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The development of a machine 
learning algorithm for early 
detection of viral hepatitis B 
infection in Nigerian patients
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Access to Hepatitis B Virus (HBV) testing for people in low-resource settings has long been 
challenging due to the gold standard, enzyme immunoassay, being prohibitively expensive, and 
requiring specialised skills and facilities that are not readily available, particularly in remote and 
isolated laboratories. Routine pathology data in tandem with cutting-edge machine learning 
shows promising diagnostic potential. In this study, recursive partitioning (“trees”) and Support 
Vector Machines (SVMs) were applied to interrogate patient dataset (n = 916) that comprised results 
for Hepatitis B Surface Antigen (HBsAg) and routine clinical chemistry and haematology blood 
tests. These algorithms were used to develop a predictive diagnostic model of HBV infection. Our 
SVM-based diagnostic model of infection (accuracy = 85.4%, sensitivity = 91%, specificity = 72.6%, 
precision = 88.2%, F1-score = 0.89, Area Under the Receiver Operating Curve, AUC = 0.90) proved to 
be highly accurate for discriminating HBsAg positive from negative patients, and thus rivals with 
immunoassay. Therefore, we propose a predictive model based on routine blood tests as a novel 
diagnostic for early detection of HBV infection. Early prediction of HBV infection via routine pathology 
markers and pattern recognition algorithms will offer decision-support to clinicians and enhance early 
diagnosis, which is critical for optimal clinical management and improved patient outcomes.

The need for improved access to early diagnosis and linkage to care has never been greater, with approximately 
296 million people worldwide living with HBV, and approximately 820,000  people dying annually from HBV-
related liver  disease1. In a recent study we found the prevalence of HBV to be 9.5% (95% CI 8.1–11.0)2. As 90% 
of infected people are unaware of their infection status, and they are therefore at risk of infecting  others3,4. The 
pathogenesis of HBV is characterised by different stages, each one with specific pathological characteristics 
and outcomes. Initial stages usually involve inflammation of the liver. Patients with persistent infection have 
an increased risk of progressive liver fibrosis, and life-threatening clinical complications of cirrhosis and liver 
 cancer1. Therefore, early detection of HBV infection can assist clinicians in determining optimal timing for 
clinical management to prevent disease progression of infected patients.

Enzyme immunoassay is considered to be the gold standard for the diagnosis of HBV  infection5. However, 
the widespread use of this specialised test in resource-constrained settings is limited, particularly for rural and 
remote laboratories, because it requires dedicated facilities, skilled lab technicians, and a continuous supply of 
 electricity6,7. Nucleic acid test is also increasingly being valued for their diagnostic accuracy and clinical prospect 
in detecting the viremic stages of hepatitis B infection to guide treatment strategies, but the high-cost implication 
precludes its use for diagnosis in many clinical  settings5. Consequently, there is a dire need for an accurate and 
reliable diagnostic technology to detect HBV infection earlier, without resorting to specialised immunoassay 
and prohibitively expensive nucleic acid tests.
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Machine learning algorithms are adept at investigating medical phenomena by capturing complex and non-
linear relationships in clinical  data8. They form the basis of the digital healthcare revolution, the advent of which 
provides potentially important opportunities to advance innovation in medical research. A key feature that 
underpins the significance of machine learning in medical research is its potential to analyse large and complex 
data structures to create prediction models and design decision support systems. There is accumulating evidence 
that machine learning prediction models can assist clinicians to deliver personalised healthcare and drive a 
better future for  patients9,10. For example, the first FDA-approved IDs-DR  EyeArt®, an autonomous machine 
learning system that detects diabetic retinopathy in retinal fundus photographs, improved patient outcomes 
across multiple  settings11.

Several other applications of machine learning to inform intelligent decision-making in healthcare have 
been cited in the literature. Breast tumours can be quantitatively diagnosed based on subtle morphological 
variations of myoepithelial cells with 90.9% accuracy by a machine learning  algorithm12. Barakat and Bradley 
developed a predictive model to detect diabetes by a machine learning algorithm using features, such as sex, age 
and blood  pressure13. Yip et al. developed a novel predictive model to detect non-alcoholic fatty liver disease in 
the general population by machine learning algorithms on the basis of 23 routine laboratory  attributes14. Onu 
et al. developed a signal processing and machine learning enabled system to improve the diagnosis of birth 
asphyxia in low-resource  settings15. Edeh et al. developed an ensemble learning model to predict viral hepatitis 
 C16. Despite the proven usefulness of machine learning algorithms in these medical fields, the accuracy and 
reliability of algorithms in clinical practice continue to be debated. To increase the diagnostic efficiency and 
reliability, several studies in other populations have proposed the inclusion of more parameters from personal 
information to patient history and clinical  examination17, and the use of feature selection to augment laboratory-
based  predictions18.

In this study, we investigate how machine learning algorithms can extract patterns in routine blood tests to 
detect viral hepatitis B, and we develop a diagnostic model of HBV infection for Nigerian patients. This model 
will enable early detection for those who live with HBV and will help provide greater access to care for vulner-
able populations in resource–constrained settings, as well as support early intervention for rural and remote 
laboratories that do not have easy access to specialised immunoassays.

Methods
Ethics statement. All experimental protocols were approved by the Institutional Review Board of the 
Nigerian Institute of Medical Research (IRB/20/065) and the Human Research Ethics Committee of the Austral-
ian National University (2019/803), and conformed to the principles and guidelines outlined in the declaration 
of Helsinki. Patient data were anonymised. The Institutional Review Board of the Nigerian Institute of Medical 
Research and the Human Research Ethics Committee of the Australian National University approved the waiver 
of informed consent.

Study setting. This study was conducted in Nigeria, a country with the largest population in Africa (esti-
mated at 211.4 million in 2021)19, using patient data from the Centre for Human Virology and Genomics, Nige-
rian Institute of Medical Research (NIMR). NIMR is Nigeria’s foremost institute of medical research and hosts 
a dedicated HBV clinic.

Study patients. De-identified data were extracted from patients who were suspected of HBV infection 
and subsequently underwent HBsAg immunoassay testing, between 2010 and 2020. A suspected HBV case is 
defined as a case that was compatible with standard clinical description, including elevated serum aminotrans-
ferase  levels20. HBV patients co-infected with HIV or HCV and patients with any other infections were excluded. 
Immunoassay results were obtained from the GS HBsAg enzyme immunoassay platform (Bio-Rad, USA). The 
HBsAg response was classified as either "positive" or "negative" as dictated by specific NIMR reference intervals. 
All serum clinical chemistry analyses were performed using  Cobas® analyser, and haematological analyses were 
performed on the impedance colorimetric analyser (Bio-Rad, USA).

Data pre-processing. Data pre-processing assigned each immunoassay case to  HBsAg response category, 
with category 0 comprising HBsAg negative cohort, and category 1 comprising HBsAg positive cohort. Variables 
with greater than 65% missing data were excluded from further analysis, thus leading to the exclusion of the viral 
load attribute, as this was only available for a minority of the patients.

Investigation of different subsampling settings. Subsampling was performed using up, down and 
random oversampling techniques to investigate whether imbalanced learning constitutes a significant  problem21. 
These three methods were selected for their durability in medical literature to date, and their transparency for 
use in clinical  data22.

Development of a machine learning-based model. This study was conducted in accordance with the 
Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) 
reporting guideline statement checklist for prediction model  development23. Prior to the machine learning anal-
ysis, continuous variables were summarised using mean and standard deviation, while categorical variables were 
summarised using percentage and numbers (proportions). The machine learning analysis was performed in R 
v3.5.124, using the caret  package25. The data set was divided into two parts, in a stratified train-test splits (70% 
training and 30% testing). Ten-fold cross validation was applied in the analysis to evaluate the performance of 
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the predictive model. Two machine learning algorithms, namely recursive partitioning (“trees”)26,27 and  SVM28, 
were used in tandem as classification algorithms and applied to patient data that comprised results for HBsAg 
(response variable) and routine clinical chemistry and haematology results (predictor variables). These super-
vised learning algorithms were used to ascertain predictor variable patterns and thresholds that differentiate 
HBsAg immunoassay positive from negative responses. Random forest algorithms, where the predictor variables 
(routine chemistry and haematology markers) were ranked in order of importance for classification as HBsAg 
positive or negative, were run on the patient data. The tree analyses, both forests and single decision trees provide 
an excellent precursor to SVM modelling, and were used to inform SVM modelling for the best predictors to 
include. The highest-ranked predictors from random forest modelling were applied to SVM for higher dimen-
sional investigation (via kernel selection), to produce a final diagnostic predictive model for HBV infection. The 
C-classification method of SVM modelling was applied to the data set, and a radial kernel was used due to its 
applicability to data with complex  features28. The machine learning interrogation included a tuning phase for 
each algorithm, to optimise the model hyper-parameters. Ten-fold cross-validation repeated ten times was per-
formed with different hyper-parameter settings. We optimised the complexity parameter for decision trees, mtry 
parameter for random forest and sigma for SVM using tuneLength. R package caret was applied for the hyper-
parameter optimisation. The optimal model was used to predict on the test data and predictions were compared 
to observed outcomes via a confusion  matrix25. The predictive model was evaluated using the recommended 
performance measures for classification  tasks22,29, including accuracy, sensitivity, specificity, precision, F1 and 
AUC. The R source code related to this study is available online at https:// github. com/ bia- ml/ HepB- LiveT est.

Web-tool development. To develop a tool that is amenable to use in clinical settings for prediction of 
HBV in real-time, a machine learning-enabled web-based app was designed, providing a Graphical User Inter-
face (GUI) to access our final predictive model of HBV infection. This application is publicly accessible via 
https:// www. hepbl ivete st. app/.

Results
Summary statistics for patient demographics. During the years 2010–2020, the final cohort for 
investigation comprised 916 individuals, with 59% male and 41% female. Age ranged from 10 to 89 years of 
age. The summary statistics for patient demographics are shown in Table 1. The reference interval and descrip-
tion of the 20 clinical attributes contained in the dataset are summarised in Supplementary Table S1. Sixty-nine 
percent of the patient cohort were HBsAg positive, thus producing a fairly imbalanced dataset. Age for HBsAg 
positive cohort generally incorporated a range of late-twenties to early-forties. Age was significantly different 
between HBsAg positive and negative cohorts (t = 13.54, df = 463, p < 0.0001) and a chi-squared test of independ-
ence showed a significant association between gender and HBsAg immunoassay response (χ2 = 20.51, df = 1, 
p < 0.0001).

Comparison between clinical attributes for patients testing positive or negative for 
HBsAg. Table  2 summarises the comparison between the clinical attributes of HBsAg positive cohort 
(n = 636) and HBsAg negative cohort (n = 280) and includes significance as estimated by unpaired t test. Routine 
markers that were significantly different were ALT, AST, GGT, ALB, and WBC. As expected, mean ALT and AST 
were higher for HBsAg positive cohort. But important to note was that WBC and ALB for HBsAg positive cohort 
had significantly reduced means compared to the HBsAg negative cohort for certain ages (Fig. 1).

Tree analyses of HBsAg prediction patterns. Analysis by the tree-based machine learning algorithms 
provided a predictive model of HBsAg response. Random forest algorithms, where the predictor variables (rou-
tine chemistry and haematology markers) were ranked in order of importance for classification as HBsAg posi-
tive or negative, were run on the patient data. Overall, AST was the top-ranked predictive marker of hepatitis B 
infection in the Nigerian patient cohort, followed by WBC, patient age at the time of testing, and ALT. Albumin 
also appeared in the top five feature importance (Fig. 2).

Figure 3 shows decision tree results for the same data used to produce the random forest summarised by 
Fig. 2. The advantage of single decision tree is the estimation of decision thresholds for each predictor used to 
understand a response, allowing the formulation of "rules" to define the classification accuracy of interest. Like 
random forests, classification accuracy is also calculated. Therefore, the following rule applies to the most accurate 
prediction of HBsAg immunoassay results;

Table 1.  Summary statistics for patient demographics, Nigeria, 2010–2020. HBsAg hepatitis B surface antigen. 
a Two sample t-test, bChi-square test.

Variable HBsAg positive (n = 636) HBsAg negative (n = 280) p difference

Age 35.3 ± 10.7 47.0 ± 12.6 < 0.0001a

Sex 230 (36.2%) female 146 (52.1%) female < 0.0001b

406 (63.9) male 134 (47.9%) male

https://github.com/bia-ml/HepB-LiveTest
https://www.hepblivetest.app/
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Therefore, with four routine pathology markers, predictions of whether a patient has been infected with HBV 
can be made with an accuracy of 92.7%.

Results of the predictions were analysed via a confusion matrix (Table 3). Error rate was lower for the predic-
tion of HBsAg positive classification at 3.8%, showing that the correct prediction of HBsAg positive immunoassay 

AST < 42 U/L+WBC > 9.2× 10
9/L+ Age > 55 years + ALT < 33U/L

= HBsAg Negative
(

85.5% accuracy
)

AST > 42 U/L+WBC < 9.2× 10
9/L+ Age < 55 years + ALT > 33U/L

= HBsAg Positive
(

96.2% accuracy
)

Table 2.  Mean serum and blood markers for patients testing positive or negative for hepatitis B 
surface antigen. Abbreviations for clinical attributes: ALT—alanine aminotransferase; AST—aspartate 
aminotransferase; ALKP—alkaline phosphate; Crea—creatinine; TBil—total bilirubin; GGT—gamma glutamyl 
transferase; ALB—albumin; Hb—haemoglobin; Hct—haematocrit; WBC—white blood count; PLT—platelet; 
MCHC—mean corpuscular haemoglobin concentration; MCH—mean corpuscular haemoglobin; MCV—
mean corpuscular volume; RBC—red blood cell; RDW—red cell distribution width; Neut—neutrophils; 
Lymph—lymphocytes.

Clinical attributes HBsAg positive (n = 636) HBsAg negative (n = 280) p value

ALT, U/L 111.9 ± 251.5 76.3 ± 146.8 0.0075

AST, U/L 87.9 ± 192.7 60.3 ± 117.8 0.0080

ALKP, U/L 84.1 ± 39.6 85.7 ± 41.4 0.5853

Crea, µmol/L 82.2 ± 39.6 89.1 ± 64.3 0.0973

TBil, µmol/L 16.8 ± 39.0 15.3 ± 24.5 0.4814

GGT, U/L 26.7 ± 17.3 30.2 ± 18.0 0.0063

ALB, g/L 35.9 ± 8.6 40.2 ± 6.0 < 0.0001

Hb, g/L 139.8 ± 19.0 138.8 ± 19.1 0.4650

Hct, L/L 0.4 ± 0.1 0.4 ± 0.1 1.0000

WBC,  109/L 5.2 ± 2.0 9.3 ± 3.0 < 0.0001

PLT,  109/L 252.5 ± 93.9 253.1 ± 89.3 0.9264

MCHC, g/L 340.5 ± 8.0 341.3 ± 8.4 0.1785

MCH, pg/RBC 30.3 ± 2.8 30.4 ± 2.5 0.5913

MCV, fL 89.0 ± 7.3 88.9 ± 6.4 0.8349

RBC,  1012/L 4.6 ± 0.6 4.6 ± 0.7 1.0000

RDW, % 14.1 ± 2.1 14.2 ± 2.0 0.4927

Neut, % 4.8 ± 4.4 5.2 ± 5.5 0.2830

Lymph, % 2.1 ± 1.0 2.2 ± 1.1 0.1933

Figure 1.  Kinetics for HBsAg positive (green) and HBsAg negative (red) cohorts across the age range 
investigated by SVM and tree-based machine learning algorithms. Comparison of mean WBC (A) and ALB (B) 
versus age at the time of testing.
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result was 96.2%. HBsAg negative classification prediction had higher error rates at 14.4% (suggesting correct 
HBsAg negative prediction at 85.6%). The metrics for measuring model performance are shown in Table 4.

SVM analysis of HBsAg immunoassay results. The final SVM-based diagnostic model of HBV infection rep-
resented by Fig. 4 and Fig. 5 predicted HBsAg positive results at 88.2%, while negative results were predicted 

Figure 2.  Variable importance from random forest analysis showing the leading predictors of HBsAg 
immunoassay results. The percentage in brackets represents the contribution of each predictor to the model 
performance.

Figure 3.  A decision tree exemplifying the analysis from random forest. Within the decision tree, predictor 
variable thresholds are calculated to formulate rules to guide HBsAg positive or negative prediction.

Table 3.  HBsAg immunoassay results classification error rate on test data for all patient cohort analysed by 
random forest (overall error rate = 7.30%). Table supports the results presented in Fig. 2. The top four predictor 
variables were used for the calculation of error rate.

HBsAg category HBsAg negative HBsAg positive Error rate

Negative 77 13 0.144

Positive 7 177 0.038
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at 78.2%, using the routine serum and blood markers AST, WBC, Age, ALT, as well as albumin. These top five 
predictor variables of HBsAg positive or negative immunoassay results from the tree analyses subsequently pro-
vided the model for calculations of prediction accuracy. The model was further assessed on accuracy (85.4%), 
sensitivity (91.0%), specificity (72.6%), precision (88.2%), F1-score (0.89), and AUC (0.90). The ROC curve 
showing the discrimination measure of the model is presented in Supplementary Figure S1. The relationship 
between AST and WBC were plotted for Figs. 4 and 5, with slices introduced into the models for ALT (20–
1000 U/L, Fig. 4) and age at the time of HBsAg immunoassay testing (15–65 years, Fig. 5).

ALT kinetics associated with the primary predictor variables AST and WBC. For the SVM plots presented in 
Fig. 4, the dark red area represents the areas of HBsAg positive prediction, and the light yellow represents HBsAg 
negative prediction. A serum ALT of 20 U/L (Fig. 4a) is well below the upper limit of the NIMR reference inter-
val, and therefore represents early phases of initial HBsAg positive infection, prior to liver damage. For Fig. 4a 
and Fig. 4b,c,d, a pronounced relationship between AST and WBC was detected, which interacted with ALT, as 
demonstrated by the alterations in AST–WBC relationship with increasing serum concentrations of this enzyme.

For Fig. 4 (a,b,c), while the upper range of AST stayed at approximately 700 U/L, two features of the HBsAg 
population (dark red) were pronounced with the increase of ALT from 50 to 1000 U/L. First was the decrease 

Table 4.  Performance metrics of random forest predictive model of HBsAg response.

Model 
performance

Prevalence 
(%) PPV (%) NPV (%)

Sensitivity 
(%)

Specificity 
(%)

Precision 
(%) AUC FI-score

ACC 
(Confidence 
interval)

69.3 96.2 85.6 93.1 91.6 96.2 0.98 0.94 92.7 (95%CI: 
88.9–95.4)

Figure 4.  SVM plots describing the interaction of serum AST, WBC and serum ALT for the classification 
of  HBsAg positive versus HBsAg negative results, as previously detected by specific HBsAg immunoassay. (a) 
ALT = 20 U/L; (b) ALT = 50 U/L; (c) ALT = 100 U/L; (d) ALT = 1000 U/L. The feature space assigned to HBsAg 
positive cases is shown in dark red, and the region assigned to negative cases is shown in light yellow. Crosses 
indicate the support vectors, and circles represent the remaining observations. The final SVM-based model of 
infection required to separate HBsAg positive from negative responses included the predictor (independent) 
variables AST (U/L), WBC (×  109/L), age (years), ALT (U/L) and ALB (g/L): (cost = 4, gamma = 0.36, 
C-classification method and radial kernel). After tenfold training/testing of the data set, HBsAg positive 
immunoassay results were predicted at 88.2%, while negative results were predicted at 78.2%.
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in WBC for the HBsAg positive category to almost 10 ×  109/L and the shrinking of the WBC concentration due 
to gradual increase in the upper limit associated with increasing ALT. At 1000 U/L ALT (Fig. 4d), the HBsAg 
positive category is defined by a higher serum AST range of 100–1300 U/L, and a further reduced WBC.

The SVM investigation summarised in Fig. 4 emphasise the interaction of ALT with WBC. An increase in ALT 
from 20–100 U/L resulted in a slight decrease in WBC for positive cases. With further ALT increases (1000 U/L), 
WBC decreases dramatically compared to 20–100 U/L. This may be an early warning of infection, particularly in 
individuals with suggestive histories. Within the ALT, AST, and WBC boundaries, additional decision support 
threshold can be estimated to allow the earliest possible detection of HBV infection, and this was achieved with 
only three routine markers.

Impact of age on the SVM prediction of HBsAg immunoassay result by AST and WBC. Figure 5 examines the 
impact of increasing age on the prediction of HBsAg immunoassay result by serum AST and WBC. The age 
range introduced into the SVM model was from 15–65 years at the time of HBsAg testing. As done for ALT 
(Fig. 5), the age factor was introduced into the SVM model as a static slice, hence providing a model of AST–
WBC interaction at that specific age.

Figure 5.  SVM plots describing the interaction of serum AST, WBC and patient age at the time of HBV testing 
for the classification of  HBsAg positive versus HBsAg negative results, as previously detected by specific HBsAg 
immunoassay. (a) Age = 15 years; (b) Age = 25 years; (c) Age = 35 years; (d) Age = 45 years (e) Age = 55 (f) 
Age = 65.
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At 15 years (Fig. 5a), the diagonal pattern shape of the HBsAg positive class (dark red) dissects the class into 
two distinct sub-populations. The first sub-population is defined by higher WBC (0 to almost 15 ×  109/L), but 
AST concentration was less than 700 U/L, while the second sub-population is defined by a higher serum AST 
range of 700– 1400 U/L and a reduced WBC not exceeding 8 ×  109/L.

From 25 – 45 years (Fig. 5b,c,d), it was interesting to note that for the HBsAg positive class, the upper limit 
for serum AST remained consistent at around 1400 U/L, while the WBC reduced significantly from 11 ×  109/L 
to 8 ×  109/L, as the age increases.

Of particular interest for ages 55–65 (Fig. 5e,f) was the changing relationship between serum AST and WBC 
with increasing age and the associated shrinking of the HBsAg positive class. By 55 years of Age (Fig. 5e), serum 
AST level was reduced to 1100 U/L and a WBC of approximately 7 ×  109/L, while by age 65, HBsAg class is defined 
by lower serum AST range of approximately 50–500 U/L, with the WBC reducing drastically.

Web-tool development. To encourage further study on the clinical prediction of HBV infection status 
using cutting-edge machine learning strategies, our predictive model of HBV infection was translated into a free 
publicly accessible web-app as a decision support system (https:// www. hepbl ivete st. app/). To use the machine 
learning-enabled web-app, referred to as HepB LiveTest, there is a need to input the values of the four routine 
pathology tests, constituting the predictive rules based on the established decision thresholds, followed by a click 
of the predict button to predict the HBV status of a patient in real-time. Figure 6 shows the web application of 
HepB LiveTest and the results of hypothetical patients.

Discussion
Using tree-based machine learning algorithms (random forest and decision tree), and SVM, our study proposed 
a predictive model on the basis of 20 routine pathology and clinical attributes as a novel diagnostic model for 
early detection of HBV infection. The predictive model was assessed to have sensitivity 91%, specificity 72.6%, 
precision 88.2%, F1-score 0.89, and AUC 0.90, and thus rivals with immunoassay. This illustrates the potential of 
pattern recognition algorithms to enhance clinical decision support, facilitate diagnostic procedures, and improve 
patient outcomes—the enhancement pertains to early detection and savings of time, money and anxiety. All of 
these translate into significant cost savings for Nigeria’s health system and its citizens.

Machine learning interrogation of routine pathology data associated with HBV immunoassay results has 
previously been studied in other populations. Shang et al. investigated the interactions between HBsAg and 
other pathology markers in a Chinese patient  cohort30. The study found that HBsAg immunoassay result can 
be predicted through combined Classification Decision Tree (CDT) and logistic regression modelling of associ-
ated predictor variables at 92.8% and 95% accuracy, with an overall CDT sensitivity and specificity of 94.7% 
and 89.5%, respectively. They found that the combination of ALT, ALB and ALP was the strongest predictors 
of HBV infection status in a Chinese patient  cohort30. Whilst the high rates of prediction accuracy, sensitivity 
and specificity recorded in the Chinese patient cohort were matched in this study via random forest modelling, 
the predictive markers varied slightly in both populations. However, ALT and ALB were the most prominently 
featured predictive markers of HBV infection when comparing the profile of the Chinese patient cohort with 
the Nigerian patient cohort. Diagnostic markers and liver enzyme levels that are encountered in clinical settings 
may vary by geographical locations, populations and the ethnicity of the  patients31.

The high prevalence settings of the Nigerian and Chinese study population may have contributed to the 
higher sensitivity and slightly reduced specificity values observed in these studies. This is consistent with avail-
able evidence in machine learning literature in healthcare  domain29, where the objective is often to maximise 
the number of true positives and minimise the number of false negatives. This is particularly important to 
ensure that no positive case goes undetected— as the consequences of predicting positive patients as negatives 
(i.e. higher value of false negative) could have significant life-threatening clinical complications. Hence, models 
with higher sensitivity value is highly desirable, as it is not always possible to optimise sensitivity and specificity 
simultaneously. In a scenario where the objective was to maximise the number of true negatives and lower false 
positives, then the trade-off between sensitivity and specificity can be tuned by changing the threshold (cut-off 
point) to optimise specificity.

Serum ALT and AST are important enzymes for the clinical management of HBV infection, where severe 
elevations in content may be suggestive of a potential liver  damage32. Of particular interest from our findings 
was that approximately 40% of HBsAg positive patients had an albumin level lower than the bottom threshold 
of the reference range, this suggests a sub-cohort of HBsAg positive patients with chronic liver damage. Serum 
albumin is produced specifically by the liver, and chronic hepatitis impairs the biosynthetic capacity for this liver 
function  marker33. The value of WBC as one of the leading diagnostic predictors of HBV infection is consistent 
with a previous  study34. In our study, the mean WBC was lower in HBsAg positive cohort, potentially suggest-
ing that low WBC is an important indicator of infection, as patients with HBV infection may have low  WBC35. 
Further, this study emphasised the importance of age as diagnostic predictor of HBV infection. The mean age of 
HBsAg positive cohorts was 35, this reflects the time of life when people are more likely to be involved in risky 
behaviours, such as having multiple sexual partners, and intravenous drug use, which could increase the risk of 
exposure to HBV, particularly in a hyper-endemic population.

Cross validation is a highly robust method for assessing model performance, and training the algorithm 
on 70% of the data, and testing on the remaining 30% is relatively robust to prevent  overfitting36. Subsampling 
methods can improve model performance in the case of imbalanced datasets, but in our dataset, the application 
of subsampling methods had no impact on the model performance. Further, having scrutinised model metrics 
and appraised performance based on cross-validated prediction results, the risk of overfitting was found to be 
low. In addition, the minority class (HBsAg negative) count contains enough relevant dependencies to inform 

https://www.hepblivetest.app/
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a classifier and accurately learn without significant disturbance from the imbalance. This usually takes ultimate 
precedence to the imbalanced proportions that may exist between minority and majority  classes37. Further, it is 
important for models to be trained on a dataset whose distributions reflect the future real-world test cases for 
which they will ultimately be applied, particularly models with clinical applications. The classifier trained on 
balanced data may not be generalisable to real-world data that is naturally imbalanced, and would need to be 
re-trained on realistic data, for which predictions and patterns may change  immensely38,39.

Figure 6.  Web application of the model (https:// www. hepbl ivete st. app/) and the result of two hypothetical 
patients (A and B).

https://www.hepblivetest.app/
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In our study, a tree-based algorithm, particularly random forest, enjoyed high classification accuracy and fast 
operation speed. Previous work has shown that random forest classifier outperforms hundreds of other classifi-
cation  algorithms40. Whilst a single decision tree is more interpretable than a random forest, the random forest 
algorithm has the ability to aggregate a large number of decision-trees using bootstrap resampling, and often 
yields lower variances and better model generalisation than single decision  tree41. The SVM, on the other hand, 
does not discard cases like the tree-based algorithms that rely on node purity to predict a response  classification28. 
Among the other advantages of SVMs, plotting the category patterns after applying the radial kernel produced 
visible evidential guidance on the nature of the classes being predicted. This was very useful when considering 
the AST–WBC interaction at different ages.

The results herein described were produced via blood test results only. Future investigations are necessary 
to combine routine pathology results with patient history and clinical notes to explore the prediction of HBV-
associated disease outcomes. It will also be important to externally validate the model, particularly in settings 
with low prevalence of HBV infection, to inform evidence for generalisability and cross-site transportability. 
We have packaged our predictive model as a free, publicly available online tool to support its application for 
independent testing and validations in other cohorts.

In conclusion, the SVM model presented herein highlighted the utility of the serum AST concentration–WBC 
interactions to reveal predictive rules and patterns at varying serum ALT concentrations or age. With an eye 
to the future benefits to clinicians, hospitals and health systems, the predictive patterns described herein, once 
further validated in the field, could be integrated into existing computer systems in pathology department, to 
form intelligent systems in silico for the enhanced clinical management of HBV patients. Rules based on routine 
pathology data will power the intelligent system to identify patterns in patient clinical data, use the patterns to 
indicate early on whether the patient has been infected with HBV, and link them to care before their condition 
becomes worse, thus preventing the development of serious disease through timely interventions. This will signif-
icantly improve the current sub-optimal diagnostic and treatment rates for HBV infection in Nigerian population, 
and will enhance the world health organization’s targets of eliminating HBV as a public health threat by 2030.

Data availability
The authors declare that the data supporting the findings of this study are available within the paper and the 
supplementary information files. Raw data are available from the corresponding author in redacted form upon 
reasonable request. Correspondence and requests should be addressed to B.I.A.
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