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Investigation on CMB monopole 
and dipole using blackbody 
radiation inversion
Somita Dhal  & R. K. Paul *

The COBE/FIRAS dataset is used to calculate the Cosmic Microwave Background temperature and 
the uncertainty using the Blackbody Radiation Inversion (BRI) method. In this research work, the 
procedure is somewhat comparable to the mixing of weighted blackbodies in the case of the dipole. 
The temperature and its spreading for the monopole and dipole, respectively, are 2.741 ± 0.018 K and 
2.748 ± 0.270 K. This dipole spreading exceeds the spreading predicted by taking relative motion into 
account (i.e., 3.3 ×  10−3 K). The comparison of the probability distributions for the monopole spectrum, 
dipole spectrum, and their resultant is also displayed. It is shown that the distribution is symmetrically 
orientated. We estimated the µ and y-distortions by interpreting the spreading as the distortion and 
found that they are of the order of  10−4 and  10−5, respectively, for the monopole spectrum and  10−2 for 
the dipole spectrum. The paper also highlights the effectiveness of the BRI method and hints at future 
applications in the thermal nature of the early universe.

The existence of a universal, thermal radiation field had been predicted clearly by 1948 and was laid forgotten 
until  19651. A signal which was initially detected in 1965 was reportedly being emanated from every direction 
of the sky and came to be known as  CMB2. Two major contributions made by COBE/FIRAS are:—the detection 
of the CMB thermal spectrum and its  anisotropies3. The COBE/FIRAS detected the first thermal spectrum and 
observed that the obtained experimental results are similar to the spectrum of a blackbody at T = 2.728 K. After 
the detection, much research has been conducted on cosmic microwave background  radiation4–10. The radiation 
is first predicted to be isotropic and homogeneous but later studies proved it to be  anisotropic11–14. The study of 
CMB has put forth some noteworthy propositions on the genesis of the extensive and expansive formations in 
the  universe15. According to the most recent research and observations on the CMB, the radiation observed was 
caused by the mixing of black bodies with different temperatures rather than a single blackbody with a particular 
temperature. This causes the µ and y—distortion in the CMB  spectrum16,17. Several theories have been put for-
ward for the calculation of µ and y—distortion18–21. The most important parameters for determining the genesis 
of the cosmos are temperature and CMB distortions. We can analyse the probability distribution of temperature 
for the CMB since the CMB spectrum resembles a Planck spectrum. One such technique is blackbody radiation 
inversion which has been proposed to solve the probability distribution of  temperature22–25. A short history of 
dipole measurement up to the time of the COBE satellite is reported in the  paper26. After that much research 
has been done on CMB  dipole27–30. Recently a new blackbody inversion method is being employed to study 
the monopole portion of the CMB and the temperature derived is 2.69 K with an uncertainty of 0.195  K31. The 
measured spectral distortions in that method for monopole are  10−2 for µ-type and  10−3 for y type. The values 
are very imprecise than values |µ|< 9 ×  10−5 and |µ|< 1.5 ×  10−5 as per prior  report6. In the present article, we used 
the technique of Blackbody Radiation Inversion (BRI) with a choice of new distribution function to calculate the 
temperature, spreading, µ and y—distortions from both monopole and dipole spectrum. The main advantage 
of the present BRI technique over existing methods is its simplicity. It requires only 3 data points to produce a 
probability distribution of temperature. This distribution shows how blackbodies of different temperatures are 
present in the spectrum, and their contribution is measured using the weight factor. This introduces a process 
of mixing blackbodies, and we observe them as y and  µ-distortions.

The obtained temperature for monopole and dipole with uncertainty is 2.741 ± 0.018 K & 2.748 ± 0.270 K, 
respectively. In this process, we found some weighting factors multiplied by the monopole formula to get the 
dipole. It is shown that the process is somewhat comparable to the mixing of weighted blackbodies. Both mono-
pole and dipole spectrum intensities are reconstructed to validate the accuracy of this choice of the probability 
function. The |y| and |µ| distortions are calculated and the obtained values are of order  10−5 and  10−4 respectively 

OPEN

Department of Physics, Birla Institute of Technology, Mesra, Ranchi, Jharkhand 835215, India. *email: ratan_bit1@
rediffmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-30414-4&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3316  | https://doi.org/10.1038/s41598-023-30414-4

www.nature.com/scientificreports/

for the monopole spectrum. The |y| and |µ| distortions values for the dipole spectrum are in the order  10−2. 
Furthermore, this method can be used in infrared remote sensing calibration as the precise measurement tem-
perature is  crucia132,33.

The article is categorized into four parts. Sections "Method" 2(a) and 2(b) describe the methodology for 
obtaining the cosmic microwave background temperature and uncertainties for both monopole and dipole 
spectrum respectively. Also, it describes the method of obtaining the reconstructed intensities along with y 
and µ distortions for both spectrums. In Section "Discussion" we discuss the implication of the result. Section 
"Summary" summarizes the result.

Method
(a) For CMB monopole. A blackbody is defined as an object perfectly capable of absorbing all incident 
radiation on it of any frequency. Planck’s radiation law relates the intensity of radiation produced at a given 
temperature to either frequency or  wavelength34,35.

where h, T, k, c, ν are Planck’s constant, absolute temperature, Boltzmann’s constant, speed of light (in vacuum) 
and frequency respectively. The total radiated power for the monopole spectrum can be seen as the integration 
over the spectral radiance w.r.t. temperature as in Eq. (2).

The semi-infinite integral considers all possible values of temperature. But here we have assumed that the 
temperature of the blackbody varies in an interval of  T1 to  T2 as the spectrum of CMB has a resemblance with a 
blackbody spectrum of temperature 2.728 K.

The section of sky observed by the telescope comprises different blackbody radiators in thermal equilibrium 
with each other at a temperature T. In Eq. (2), α(T) is introduced as the probability distribution of temperature 
and its dimension is 1K . The experimental values for  Wm(ν) are  available6. Furthermore, using these data, the 
value of α(T) can be calculated. Based on previous experimental  data6; the spectrum of CMB has a resem-
blance with a blackbody spectrum of temperature 2.728 K. The width of a gaussian distribution at half of its 
maximum value is 2.35σ. For a reasonable choice of σ = 0.8 and T = 2.73 K;  T2 = 2.73 + 12 × 0.8 × 2.35 = 3.67 K and 
 T1 = 2.73 − 12 × 0.8 × 2.35 = 1.79 K. So, it is reasonable to take the range between  T1 = 1 K to  T2 = 6 K for consider-
ing beyond 1σ.

For mathematical appropriacy and simplicity, Gm(ν) =
c2

2hν3
Wm(ν) is to be employed.  Gm(ν) is dimension-

less. Hence,

To solve this integration in Eq. (5), employing the change of variable T =  T1 +  (T2–T1) t, Eq. (5)  becomes25

Recently a blackbody radiation inversion technique is  proposed31 to solve this type of integral using an analyti-
cal function a(t) = sinh

(

p2t
)

.m.e−nt2 . The measured spectral distortions in that method are  10−2 for µ-type and 
 10−3 for y-type. The values are very imprecise than values |µ|< 9 ×  10−5 and |µ|< 1.5 ×  10−5 as per prior  report6. So, 
to meet the expectation with accuracy a new analytical gaussian function is proposed in this present article as z(t).

The nature of the probability distribution is expected to be close to Gaussian. So, a gaussian distribution is 
chosen in Eq. (7). So,
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This well-motivated choice of taking z(t) as a gaussian probability density with its peak position (n), FWHM 
(p) and overall amplitude (m); is to calculate the temperature and distortions with accuracy which is described 
in the discussion section. Here the process of finding α((T2 − T1)t+ T1) is equivalent to finding z(t). Here in 
Eq. (7) m, n and p are three determinable parameters. The experimental value of  Gm(ν) is given by,

The experimental values of Im are  given6. The change of variable T =  T1 +  (T2–T1) t is used to solve the integral 
in Eq. (5) and  T1 = 1 K &  T2 = 6 K is chosen. So, t = T−T1

T2−T1
= T−1

5  . We are intending to find the distribution α(T) ; 
So, the probability function is written in terms of T. Equation (7) becomes,

Now taking the Eq. (8) in L.H.S. and the calculated  Gm(ν) from Eq. (9) in the R.H.S, a set of three equations 
are obtained for a corresponding set of three frequencies, which are then mathematically simulated and cor-
responding values of m, n, p is obtained. Furthermore, this process is similarly repeated for a triple set of three 
more frequencies and the values are tabulated below.

For each set of frequencies, the corresponding m, n and p values are calculated and are put in Eq. (10) to 
obtain four probability distributions of temperature. For each frequency set the values of m, n, p and correspond-
ing probability functions are listed in Table 1.

The average of the above probability distributions is denoted as X(T).

The figure below shows the four different probability functions along with the average function. Although the 
integration range is from 1 to 6 K, for a clear view of the graph in Fig. 1 the x-scale is taken from 2.5 K to 3 K.

The average probability distribution is to be normalized in the temperature range of 1 K to 6 K. The normali-
zation constant is -

The final normalized probability distribution of temperature is denoted as αm(T).

We calculate the ‘first order moment’ or the ‘mean normalized temperature’ for monopole and denoted as 
Tmonopole
mean .

The ‘second order moment’ or ‘spreading’ is calculated as

From this, the uncertainty in temperature σ =  ± 0.018 K.
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(11)X(T) =
f(T)+ v(T)+ g(T)+ n(T)

4

(12)
1

∫ 6
1 X(T)dT

= 1.016

(13)αm(T) = 1.016× X(T)

(14)Tmonopole
mean = 1.016

6
∫

1

T. X(T)dT ∼= 2.740 K

(15)σ 2 = 1.016

6
∫

1

(T− 2.74)2 X(T) dT = 3.493× 10−4

Table 1.  Values for various probability functions are given, and they are identified by the notations as f(T), 
v(T), g(T) and n(T), which correspond to various sets of frequencies.

Frequency set (×  1011 Hz) m n p Probability functions

3.402, 3.54, 3.675 21.432593364347 0.346933782481 0.005186207337232 f(T)

2.586, 2.724, 2.859 22.407436083304 0.347869646661 0.004983003283835 v(T)

1.089, 1.224, 1.362 30.933771151701 0.348954457249 0.003589324373322 g(T)

1.497, 1.635, 1.77 15.32444593428 0.34887929187 0.007206065989433 n(T)
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In order to test the precision of this method for determining the probability distribution of temperature for 
monopole spectrum; for various frequency ν, using the calculated αm(T) in Eq. (4), we were able to reconstruct 
the radiation intensity. Figure 2 shows the comparison of COBE/FIRAS original spectrum data with recon-
structed data.

The values of frequency, original and reconstructed intensities are listed in Table 2.
The chi-square is calculated using the following  formula36.

where, χ2 = Chi squared.
Ri = Reconstructed set of data points.
Oi = Original data points.
wi = 1/σ2i  where σi denote the error on the data point.
The values of σi are available in the  paper6. The reduced chi-square 

(

χ
2

NDF

)

 is calculated to be 1.55. Now, to 

calculate the resulting temperature after mixing; this formula Tmonopole
new = T

[

1+
(

�T
T

)2
]

 is  used18. 

(16)χ
2 =

∑

wi[(Ri −Oi)]
2
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Figure 1.  Four different probability functions f(T), v(T), g(T) and n(T) along with their resultant X(T) are 
plotted against absolute temperature.

0 10 20 30 40 50 60 70

0

1

2

3

4

In
te

ns
ity

 (×
 1

0-1
8  W

 H
z-1

 m
-2

)

Frequency (× 1010 Hz)

 Original
 Reconstructed

Figure 2.  The original input intensity data for the monopole spectrum is reconstructed using the obtained 
probability distribution of temperature αm(T). Plots of experimental and reconstructed intensities versus 
frequency are shown. The figure shows a close resemblance between the reconstructed data and the original 
data.
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Tmonopole
new = 2.741 K taking our result of Tmean = 2.740K and ΔT = 18 mK. The formula used in the  literature18 

for calculating the y and µ distortions is used for calculating µ and y distortions. The µ and y distortions are 
computed here as µ = 2.8×

(

�T
T

)2
= 1.208× 10−4 and y = 1

2

(

�T
T

)2
= 2.157× 10−5 The order of distortion 

in this article is consistent with the prior values of distortions reported as |µ|< 9 ×  10−5 and |y|< 1.5 ×  10−5.

(b) CMB dipole. This method is also used to calculate the temperature and spreading for the dipole spec-
trum and to compare how the spreading is changing for the dipole with respect to the monopole. The total radi-
ated power for the dipole spectrum can be seen as the derivative of spectral radiance w.r.t. temperature which is 
multiplied by the dipole amplitude as in the Eq. (17).

where,  Tamp = 3.369 ×  10−3K.
So, by differentiating B with respect to T and multiplying  Tamp and introducing α(T) as the probability distri-

bution of temperature and taking the integral from 1 to 6 K we get,

Breaking down Eq. (18) we get,

From Eq. (1) and (19)

We can say Eq. (20) gives the mixing of weighted Planckian or Blackbodies.

Here R(ν) =
e
hν
kT hν

kT2
(

e
hν
kT −1

)  Tamp is the weight factor. It is a dimensionless parameter.

Here we utilised the process of blackbody radiation inversion for finding the probability distribution of tem-
perature for superposition or mixing of weighted blackbodies. The CMB’s blackbody radiation field is inverted 
using the inversion process in order to determine the distribution of temperature of the inducing medium. The 
procedure is similar to that used in monopole.

So, for dipole taking the chosen probability distribution z(t); Eq. (19) can be written as,

and, 
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Table 2.  All the values of original and reconstructed intensities for the monopole are listed.

Frequency (×  1010 Hz) Original intensity (×  10−18 W  Hz−1  m−2) Reconstructed intensity (×  10−18 W  Hz−1  m−2)

6.81 2.00723 1.993

9.54 2.93024 2.914

12.24 3.54081 3.527

17.7 3.78901 3.788

21.78 3.36278 3.373

27.24 2.48239 2.500

36.75 1.13568 1.152

44.91 0.49223 0.503

51.72 0.22644 0.2329

63.99 0.04523 0.0514
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The experimental values of  Id are  given6. Now taking the Eq. (21) in L.H.S. and the calculated  Gm(ν) from 
Eq. (22) in the R.H.S, a set of three equations are obtained for a corresponding set of three frequencies, which 
are then mathematically simulated and corresponding values of m, n, p is obtained. Furthermore, this process is 
similarly repeated for a triple set of three more frequencies and the values are given in Table 3.

For each set of frequencies, the corresponding m, n and p values are calculated and are put in Eq. (10) to 
obtain four probability distributions of temperature.

The average of the above probability distributions is denoted as A(t).

The four probability distributions i.e., x(T), d(T), l(T), q(T) for each frequency set along with their average 
probability A(T) is shown in Fig. 3.

The average probability distribution is to be normalized in the temperature range of 1 k to 6 k. The normali-
zation constant is -

The final normalized probability distribution of temperature is denoted as αd (T).

We calculate the ‘first order moment’ or the ‘mean normalized temperature’ for the dipole and denoted it as 
Tdipole
mean .

(22)Gd(ν) =
2hν3

c2
× Id

(23)A(T) =
x(T)+ d(T)+ l(T)+ q(T)

4

(24)
1

∫ 6
1 A(T)dT

= 0.996

(25)αd(T) = 0.996× A(T)

(26)Tdipole
mean = 0.996

6
∫

1

T. A(T)dT ∼= 2.722 K

Table 3.  Values for various probability functions are given, and they are identified by the notations as x(T), 
d(T), l(T) and q(T), which correspond to various sets of frequencies.

Frequency set (×  1011 Hz) m n p Probability functions

3.402, 3.54, 3.675 1.879960727754 0.351772488661 0.056329541255 x(T)

2.586, 2.724, 2.859 1.43111413211 0.349811525032 0.077487885366 d(T)

1.089, 2.586, 3.402 1.493990697668 0.329975168162 0.081457672699 l(T)

1.497, 1.635, 1.77 1.406770742674 0.347708368285 0.081597126116 q(T)
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Figure 3.  Four different probability functions x(T), d(T), q(T) and l(T) along with their resultant A(T) are 
plotted against absolute temperature. The scales are taken considering the clear view of the graph.
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The ‘second order moment’ or ‘spreading’ is calculated as,

From this, the uncertainty in temperature for dipole σ =  ± 0. 270 K.
Here also to test the precision of this method for determining the probability distribution of temperature for 

the dipole spectrum we reconstructed the dipole spectrum with our calculated αd(T) from Eq. (25) and plotted 
against frequency along with the original intensity. Also, the values of original and reconstructed intensities for 
the dipole spectrum are listed in Table 4.

Using Eq. (16) the reduced chi-square ( χ
2

NDF ) is calculated to be 1.41.
The resulting temperature after mixing for dipole; Tdipole

new  = T [1 + 
(

�T
T

)2
] = 2.748 K. There are several black-

bodies at various temperatures. The blackbodies are mixed together, which distorts the original spectrum. Using 
the same formula as in monopole; the order of µ and y distortions are calculated as 2.7 ×  10−2 and 1.3 ×  10−2 
respectively.

A graphical comparison is done between αm(T) and αd(T) and their resultant value L(t) = 1
2αm(T)+

1
2αd(T).

Discussion
The process of increasing the energy of radiation due to the encounter of electrons of hot galaxy clusters with 
CMB photons is called the inverse Compton effect. The Comptonization Parameter y explains how inverse Comp-
ton scattering affects the CMB. Due to the doppler shift of the CMB, the signals appear as a frequency-dependent 
distortion of the temperature  dipole37. But here we have not considered the distortion due to the relative motion 
between the galaxy and CMB. We calculated the dipole temperature and distortion due to the mixing of black-
bodies. This means the mixing of blackbodies has some contribution to dipole along with the doppler shift.

The value of deviation �T = V
C T = 3.3× 10−3 K where T = 2.728 K and v = 370 km/s. The dipole is reveal-

ing the solar system appears to have a velocity of approximately 370 km/s relative to the local group of galaxies 
that implies that the local group of galaxies has a velocity of about 630 km/s relative to the rest frame of the 
 universe38 This small deviation in temperature (3.3 ×  10−3 K) is due to the doppler shift due to the velocity of the 
observer w.r.t the universe. But here we get the deviation as ± 0.270 K. Beyond T ± 0.018 K there is a contribu-
tion from the dipole.

Figures 2 and 4 validate the method as the reconstructed intensities closely match the original intensity. It is 
evident that this method and choice of probability distribution function can faithfully reconstruct the original 
data. Figure 5 shows the comparison graph taken in our chosen range and the distribution is symmetric for 
monopole and dipole.

Here we have used the data set of COBE/FIRAS which has limited sensitivity and can measure the distortions 
up to  10−5 orders. Two upcoming projects  PIXIE39 and  PRISM40 aim to obtain the distortions more accurately 
with  103–104 times better sensitivity than COBE/FIRAS. The better sensitivity will be able to measure the small-
scale fluctuation more significantly which will be able to give a clearer view of the origin of our expanding 
universe.

Summary
In this paper, from both monopole and dipole spectrum, the probability distribution of temperature is obtained 
by employing blackbody inversion method. The temperature and its uncertainty are calculated by using the prob-
ability distribution of temperature. We also sought to reconstruct the monopole and dipole intensity by using 
the probability distribution of temperature. The concept of mixing weighted blackbodies is well interpreted. The 
spectral distortions like y and µ are calculated and found to be in the order of  10−5 and  10−4 respectively for the 
monopole spectrum and  10−2 for the dipole spectrum respectively. The method of BRI can also be extended for 
studies related to chemical potential and the fundamental properties of photons and radiation.

(27)σ 2 = 0.996

6
∫

1

(T− 2.722)2 A(T) dT = 0.073

Table 4.  All the values of original and reconstructed intensities for dipole are listed.

Frequency (×  1010 Hz) Original intensity (×  10−21 W  Hz−1  m−2) Reconstructed intensity (×  10−21 W Hz − 1 m − 2)

6.81 4.58 4.27

9.54 7.70 7.50

12.24 11.06 10.69

17.70 15.34 15.28

21.78 16.45 16.28

27.24 14.90 14.8

36.75 9.10 9.04

44.91 4.92 4.77

51.72 2.75 2.52

63.99 0.45 0.68
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Data availability
The data sets used and/or analysed during the current study are available from the corresponding author upon 
reasonable request.
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