulting experimental setup is shown in Fig. 5. Within this particular setup, a dichroic mirror is used to 
separate the illumination and camera beam paths. This mirror is highly reflective for the laser wavelength while 
being transparent in the infrared wavelength range. An overview over all experimental parameters is addition-
ally given in Table 1.

The front surface temperature of the OuT has been recorded using a cooled midwave infrared (MWIR) 
camera at a spatial resolution of �x,�y = 0.1mm with a framerate of fcam = 160Hz and an NETD of < 50 mK. 
The initial temperature T0(x, y) has been determined for each individual measurement by averaging 50 frames 
directly before the illumination has been triggered. The start trigger signal for the camera has been provided by 
a photodiode sensing the start of the laser pulse used for photothermally heating the OuT.

The square platelike OuT examined within this work and the corresponding ROI is shown in Fig. 6. It features 
a side length of 58.5 mm and a thickness of L = 4.5mm and has been additively manufactured from 316L stain-
less steel ( k = 15Wm−1 K−1 , ρ = 7950 kgm−3 , cp = 502 Jkg−1K−1 , α = 3.76mm2s−1)24,25 and features cubical 
internal defects with side length ddefect = 2mm starting at a depth of 0.5 mm filled with residual unfused metal 
powder from the manufacturing process. The chosen ROI spans an area of 24.8 mm × 15.5 mm and encompasses 
three defect pairs with separation distances of 0.5, 1 and 2 mm. This variance in defect spacing allows to assess 
the resolution capabilities of the photothermal SR reconstruction by means of determining for which separation 
distance can individual defects still be identified as separate defects. Furthermore, two of the three defect pairs 
are oriented at 45° with respect to the illumination pattern pixel grid and the pixel grid of the MWIR camera. 
This further benchmarks the capabilities of the algorithm and gives a strong hint about the independence of the 
algorithm from defect orientation.

In order to not introduce any history in the measurements, all individual illuminations have been performed 
with a laser pulse length of tpulse = 0.5 s and a conservative delay of 25 s between subsequent illuminations allow-
ing the OuT to cool back down to ambient temperature. Therefore, the measurement of a ROI with nm = 20 
patterns will be completed in about 8.3 mm. In comparison, this represents a drastic decrease in measurement 
time compared to sequential spot-wise illumination based photothermal SR where measuring an equally sized 
ROI with similar delay between measurements would take approximately 2 h to complete. Optimizing the delay 
between measurements or even remove any history from the measurements by subtracting the total increase 
in temperature over time obtained from a suitable modeling of the OuT’s temperature evolution would still be 
possible to further speed-up the measurement process.

Results
For projecting nm = 20 patterns with β = 0.5 and subsequent photothermal SR reconstruction using the auto-
matic regularization parameter determination, the reconstruction result as shown in Fig. 7 has been achieved. 
For the determination of �best = (490, 34.4) within the scope of the differential evolution algorithm applied, 
549 reconstruction problems as stated in Equation (7) have been solved iteratively ( niter = 100 each) without 
any additional user input, which on modern computer hardware took about 1.5 h to perform.

As can be seen in the reconstruction result, all defects have been detected with no false positive defect sig-
nals showing up. Furthermore, all defects are nicely detectable as separate, while only the defect pair with the 
smallest spacing shows room for improvement in this regard. Using a smaller pixel cluster size and increasing 
the number of patterns projected are expected to further improve the reconstruction for smaller spacings18. The 
overall reconstruction quality of the defect shape has been also quite decent only with the right-most defect not 
fully reconstructed near the edge of the ROI. This can be most likely explained by it being very close to the edge 
of the ROI and therefore there is missing information for this part of the defect compared to all others. Even 
though all defect pairs consist of identical cubical defects, the reconstruction of each of them shows some vari-
ation when compared between each other. While this is not ideal, it can be also traced back to the fact that the 

Figure 5.   Experimental Setup: A laser-coupled DLP projector (right) projects different illumination patterns 
via a dichroic mirror (middle) onto the OuT (middle, background) while the resulting change in front surface 
temperature is recorded via a midwave infrared (MWIR) camera (bottom left). A photodiode (middle, 
foreground) is detecting when the patterns are projected and triggers the camera to start recording.
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necessary condition for a homogeneous reconstruction (cf. Eq. (6)) is more and more violated close to the edge 
of the ROI and is also expected to improve with the number of measurements performed.

In order to evaluate the quality of the reconstruction as shown in Fig. 7, a comparison to the results of several 
other established thermographic defect detection techniques using a single homogeneous illumination of the 
ROI has been performed. Due to the lack of a suitable universally applicable measure for reconstruction quality, 
this comparison has only been carried out in a qualitative fashion and the results are shown in Fig. 8. Since pho-
tothermal SR reconstruction results in a sparse defect map compared to (most) other methods, which give out 
continuous data, a quantitative comparison of the defect reconstruction quality is a highly non-trivial task. This 
fact is further emphasized in Fig. 9 in which a sectional view of the results of the different methods is presented.

In this comparison the reconstruction result as shown in Fig. 7 is displayed side-by-side with conventional 
methods. These methods consist of the difference thermogram Tdiff  for teval = tpulse = 0.5 s , which features the 
maximum defect contrast. In addition, Tdiff  for which additionally the expected temperature for a defect free 
region of the ROI has been subtracted is displayed. Furthermore, pulsed phase thermography (PPT) has been 
performed on the whole image sequence and the phase φfft and amplitude Afft images have been evaluated for a 
frequency of fPPT = 0.516Hz26. For a fair comparison, the homogeneous illumination of the ROI has been per-
formed in the same setup as the measurements resulting in the reconstruction from Fig. 7 using a fully activated 
image ( β = 1 ) at maximum output power of the projector of Q̂optical = 86W.

Figure 6.   Object under test and ROI: The OuT investigated within this work has been additively manufactured 
from 316L stainless steel featuring several cubical internal defects with side lengths ddefect = 2mm of unfused 
metal powder lying 0.5 mm below the front surface. The ROI considered in this work encompasses three defect 
pairs with spacings {0.5, 1, 2}mm with two defect pairs oriented at 45° to the illumination pattern grid and 
the sensor pixel grid of the MWIR camera. Left: isometric wire frame view of the OuT, Right: front view (wire 
frame) with ROI.

Table 1.   Overview over the experimental parameters.

Parameter Value

OuT

ROI 24.8 × 15.5 mm2

Thickness 4.5 mm

Material 316L stainless Steel

Thermal diffusivity α 3.76 mm2 s−1

Defect pattern

Defect side length 2 mm

Starting depth 0.5 mm

Spacings 0.5, 1, 2 mm

Infrared camera

Spatial resolution �x,�y 0.1 mm

Acquisition frequency fcam 160 Hz

NETD < 50 mK

Illumination parameters

Optical output power at β = 1 Q̂optical 86 W

Irradiance at ROI 21 Wcm−2

Pixel size at ROI dpix 20 µm

Pixel cluster size dspix 0.4 mm

Pulse length tpulse 0.5 s
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Conclusion
In the comparisons shown in Figs. 8 and 9 the added benefit of the photothermal SR reconstruction technique 
can be clearly observed. Not only are all defects clearly visible for a human, the nature of the signal as a sparse 
defect pattern differentiating clearly between defect-free and defective regions allows for a clear labeling of the 
ROI, which can be interpreted by humans even with little training in the subject as well as it is easily usable for 
further automatic data processing by machines. This advantage of the proposed experimental photothermal SR 
reconstruction approach can be clearly observed when comparing the obtained results with other sophisticated 
thermographic internal defect resolution methods making use of spatially structured illumination like photo-
thermal coherence tomography27,28 or thermal wave slice diffraction tomography29. In addition, the application 
of fully two-dimensionally structured random pixel patterns has shown to lead to a drastic decrease in meas-
urement times compared to the current state of the art sequential point-wise illumination strategies applied for 
photothermal SR reconstruction6,8. Nevertheless, the increased experimental complexity and measurement times 
compared to the also shown conventional methods still poses a challenge for the application in large volume 
production but for high-reliability applications in medicine or for the testing of aerospace products, the added 
quality and resolution capabilities of the method clearly outweigh the increased measurement times. The absence 
of an automatic determination method of a suitable set of regularization parameters is currently still the largest 
drawback when working with this testing method. While within this work we have shown a way to achieve this 
automatic determination with prior knowledge of the defect structure, this inversion method is still not very 
suitable for real word testing scenarios and more aimed towards scientific research on the subject. However, there 
is current ongoing work in order to solve this issue using machine learning techniques14,15. The introduction of 
a forward solution within this work also helps out to better tune the reconstruction parameters since it is now 
technically feasible to generate varying synthetic datasets for further exploration of the capabilities of the method. 
Furthermore, the maximum optical output power of the DLP-projector applied in the experimental section of this 
work has been observed to be still lacking to detect defects in materials with high thermal conductivity (stain-
less steel in this case) than what has been presented in this work even though the DMD-chip in this projector 
is currently a top-of-the-line model with regards to achievable output power. Here, a further improvement in 
DLP-projector technology is still necessary.

Figure 7.   Reconstruction result arec(x, y) obtained for �best = (490, 34.4) with ρADMM = 9900 for an 
illumination with nm = 20 patterns with dspix = 0.4mm and β = 0.5 after niter = 100 iterations. The true defect 
postions are indicated by white boxes. All defects have been detected with a reasonable reconstruction of the 
defect shape.
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Figure 8.   Qualitative comparison of different defect detection methods: The left four plots show results 
obtained using conventional detection methods with homogeneous illumination. The top left plot contains the 
temperature increase Tdiff obtained at teval = tpulse = 0.5 s . The top right plot shows a difference thermogram 
where from each pixel the expected increase in temperature for a pristine subarea of the ROI is subtracted. The 
bottom two plots display the amplitude and phase image for a pulsed phase thermography (PPT) evaluation on 
Tdiff for a frequency of fPPT = 0.516Hz . On the right, the photothermal SR reconstruction result as obtained in 
Fig. 7 is depicted. The true defect positions are indicated by white boxes.
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Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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