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Re‑analysis of publicly available 
methylomes using signal detection 
yields new information
Alenka Hafner 1,2 & Sally Mackenzie 1,3*

Cytosine methylation is an epigenetic mark that participates in regulation of gene expression and 
chromatin stability in plants. Advancements in whole genome sequencing technologies have enabled 
investigation of methylome dynamics under different conditions. However, the computational 
methods for analyzing bisulfite sequence data have not been unified. Contention remains in the 
correlation of differentially methylated positions with the investigated treatment and exclusion of 
noise, inherent to these stochastic datasets. The prevalent approaches apply Fisher’s exact test, 
logistic, or beta regression, followed by an arbitrary cut‑off for differences in methylation levels. 
A different strategy, the MethylIT pipeline, utilizes signal detection to determine cut‑off based 
on a fitted generalized gamma probability distribution of methylation divergence. Re‑analysis of 
publicly available BS‑seq data from two epigenetic studies in Arabidopsis and applying MethylIT 
revealed additional, previously unreported results. Methylome repatterning in response to phosphate 
starvation was confirmed to be tissue‑specific and included phosphate assimilation genes in addition 
to sulfate metabolism genes not implicated in the original study. During seed germination plants 
undergo major methylome reprogramming and use of MethylIT allowed us to identify stage‑specific 
gene networks. We surmise from these comparative studies that robust methylome experiments must 
account for data stochasticity to achieve meaningful functional analyses.

Cytosine methylation has been described as the fifth letter of the genetic  code1, bestowing an additional level 
of information to the genome through regulation of gene  expression2,3 and physical conformation of the DNA 
 molecule4. However, the language of the methylome 5 has remained much more elusive to interpretation than 
that of the underlying nucleotide sequence. If we follow the DNA code analog, we must achieve proficiency in 
methylome decoding in at least three ways: (i) reading at single site resolution, (ii) interpretation of downstream 
effects of single position methylation status, and (iii) understanding the meaning of different methylation pat-
terns in their local and global DNA context. While it is currently feasible to read cytosine methylation at single 
base resolution, owing to advances in whole genome sequencing through bisulfite  conversion6, and to interpret 
high-density methylome changes, such as in transposable elements (TEs) during major developmental events or 
in methylation machinery  mutants2,3,7, our proficiency in decoding of the methylome remains lacking.

Much of the early analysis of methylome variation focused on high-density methylation changes within 
defined intervals across the  genome8–10. This methodology was likely a consequence of experimental emphasis 
on datasets deriving from DNA methylation machinery mutants, which produced extremely robust methylation 
 signal2,11. These units of change were termed differentially methylated regions (DMRs) and varied across stud-
ies for window size, requisite differentially methylated position (DMP) number, and uniform directionality for 
hyper/hypo-methylation12–14. DMR analysis can identify genomic sites likely to undergo, or be released from, 
gene  silencing15 and, therefore, often produce datasets rich in TE and heterochromatic genomic intervals. With 
these analytical approaches, however, the function of low density, intragenic methylation repatterning during 
development and in response to environmental stimuli remains unapproachable. While there is an extensive 
understanding of the evolutionary and mechanistic origin of gene body methylation (GbM)16, debate on its 
functionality  remains17.

The plant methylome is often described as  stochastic18. Variation is thought to arise from thermodynamic 
fluctuations of cellular machinery and the DNA molecule  itself5,19–22. There is inherent stochasticity to methylome 
remodeling with each cell division, giving rise to ‘spontaneous epimutations’ in all methylation  contexts18,23,24. 
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Noise in BS-seq datasets is also amplified by tissue pooling as the plant epigenome appears to be developmental 
stage-, tissue- and cell-type  specific25–31. Therefore, a full picture of environmental or developmental epigenetic 
responses is only possible by separating treatment signal from noise in the system. This type of approach would 
make interpretation of methylome data feasible at the organ or organism level, even as single cell BS-seq becomes 
feasible in  plants32, as it is in  animals33.

Stochastic methylome variation is often dismissed as information-free noise, inherent to the study of bio-
logical  systems34. However, recent advances in computational biology demonstrate that interpreting existing 
methylome data at single  read35 or single  cytosine32,36 resolution yields new information. Single cytosine changes 
in methylome patterns have been shown to have important phenotypic  effects37,38 and we are beginning to rec-
ognize the importance of gene body methylation in  plants16,39. These observations point to a gap between the 
prevalent methodology and our current understanding of methylome biology.

Signal detection with machine learning is one approach to methylome data that bridges this gap. The MethylIT 
tool, based on physical statistics approaches, has been effective in identifying treatment-associated differential 
methylation in multiple study  systems5,36,40,41. To test the relative efficacy of a signal detection-based method 
versus conventional methods for methylome data analysis, datasets produced in studies with robust experimental 
design and depth of sequencing can be re-analyzed with MethylIT, potentially increasing their utility. Here, we 
apply MethylIT, a signal detection pipeline, to two open access datasets of high quality; a study of methylome 
remodeling in response to phosphate  starvation42 and an analysis of epigenetic changes during normal seed 
 germination29. This report aims to demonstrate that applying novel approaches to existing high-quality methy-
lome data can reveal meaningful additional information.

Results and discussion
Using signal detection approaches in methylome analysis avoids arbitrary filtering and 
accounts for stochasticity. Bisulfite deamination of DNA, by conversion of cytosine into uracil to be read 
as thymine, combined with whole-genome sequencing, has enabled the study of methylome variation in many 
organisms where an assembled reference genome is available. The cost of whole genome bisulfite sequencing 
(WGBS) continues to decline, enabling plant biologists to add epigenetic components to developmental and 
environmental response studies.

Upon completion of the bisulfite sequencing (BS-seq) runs, primary data must be converted to methylation 
counts for each cytosine in the genome. The first step, an overall quality check and the trimming of sequenc-
ing adaptors, is most commonly conducted with Trim Galore!, which performs both  functions43. The resulting 
short sequence reads are then aligned to the reference genome based on the three different bases that result from 
bisulfite conversion. A prevalent aligner for this step is  Bismark44, and the output file contains methylated and 
unmethylated counts for each cytosine in the genome as well as its context.

Selection of an analysis pipeline occurs at this stage, which can make a fundamental difference to final data 
output, both for differentially methylated positions (DMPs) and regions (DMRs). There are more than 20 bio-
informatic tools  available14 and they differ significantly in the statistical approaches  implemented25. Without 
advanced statistical mathematics training, it is often easiest to adopt the most user-friendly, but not necessarily 
most powerful, options. Figure 1a compares MethylIT (a signal-detection pipeline) to the generalized pipeline of 
multiple other approaches. Figure 1b shows the methylation counts with DMRs (hierarchical clustering approach, 
blue panel) and treatment-associated DMPs (MethylIT, green panel) for two genes in a seed germination  study29. 
This example demonstrates both the divergence of results when different methods are used and the bias of using 
a DMP-density-based approach (Fig. 1b, right).

The number of samples or biological replicates varies widely between methylome studies. The limiting fac-
tors include the cost per sample for WGBS and the amount of tissue needed (seedlings are often pooled into one 
sample). Whereas many common methylome analyses (Fig. 1a, blue panel) require only two samples (one control 
and one treatment), signal detection approaches require multiple (generally 3–5) biological replicates for each 
experimental condition to allow assessment of background noise (stemming from thermodynamic fluctuation) 
in the control group. It would not be valid to compare two samples with no replication using signal detection 
because treatment-associated DMPs would be indistinguishable from DMPs arising from stochastic variation. 
For this reason, control samples are pooled, and their centroid becomes the reference methylome, representing 
the background noise not associated with treatment.

The first step in identifying differentially methylated sites from all methylation counts is deciding which 
cytosines provide sufficient coverage to be included in further analysis. This step is largely arbitrary, and the 
importance of applying a noise-filtering solution here has been discussed  before13. However, utilizing a smooth-
ing kernel assumes that neighboring sites/regions exhibit correlated methylation levels, which holds only for CG 
and CHG but not CHH methylation  contexts13. Both pipelines described in Fig. 1 use an arbitrary cut-off filter 
for coverage, followed by the identification of differentially methylated positions.

Some pipelines, including MethylSig, DMRcaller, and  BSmooth13,46,47, implement tiling bins at this stage. This 
partitioning of the genome into arbitrary-sized regions pools reads to amplify small methylation level differences 
to significant levels. Most methods apply an appropriate statistical method after filtering for coverage, primarily 
Fisher’s exact test, beta-binomial or logistic regression when multiple replicates are  considered13,46–48. This step 
yields a list of potential DMPs that are differentially methylated at the level of significance desired. “True” DMPs 
are a subgroup of potential DMPs that satisfy arbitrary criteria for differences in methylation levels between 
samples being compared. This cut-off varies widely between tools and users, ranging from 10 to 40%12–14, and 
often depends on the cytosine methylation context frequency distribution to minimize some of the bias. After 
a final list of DMPs is obtained, an optional step is a correction, in the event of greater variability in data than is 
assumed by the distribution, by determining the treatment effect in the statistical model. What follows is defining 
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a DMR according to the number or density of DMPs present in a region. A region can be a genomic feature, a 
binned window size (e.g., 100 bp), or a sliding window. However, deciding on the number of DMPs sufficient 
for a DMR is a controversial step and another arbitrary filter.

MethylIT uses an information thermodynamics-derived approach to provide greater resolution of treatment-
associated signals without consideration of DMP density 5. The first step distinguishing this pipeline calculates 
the difference in methylation levels between all given samples, including the controls and the reference (centroid 
of controls) methylome. In MethylIT, differences are estimated in the form of Hellinger divergence and total 
variation distance. Next, the divergences are modeled for all samples based on a generalized gamma probability 
distribution model, the fitted probability distribution, yielding separate control and treatment group probability 
 distributions5. Others have also proposed using information theory approaches for analyzing  methylome32. In 
MethylIT, the potential treatment-associated signal is above the 95th percentile of the fitted probability dis-
tribution of the methylation, which becomes the initial cut-off for each individual sample. The following step 
uses machine learning to distinguish true DMPs by estimating the optimal cut-off sufficient for the classifica-
tion of DMPs into control and treatment (separately for all three methylation contexts, using several perfor-
mance metrics). Conversely, MethylIT assesses each potential DMP based on the fitted probability distribution 
of methylation in each biological replicate separately, accounting for methylation heterogeneity and inherent 
 stochasticity40,41. This type of filtering avoids the application of arbitrary cut-offs that can eliminate meaningful 
DMPs or include DMPs that are the result of stochastic fluctuation, both impacting outcomes.

Methylome analysis ends with feature annotation. The prevalent method yields a list of DMRs of arbitrary size 
that contain an arbitrary number of DMPs validated in the previous step. MethylIT also provides a list of DMRs; 
however, these are identified with the best generalized linear model selected from Poisson and Negative Binomial 
regression analyses, comparing control and treatment groups, and filtered with minimum methylation counts 

Figure 1.  Comparison of MethylIT as a signal detection tool with representative common approaches. (a) 
Simplified representative pipelines of methylome analysis from methylation counts to differentially methylated 
regions (DMRs) via differentially methylated positions (DMPs). The blue panel is the generalized pipeline of the 
most prevalent approaches in the field, utilizing Fisher’s exact test or logistic regression, the green panel is the 
MethylIT pipeline, and the grey panels and dashed arrows represent steps in common. Arbitrary filtering steps 
and optional steps are highlighted in black and italics, respectively. (b) Methylation changes during two stages 
of seed germination, as detected by MethylIT and the hierarchical clustering approach employed in the original 
study by Narsai et al. (2017). The hierarchical clustering approach differs from the pipelines in Fig. 1a as it does 
not produce a DMP intermediate. The genome browser tracks from top to bottom are: annotated genes, DMRs 
found by hierarchical  clustering29, 3 biological replicates of 48 h stratified seed and 3 biological replicates of seed 
after 6 h light exposure (raw methylation counts), 6 tracks of DMPs detected by MethylIT in each biological 
replicate. The blue rectangles highlight the common approach analysis results, and the green rectangles highlight 
the MethylIT results. Both the left and the right panels show a gene identified as a DMR with MethylIT, with the 
right panel gene not being deemed a DMR by hierarchical clustering. (Created in  JBrowse45).
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per cytosine and individual. The final step in both methodologies is to overlap or assess the proximity of DMR 
genomic addresses with genetic features of interest, including genes, TEs, and exons. Whereas prevalent methods 
look for overlaps of DMRs with annotated features, MethylIT statistically assesses all features of the selected 
category (i.e., genes, TEs, exons) as potential DMRs with no fixed set of DMRs to overlap with annotated features.

The resulting number of differentially methylated genes (DMGs) is generally higher using MethylIT than with 
the prevalent methodology (Table 1), which may raise concerns about insufficient filter stringency. However, the 
downstream functional analysis combined with MethylIT yields the same core gene networks with or without 
the most stringent filter cut-offs14. Figure 2e and 3d demonstrate the modest overlap between the original stud-
ies’ DMGs and those from MethylIT, which is the result of MethylIT (i) excluding DMRs caused by stochastic 
variation, (ii) adding DMRs with lower density DMPs that are nevertheless treatment-associated, (iii) only 
searching for DMGs and not other differentially methylated genomic regions for the sake of intelligibility (e.g., 
a gene can include differentially methylated exons but was not identified as a DMG). Additionally, we did not 
increase stringency simply to decrease the number of output DMGs as that can exclude biologically meaningful 
results (Fig. 1b).

By comparing pipelines and their data outputs (Fig. 1), we can conclude that the different methods address 
fundamentally different questions about the methylome. The prevalent, “percentage of methylation”-gated meth-
ods endeavor to describe global changes in methylome levels. These changes generally include the percentage of 
methylated cytosines in each context, densely hypo- or hypermethylated or heterochromatic regions, TE silenc-
ing, and the global impact of epigenetic machinery mutants. MethylIT, as a signal detection method, aims to 
read global changes in methylome patterns at single cytosine resolution. The method, therefore, treats hypo- and 
hyper-methylation at each site equally, while evaluating each DMP based on the fitted probability distribution of 
each individual. The approach allows tracking of subtle changes in methylome repatterning without consideration 
of changes in methylome levels and discriminates variation within the treatment condition from the stochastic 
background effects present in both treatment and control conditions. Where most common approaches neglect 
to count DMPs that appear outside of “CpG islands”49, which have been shown to have important downstream 
and phenotypic  effects37,38, the MethylIT procedure, by identifying only treatment-associated DMPs, incor-
porates all data regardless of methylation context or DMP density. Here, we focus our analysis on DMGs (not 
differentially methylated TEs or exons), particularly to demonstrate the importance of finding and interpreting 
intragenic methylation.

Signal detection combined with functional annotation analysis reveals additional informa‑
tion. Phosphate starvation. A 2015 study of epigenetic responses to phosphate starvation in Arabidopsis re-
vealed that methylome repatterning occurs in response to low phosphate (Pi), with altered expression of a small 
number of differentially methylated genes responsive to low phosphate  conditions42. We selected this study for 
re-analysis with the MethylIT signal detection pipeline based on several features of its experimental design. The 
depth of sequencing was sufficient, each condition had three individual biological replicates with no pooling, 
controls were rigorous and present in both short- and long-term starvation conditions (7 days and 16 days), and 
data were collected for roots and shoots separately.

We conducted several pairwise comparisons between different experimental treatments with MethylIT. In all 
computations, the reference methylome was pooled from three control samples (Fig. 1a), which were always the 
shorter or no starvation condition. For shoot and root datasets separately, we compared methylomes for 7 days 
of low phosphate with 7 days high phosphate, 16 days of low phosphate with 16 days high phosphate, and 7 days 
high phosphate with 16 days high phosphate. The latter analysis was done to identify differentially methylated 

Table 1.  Summary of DMG numbers identified in the original studies of phosphate  starvation42 and seed 
 germination29 (DMR) and their overlap with DMGs identified using the MethylIT pipeline (SD). * denotes 
which stages were compared when using MethylIT, with the first one listed acting as a reference and second as 
treatment. 7d and 16d refer to shorter and longer treatments, with + meaning control levels of phosphate and 
– the phosphate starvation. † means there was no comparable analysis available and ‡ denotes Cytoscape core 
hub (core k-means cluster with highest degree of connectivity, see Methods).

Phosphate starvation Seed germination

SD Overlap DMR SD Overlap DMR

Root, 7d, +  versus – Pi * 421 47 134 Dry  versus  stratified seed * 1057 539

891
Root, 16d, +  versus  – Pi * 609 139 251 Stratified seed  versus  6 h light * 698 467

Shoot, 7d, +  versus  – Pi * 518 54 171 6 h light  versus  24 h light * 786 492

Shoot, 16d, +  versus  – Pi * 695 188 330 24 h light  versus  48 h light * 520 223

Root, + Pi, 7d  versus  16d * 582 † † Hub—Dry  versus  stratified seed ‡ 62 13

56
Shoot, + Pi, 7d  versus  16d * 623 † † Hub—Stratified seed  versus  6 h light ‡ 30 15

Root, Pi starvation – development 242 139 251 Hub—6 h light  versus  24 h light ‡ 54 18

Shoot, Pi starvation – development 257 78 330 Hub—24 h light  versus  48 h light ‡ 29 8

Hub – Root ‡ 30 1 12

Hub – Shoot ‡ 48 5 22
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genes that result from normal development so that they could be later subtracted from the low phosphate treat-
ment datasets. This analysis, using standard settings (see Supplementary Table S1), yielded a higher number of 
DMGs than the original DMR-based analysis (see Table 1 and Supplementary Table S2). Yong-Villalobos et al. 
(2015) identified DMPs using an F-test and subsequently DMRs as regions where DMP density exceeded global 
DMP density. Yong-Villalobos et al. point out the arbitrary nature of defining a DMR and hence conduct further 
analysis using both DMRs and all DMPs. For valid comparison with MethylIT, we use their reported list of DMRs 
overlapped with TAIR10 genes (see Supplementary Table S2). As a standard part of our analysis, DMGs were 
functionally analyzed with DAVID  GO50 and  Cytoscape51. To compare both methylome analysis pipelines, the 
DMGs identified in the original study were functionally analyzed alongside the MethylIT output.

Both analyses found tissue-specific methylome responses to phosphate starvation that were more pronounced 
after longer starvation treatment (Table 1). Figure 2a, b show that the pronounced biological processes identified 
among DMGs were similar yet distinct between the two pipelines. Cellular response to phosphate starvation, 
identified in both analyses, was only present as an enriched category using signal detection and was more pro-
nounced when development-associated DMGs (differential methylation not associated with phosphate treat-
ment) were subtracted. A subset of genes was unique to both analyses (Fig. 2e), which is the result of MethylIT 
only including treatment-associated DMGs and excluding stochastic variation. More DMGs overlapped with 
differentially expressed genes (DEGs) in the signal detection DMGs than DMR-DMGs from the original study 
(Supplementary Table S3). The GO term categories that were uniquely enriched in the DMR-based analysis 
largely contained DMGs that were also detected using MethylIT but were not the top categories in the MethylIT 
DMG context (Supplementary Table S4). For example, whereas heme transport was a pronounced category in 
the original study, its relative importance was diminished in the shoot with MethylIT, despite signal detection 
also finding these same heme-related genes. Both analyses yielded sulfate metabolism genes, which were also 
differentially expressed, but this category was not prominent in the original study dataset. A connection between 
sulfate homeostasis and phosphate starvation has been previously  described52,53.

MethylIT-derived shoot DMG network produced in Cytoscape confirmed the phosphate, sulfate, carbon 
fixation and photosynthesis DMGs as vital to the response, together with other stress-responsive genes (Fig. 2a, 
c). Root DMGs indicated a distinctive growth response to phosphate starvation, with anisotropic cell growth, 
longitudinal axis specification, cellulose biosynthesis, and protein localization to cortical microtubules. This 
network analysis also pointed to altered gene expression and a potential plastid response (2b, d). Core hub genes 

Figure 2.  Phosphate starvation: methylome re-analysis using signal detection reveals additional gene networks 
of interest. BS-seq data obtained in the  study42 was re-analyzed using MethylIT and compared to the original 
results. The result from the original study (DMR), signal detection with MethylIT (SD), and signal detection 
with subtracted development-associated DMGs (SD-Dev) for the 16-day starvation treatment are shown. (a) 
and (b) Heatmaps of tissue-specific GO terms with > fourfold enrichment obtained with  DAVID50. Categories 
of interest are highlighted with a bracket and arrow. (c) and (d) Gene networks identified in  Cytoscape51 from 
tissue-specific DMGs identified by MethylIT, with DMGs also identified in the original study circled in blue. The 
size of the cluster corresponds to the degree of connectivity score, nodes with less than 2 edges were removed 
and the genes are grouped according to Biological process GO terms. (e) Venn diagram of DMGs identified 
by both methods, MethylIT in green and the original study in blue. DMGs identified in the original study are 
shown for both 7 days and 16 days of phosphate starvation treatment.
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produced in Cytoscape from DMR-based analysis were lesser in number and did not match categories enriched 
in GO term analysis to the same extent (Supplementary Fig. S1, S2).

This sample comparison demonstrates the power of using signal detection, in combination with several func-
tional analyses, to uncover treatment-associated and biologically meaningful differential methylation patterns. 
MethylIT confirmed the presence of biological processes identified in the original study and added additional 
resolution with meaningful connections to other processes. Crucially, the robust biological and developmental 
controls (sufficient replicates, tissue-specificity, and comparison of high phosphate treated plants after 7 and 
16 days) allowed the staggering number of DMGs to be converted into a Pi-starvation-associated subset of man-
ageable size. Network analysis allowed potential key players in this tissue-specific stress response to be revealed.

Seed germination. In 2017, three studies published in Genome Biology investigated methylome remodeling 
during embryogenesis and  germination27–29. Narsai et al. (2017) analyzed five developmental stages and reported 
progressive demethylation of the Arabidopsis genome during the seed-to-seedling transition. This transition 
coincided with changes in mRNA and siRNA populations. We selected this dataset for re-analysis with MethylIT 
based on its robust biological replication, depth of sequencing, and limited discussion of the functional identity 
of DMRs determined. BS-seq read files were provided for dry seed, seed after 48 h stratification, 6 h after light 
exposure, 24 h after light exposure, and 48 h after light exposure. The investigators conducted methylome analy-
sis using HOME (v0.1) with default parameters for time series analysis, and the added cut-off for the difference 
in methylation levels was 20%. In contrast to the original study’s hierarchical clustering, MethylIT analysis was 
conducted pairwise, with consecutive stages of development serving as the reference (control) methylome for 
the identification of DMGs in each following stage. As the original study did not include DMG analysis, we over-
lapped their reported 12,654 DMRs with TAIR10 genes to obtain 891 DMGs (Supplementary Table S5). As in 

Figure 3.  Re-analysis using signal detection reveals sequential methylome remodeling during seed 
germination. Bisulfite sequencing data obtained in the  study29 was re-analyzed using MethylIT and compared 
to the original results. (a) Heatmap of Biological process GO terms with > tenfold enrichment (obtained with 
 DAVID50), for MethylIT DMGs identified with pairwise analysis of individual stages during seed germination 
and genes overlapping with differentially methylated regions identified in the original study (DMR-DMGs). 
(b) and (c) Core gene networks identified in  Cytoscape51. Genes are grouped according to Biological process 
GO terms. (b) Core hub network from DMGs identified in the original study, with the DMGs also identified 
by MethylIT circled in green. (c) Core hub network of DMGs identified by MethylIT in the first developmental 
transition, from dry seed to stratified seed; DMGs that were also identified in the original study are circled in 
blue. (d) Venn diagram of DMGs identified by both methods, MethylIT in green (first developmental transition 
on the left, all stages pooled on the right) and the original study in blue.
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the phosphate starvation study, the seed germination data was likewise functionally analyzed with DAVID  GO50 
and  Cytoscape51 alongside the MethylIT output.

Using standard MethylIT settings (Supplementary Table S1), our re-analysis yielded a comparable number 
of DMGs to Narsai et al. (2017) in each individual stage (Supplementary Table S5), with the largest number of 
DMGs present in the first developmental transition and an overall larger number of unique DMGs (Table 1). 
More DMGs overlapped with differentially expressed genes (DEGs) and genes showing isoform variation during 
seed germination when the signal detection pipeline was used (Supplementary Table S6). The re-analysis identi-
fied the dry-seed-to-stratified-seed transition as the major stage of methylome repatterning in seed germination, 
both in the number of DMGs and the number of unique biological processes revealed by GO term analysis 
(Table 1, Fig. 3a, d, Supplementary Table S7). Accompanying the increase in a subset of DEGs and miRNAs at this 
 stage29, methylome changes were targeted to the regulation of gene expression and chromosome and chromatin 
remodeling (Fig. 3a). In the following three developmental transitions, we observed differential methylation in 
different GO-term categories, with germinating seed response to light exposure as prominent. Regulation of 
gene expression and chromatin organization declined in prominence as methylation targets, and methylation 
itself became an enriched pathway (Fig. 3a).

The identity of the key network hubs identified by Cytoscape also changed with each developmental stage 
(Fig. 3b, Supplementary Fig. S3-5). Only 22.6% of DMGs present in the first stage hub were also reported in the 
original study (Fig. 3c, circled in blue) with similar outcomes in other stages (Supplementary Fig. S3-5). In con-
trast, 80.4% of core hub DMR-DMGs in the original study were also identified with MethylIT (Fig. 3b, circled in 
green) Many of the key players (core hub genes) are also members of the DNA damage repair pathway, which is 
linked with chromatin remodeling in the  seed54. In the DMR-DMGs, regulation of gene expression and cellular 
metabolic processes were present as categories of enriched Biological Process GO terms, however, the resolu-
tion of the signal-detection analysis was not present, demonstrated by the smaller number of unique GO terms.

When expression data is overlapped with DMR data (Supplementary Table S6), the enriched GO terms in 
each developmental transition are more informative than each dataset individually (Supplementary Table S7). 
For example, the GO category “photosynthesis” is enriched threefold in DMGs identified by MethylIT after the 
seed is first exposed to light (stratified seed vs. 6 h in light transition), not enriched in DMR-DMGs or RNA-seq 
data individually but is fivefold enriched in the overlap of MethylIT DMGs and RNA-seq genes in the stratified 
seed versus 6 h in light transition, and threefold enriched after the next stage of 24 h in light.

This re-analysis again highlights how signal detection can add novel insights to existing datasets and increase 
their utility. Epigenetic reprogramming in the early stages of seed germination appears to be targeted to gene 
regulation and chromatin organization genes, which was not evident in the original analysis. As the seed is 
exposed to light, numerous genes related to a variety of metabolic processes related to photosynthesis become 
differentially methylated, including those responsible for cytosine methylation itself.

Considerations for meaningful methylome analysis. Statistically meaningful methylome analyses 
require data coming from well-designed experiments; a poor dataset cannot be salvaged by stronger signal 
detection and/or machine learning algorithms. Figure 4 summarizes several considerations for an experimental 
scheme that will yield methylome datasets that can be used in signal detection pipelines and are likely to be 
amenable to reuse. Considering the often-prohibitive cost of processing robust numbers of biological replicates 
for BS-seq, we advise at least three biological replicates in the control group be prioritized over more time points 

Figure 4.  Suggestions and considerations on designing a methylome experiment that yields statistically 
meaningful results and data amenable to reuse.
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or treatment conditions. This replication of controls is vital for allowing the calculation of background variation 
caused by methylome stochasticity in absence of the investigated treatment. With MethylIT as a signal detec-
tion pipeline, it is not appropriate to estimate a reference methylome without three control samples. Although 
the same number of replicates for the treatment group is advisable in order to confer confidence to treatment-
associated DMPs, MethylIT can run the analysis with just one treatment group replicate.

Methylome analyses can yield hundreds or even thousands of differentially methylated genes and finding 
biological meaning in them can require multifaceted analysis. Searching the datasets for genes associated with 
the experimental condition investigated, i.e. an ad hoc approach, may uncover a novel epigenetic component 
of the system but does not, in itself, reveal new connections. However, when GO-term enrichment analysis is 
accompanied by gene network modeling, a genome-wide picture of the methylome response is constructed. 
The integration of k-means clustering of protein–protein interaction networks combined with gene ontology 
enrichment analysis has been shown to be a powerful approach to interpreting epigenetic  data36,55. Figures 2a 
and 3a show GO-term enrichment obtained with the DAVID Functional Annotation  tool50. Figures 2b, 3b, and 
3c show the Cytoscape output for core gene network hubs that were obtained through unsupervised machine 
learning k-means clustering from DMGs identified with MethylIT and STRING protein–protein interactions 
data with Cytoscape. Even though categories of terms overlapped with those from GO-term enrichment analyses, 
the core gene hubs were not the most GO term-enriched categories, pointing to the importance of multifaceted 
analysis. These examples from phosphate starvation and seed development datasets demonstrate the need for 
multi-omics functional analysis that takes advantage of existing knowledge about biological connections for the 
true decoding of the methylome.

Conclusions
We believe that signal detection, here applied in the form of the MethylIT, provides three key advantages over 
many prevalent methylome analysis approaches:

1. The ability to resolve data to interpretable networks
2. The ability to derive data with unambiguous outcomes (significance of enrichment or p-value discrimination) 

that provide confidence in conclusions with a minimum of “cherry picking”
3. The ability to derive meaningful new information that was simply not available using conventional methods 

to now conclude new pathway connections for phosphate starvation behavior and clearer stage discrimina-
tion for epigenetic and developmental transitions during seed development

The above-presented examples also reveal that it is the combination of gene expression and methylome data 
that is more informative than either dataset separately. Once signal detection-derived DMGs are overlapped 
with RNA-seq data, a smaller number of key biological processes and gene networks emerge. Crucially, they are 
at the intersection of the studied phenomenon (phosphate starvation and seed germination) and epigenetics, 
with C-5 methylation of cytosine always being one of the top scoring GO term enriched categories. MethylIT 
added numerous functionally important genes to the DMG list in both datasets, while removing stochastic 
variation-associated ones.

Because MethylIT does not rely on DMP density for the detection of DMRs, the bias of assuming only 
methylation-dense regions as biologically impactful (present in most methods) is eliminated. Instead, signal 
detection allows the identification of only treatment-associated DMPs, regardless of the proximity or direction 
of neighboring DMPs. This allows meaningful analysis of intragenic methylation repatterning, which remains 
the frontier of methylome analysis as it eludes density-dependent approaches. Our re-analysis also demonstrates 
the power of data reuse with computational approaches that were not available when data were generated, 
highlighting the importance of FAIR principles in increasing the utility of expensive datasets, like methylomes.

Methods
DMGs from original paper’s pipeline. To avoid any changes due to discrepancies in the reference 
genome annotation versions, we overlapped the DMRs reported in the original studies with version 38 of the 
TAIR10 genome annotation to obtain DMGs.

DMGs from MethylIT (signal detection) pipeline. Raw sequencing reads were obtained from the GEO 
repository for both datasets. They were rimmed with TrimGalore and aligned the TAIR10 reference genome. 
DMPs were identified using MethylIT (version 0.3.2.4). Standard settings were used as described on the GitHub 
page (https:// genom aths. github. io/ methy lit/ artic les/ Methy lIT. html), excluding modifications described in Sup-
plemental Table S1. To identify the DMGs, we selected loci with at least three DMPs and minimum DMP density 
of 3 per 10 kbp, followed by group comparison using likelihood ratio test to select loci with log2fold change > 1 
and adjusted p-value < 0.05. Gene annotation was done using version 38 of TAIR10.

Functional DMG analysis. DAVID Functional Annotation tool (6.8)50 was used for GO term enrichment 
analysis of DMGs. GO terms with > fourfold (phosphate starvation) and > tenfold (seed germination) enrich-
ment were plotted on heatmaps, using the ggplot2 package.

DMGs were also functionally analyzed using Cytoscape (3.9.1)51. The STRING database was used to construct 
the protein–protein interaction network from imported DMGs. The core hub was identified using the cluster-
Maker plug-in with the k-means cluster function. 3 clusters were calculated with 500 iterations, using Euclidean 
distance, betweenness centrality, closeness centrality, average shortest path length, clustering coefficient, degree, 

https://genomaths.github.io/methylit/articles/MethylIT.html
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and eccentricity. The core hubs depicted in the figures were identified as the cluster with the highest centrality. 
The size of the node corresponds to the degree of connectivity score and the edge transparency corresponds to 
the STRING database score.

Data availability
The data that support the findings of this study are available in the supplementary material of this article. These 
data were derived from the following resources available in the public domain on the GEO repository: phosphate 
starvation data under accession GSE72770 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= GSE72 770) 
and seed germination data under accession GSE94459 (https:// www. ncbi. nlm. nih. gov/ geo/ query/ acc. cgi? acc= 
GSE94 459).
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