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The research of a novel WOG‑YOLO 
algorithm for autonomous driving 
object detection
Lingzhi Xu , Wei Yan * & Jiashu Ji 

Object detection has been one of the critical technologies in autonomous driving. To improve the 
detection precision, a novel optimization algorithm is presented to enhance the performance of 
the YOLOv5 model. First, by improving the hunting behavior of the grey wolf algorithm(GWO) 
and incorporating it into the whale optimization algorithm(WOA), a modified whale optimization 
algorithm(MWOA) is proposed. The MWOA leverages the population’s concentration ratio to calculate 
ph for selecting the hunting branch of GWO or WOA. Tested by six benchmark functions, MWOA 
is proven to possess better global search ability and stability. Second, the C3 module in YOLOv5 
is substituted by G-C3, and an extra detection head is added, thus a highly optimizable detection 
G-YOLO network is constructed. Based on the self-built dataset, 12 initial hyperparameters in the 
G-YOLO model are optimized by MWOA using a score fitness function of compound indicators, thus 
the final hyperparameters are optimized and the whale optimization G-YOLO (WOG-YOLO) model 
is obtained. In comparison with the YOLOv5s model, the overall mAP increases by 1.7% , the mAP of 
pedestrians increases by 2.6% and the mAP of cyclists increases by 2.3%.

Autonomous driving integrates environmental perception, dynamic planning, and control execution in automo-
biles, it has received considerable scholarly attention in recent years1. Object detection serves as the principal per-
ception method for autonomous vehicles, and the crux of this task is to enhance the accuracy of object detection.

Object detection algorithms can be divided into two major classes: two-stage detectors e.g. Faster R-CNN2, 
TS4Net3, AccLoc4, and Part-A2 net5, and one-stage detectors e.g. YOLO6, CG-SSD7, and PAOD8. Two-stage 
algorithms generate region proposals, then classify and localize objects according to them. Contrary to two-
stage algorithms, one-stage ones perform classification and localization using pre-defined candidate proposals. 
In general, two-stage detectors achieve greater accuracy but are more time-consuming than one-stage detectors.

To obtain a more robust and accurate detection model, the following literature provides different improve-
ment methods. Shi et al.9 introduced GIoU into K-means++ to obtain better anchors. Manuel et al.10 used an 
evolutionary algorithm to search for optimal region-based anchors. Wang et al.11 proposed a feature extraction 
network to ensure that small objects are correctly detected. Wang et al.12 adopted the dynamic attention module 
to improve detection performance. As a model with arbitrary hyperparameters leads to unsatisfactory perfor-
mance, optimization algorithms e.g. Bayesian optimization13, and fitness sorted rider optimization algorithm14 
have been used to find the optimal hyperparameter group.

How to quickly and accurately obtain the optimal high-dimensional parameter combination optimization is 
a major problem, the metaheuristic optimization algorithms such as ant colony optimization(ACO)15, particle 
swarm optimization(PSO)16, whale optimization algorithm(WOA)17, grey wolf optimization(GWO)18, and firefly 
algorithm(FA)19 aim to solve this. WOA is known for its simplicity and outstanding global solving ability among 
a variety of optimization algorithms, it has been applied in solving the optimal hyperparameter group20–22, data 
clustering23–26, multi-objective problems27,28, etc. However, the performance of canonical WOA is limited by 
low convergence and unsatisfactory accuracy. Therefore, WOA must be improved by weighing up exploration 
and exploitation29,30, integrating other algorithms31–33, and using better update strategies34,35. For example, in 
SHADE-WOA, Chakraborty et al.36 added an extra parameter α which is used to control the exploration and 
exploitation phases. In WhaleFOA37, the original FOA’s random search strategy is replaced by WOA’s hunting 
strategy to enrich FOA’s global exploration capability. Chen et al.38 developed a double adaptive weight strategy, 
the results show that the WOA using this method has better global optimization capability.

Referring to the above literature, a novel modified whale optimization algorithm(MWOA) is proposed by 
fusing the structure of WOA and the hunting strategy of GWO with multi-faceted improvements. The core 
procedures of MWOA are as follows: the scaling factor is calculated using an adaptive update formula based on 
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the population’s fitness. To improve GWO’s optimization performance, the position of the local optima is added 
as one instructor along with α wolf, β wolf, and δ wolf in the GWO’s hunting strategy. The instruction vectors 
Vt
k,i are improved using the new formula and they are weighted by fitness. Then the population’s concentration 

ratio is leveraged as the controller of the MWOA’s hunting branches. To verify the performance of MWOA, six 
multi-dimensional benchmark functions are used as the fitness function. The test result shows that MWOA pos-
sesses better performance. A novel G-YOLO network is proposed and MWOA is implemented to optimize its 
hyperparameters. A self-built dataset including pedestrians, cyclists, and cars serves as the training set and test 
set of G-YOLO, and the final whale optimization G-YOLO(WOG-YOLO) model presents a stronger detection 
ability and stability.

Proposed MWOA algorithm
Description of WOA and GWO.  The canonical WOA is enlightened by the foraging mechanism of the 
humpback whales, it defines three behaviors to search for the best global solution. Its optimization stages can 
be concluded as follows: initialize the population and related parameters, calculate each individual’s fitness and 
identify the best global solution, then update the individuals’ position through the following formulas:

where �Xt
i  and �Xt+1

i  are the positions of i th individual in t th and t + 1 th iteration respectively, �Xt∗ is the optimal 
position of in t th iteration, ph , r1 , r2 are random numbers in the range of [0, 1], l is a random number in the 
range of [−1, 1] , b is the spiral constant(in this paper, b equals 1), and a is the scaling factor that hinges on the 
current iteration step t and the maximum number of iteration steps T.

Repeat the above steps until the end requirements are satisfied.
The standard GWO selects α wolf, β wolf, and δ wolf from the wolf pack by each individual’s fitness, then 

updates the individual’s position by the following formulas:

where �Xt
i  and �Xt+1

i  are the positions of i th individual in t th and t + 1 th iteration respectively, �Xt
k is the position 

of k, k can represent the position of α wolf, β wolf, and δ wolf, A and C are the same as the formula in WOA.

Modified WOA.  Adaptive scaling factor.  In WOA and GWO, the scaling factor decreases linearly to control 
the process of conversion from global optimation to local optimation. However, this approach fails to accom-
modate the practical condition as most optimization problems are complicated non-linear processes. Hence an 
adaptive scaling factor formula is proposed as follows:

where f t∗ and f t−1
∗  are the optimal fitness in the current iteration and last iteration respectively.

In the above formula, the scaling factor is modulated by f
t−1
∗
f t∗

 , thus expanding the searching scope if f
t−1
∗
f t∗

< 1 
or vice versa if f

t−1
∗
f t∗

≥ 1 . The cosine function introduces non-linearity into the scaling factor. Furthermore, the 
minimum value function is used to ensure the scaling factor is greater than or equals to zero.

Improved GWO’s hunting strategy.  In WOA, the optimal individual’s position instructs the update of other 
individuals’ positions. This method can facilitate convergence but has poor robustness, namely, it may stagnate 
around the local optimal solution. To accelerate the convergence of local optimation and strengthen the ability 
to search for global solutions, the position update formula of GWO is introduced to replace the original optimal 
position update method. Furthermore, each individual’s historical optimal position �Xt

l  is introduced to calculate �Vt
l  . The new position update formula is as follows:

(1)�Xt+1
i =







Vt
i ph < 0.5, |A| < 1

Vt
rand ph < 0.5, |A| ≥ 1

�Xt∗ + | �Xt∗ − �Xt
i | · ebl · cos(2π l) ph ≥ 0.5

(2)�Vt
i = �Xt∗ − A · |C · �Xt∗ − �Xt

i |

(3)A =2a · r1 − a
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T
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where wα , wβ , wδ , and wl denote the weights of α , β , δ , and optimal local position, �Vt
α , �Vt

β , �Vt
δ , and �Vt

l  denote the 
instruct vectors of α , β , δ , and each individual’s historical optimal position.

The weights wt
α , wt

β , wt
δ , and wt

l  depend on their respective positions’ fitness. Taking the case of minimal 
optimization, the position gets greater weight with smaller fitness, and then the weights are normalized into the 
range of [0, 1]. The weight can be calculated by:

where f tk  denotes the fitness in position k, j in 
∑

1
fj
 can represent the fitness of α , β , δ , or each individual’s histori-

cal optimal position l.
In GWO, a random number Ci in the range of [0, 2] is used to control the influence of optimal position. 

However, this method is uncontrollable, namely that it lacks the precise trade-off between global optimization 
and local optimation.

To solve this issue, |1− a| and 1− |1− a| are introduced to improve the original �Vt
k,i . |1− a| is used to con-

trol the influence of α , β , and δ , 1− |1− a| is used to control the influence of historical optimal position l. As a 
decreases from 2 to 0, |1− a| firstly decreases from 1 to 0, and then increases from 0 to 1, this method fully utilizes 
the position of α , β , and δ and can facilitate convergence in both early and final stages. In the middle stage, |1− a| 
is close to zero and 1− |1− a| is close to 1, the position update is mainly instructed by l and random variations, 
thus the population has better global optimization ability. �Vt can be expressed as follows:

where k in Xt
k can be represented by α , β , and δ.

During the optimation process, the warmup skill is used: in the first Nwarmup (e.g. 2) iterations, the scaling fac-
tor is set to be very small(e.g. 0.1), and after the warmup iterations the scaling factor reverts to normal behavior. 
This method helps the entire population find its better optimization direction and recognize the most efficient 
way to enhance their fitness.

Incorporation of improved GWO’s hunting strategy into WOA.  In WOA, spiral hunting and the 
normal optimal position update method are used, and they both have a 50% possibility of being executed. As 
the spiral hunting method has a larger search scope, and the optimal position update method searches compara-
tively in the local scope, a new possibility ph is proposed. ph is used to serve as the possibility of the spiral hunting 
method, and it decreases to 0 gradually as a decreases. This branch control method keeps the population to be 
neither too concentrated nor too sparse.

where a is mentioned above in Eq. (8), θ is the population’s concentration ratio, 
∑N

i=1 f
t−1
i  stands for the sum of 

all individuals’ fitness, N denotes the total number in the population, and f t−1
∗  is the best fitness of the current 

population.
The crucial problem of swarm intelligence is that the population’s concentration ratio θ graduates to being 

huge. As θ gets larger, it results in narrower diversity of the population, hence making it harder to continue global 
optimation. Therefore, the population’s concentration ratio is calculated and leveraged to control the ratio θ.

The graphic process of MWOA is shown in the Fig. 1.

Benchmark function test.  Six multi-dimensional benchmark functions36 are used to verify the effective-
ness and precision. F1, F2, F5, and F6 have many local minima, hence the optimization algorithm is prone to 
stagnate around them. F6 possesses many global mininum positions with the same value and its minimum value 
is determined by the dimension. F3 and F4 are bowl-shaped and they don’t have a local minimum. The hyper-
parameters of the target detection model are generally less than 20, thus the dimension of the test function d is 
set to 20. They are listed as follows:

(9)�Xt+1
i = wt

α
�Vt
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β
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δ
�Vt
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l
�Vt
l
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x2i
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d
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xi√
i
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d
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2 + (

d
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4

Figure 1.   The flow diagram of MWOA.
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PSO16, WOA17, GWO18, WhaleFOA37, and MWOA are employed to solve the above functions. In order to obtain 
the objective results, the common parameters are set to be consistent: the maximum number of iterations is 100, 
and the number of individuals in the population is 50. In PSO, the local coefficient and global coefficient are set 
to be 2.05, the minimum weight of the bird is 0.4, and the maximum weight of the bird is 0.8. In WhaleFOA, the 
safety threshold value is 0.8, and the number of producers percentage is 0.2. Test functions and MWOA are imple-
mented using NumPy39. The core algorithms of PSO, GWO, WOA, and WhaleFOA are implemented by mealpy40.

All algorithms are tested using a device with an i5-10600KF processor and 32.0 GB RAM, each benchmark 
function is run independently thirty times, Table 1 shows the best and worst results in thirty solutions. Deal-
ing with F1, F2, F5, and F6, MWOA is blessed with a more robust global searching ability and hardly falls into 
stagnation. As for bowl-shaped problems like F3 and F4, MWOA achieves better accuracy and stability. To get a 
scrutiny of the iteration process, Fig. 2 provides the average convergence curves of PSO, GWO, WOA, WhaleFOA, 
and MWOA. Contrasting with other algorithms, MWOA possesses faster convergence faculty during both the 
early and final stages.

(18)F4(x) =
d

∑

i=1

|xi|i+2

(19)F5(x) =
1

2

d
∑

i=1

(x4i − 16x2i + 5xi)

(20)F6(x) =
d
�

i=1





6
�

j=1

j cos (j + 1)xi + j





Table 1.   Benchmark function test.

Function Optimal solution Algorithm Best Worst Mean Std

F1 0

MWOA 4.00E−15 4.00E−15 4.00E−15 0.00E+00

GWO 7.96E−10 1.02E−07 1.33E−08 1.94E−08

PSO 2.45E+00 9.10E+00 5.72E+00 1.56E+00

WhaleFOA 2.18E−14 2.70E−10 3.17E−11 5.44E−11

WOA 3.93E−11 1.44E−06 4.96E−08 2.58E−07

F2 0

MWOA 0.00E+00 0.00E+00 0.00E+00 0.00E+00

GWO 8.56E−01 2.97E−02 1.54E−01

PSO 9.06E+00 2.23E+02 7.96E+01 5.87E+01

WhaleFOA 0.00E+00 6.87E−14 2.37E−15 1.23E−14

WOA 0.00E+00 6.54E−01 3.33E−02 1.25E−01

F3 0

MWOA 2.44E−31 3.10E−25 1.16E−26 5.55E−26

GWO 2.95E+01 2.22E+02 1.00E+02 4.67E+01

PSO 1.69E+02 8.27E+02 5.13E+02 1.80E+02

WhaleFOA 8.55E−24 2.95E−14 1.33E−15 5.28E−15

WOA 1.89E+02 5.03E+02 3.24E+02 7.53E+01

F4 0

MWOA 1.88E−87 3.51E−67 1.85E−68 6.70E−68

GWO 2.42E−31 4.63E−23 2.04E−24 8.36E−24

PSO 3.16E−04 7.04E−01 2.10E−01 2.26E−01

WhaleFOA 2.24E−18 1.55E−07 9.15E−09 3.00E−08

WOA 1.77E−34 1.60E−21 5.34E−23 2.88E−22

F5 −39.17d

MWOA −7.83E+02 −5.02E+02 −7.03E+02 7.77E+01

GWO −7.30E+02 −4.81E+02 −6.12E+02 5.62E+01

PSO −5.58E+02 −3.27E+02 −4.12E+02 5.64E+01

WhaleFOA −5.00E+02 −4.54E+02 −4.93E+02 9.82E+00

WOA −7.16E+02 −4.65E+02 −5.98E+02 5.96E+01

F6 −29.67 ( d = 2)

MWOA −1.87E+02 −6.17E+01 −1.31E+02 2.56E+01

GWO −1.36E+02 −7.75E+01 −1.02E+02 1.81E+01

PSO −8.78E+01 −4.76E+01 −6.59E+01 8.36E+00

WhaleFOA −1.64E+02 −6.70E+01 −9.90E+01 2.41E+01

WOA −1.83E+02 −9.45E+01 −1.28E+02 1.94E+01
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WOG‑YOLO
Network structure.  YOLOv541 is one of the most famous and utilitarian object detectors, it’s known for its 
high detection speed and elegant structure. Nevertheless, limited by its grid-based mechanism, YOLOv5 lacks 
competence in detecting small objects, thus the new YOLOv5 structure, named as G-YOLO, is proposed. The 
attention mechanism in SKNet42 is introduced into G-YOLO’s backbone network and the original C3 block is 
replaced by the G-C3 block. As convolution with a 3× 3 kernel is sensitive to small features and convolution 
with a 5× 5 kernel is sensitive to larger features, the SKConv can switch to the 3× 3 or 5× 5 perceptive field 
easily to obtain smaller scale features or bigger features. However, using the above two convolutions isn’t cost-
effective compared with a single 3× 3 convolution. Hence depth-wise convolution43 is used to replace the vanilla 
convolution, furthermore, the 5× 5 convolution is replaced by 3× 3 convolution whose dilation is set to 2. The 

Figure 2.   The average iteration process.
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improved SKConv has the same perceptive field and it has fewer parameters. The structures of G-C3, improved 
SKConv and GhostConv are shown in Fig. 3a–c.

An extra detection head is added to the G-YOLO to detect small objects more efficaciously and precisely. The 
number of branches in the PAN structure changes from 3 to 4, namely, a new branch using the 160× 160 feature 
map is added for minor objects. The new network requires more parameters, to keep the network lightweight, 
GhostConv43 is introduced into the G-C3 block. GhostConv takes advantage of both vanilla convolution and 
depth-wise convolution, thus the number of trainable parameters reduces sharply without losing too much 
detection precision. Compared to the mostly used lightweight model YOLOv5s, the parameter size of G-YOLO 
is close to YOLOv5s. The new structure is shown in Fig. 4.

Data preparation and processing.  Dataset.  A great deal of previous research into autonomous driving has 
focused on the detection of cars, cyclists, and pedestrians using the Kitti dataset44, nevertheless, the precision in pedes-
trians and cyclists is unsatisfactory in comparison with that of cars. The low detection accuracy is far from the practical 
application of autonomous driving. The images containing vehicles, cyclists and pedestrians are extracted from the Kitti 
dataset, then vans and trucks are labelled cars. The final dataset contains 5325 images.

Data augmentation.  In YOLOv5, mosaic is used as an image augment method, which gives the YOLOv5 net-
work considerable enhancement in both precision and recall. The input image should be square in YOLOv5, but 
the width and height of images in the Kitti dataset are 1240 and 370 pixels respectively. Thus a large part of the 
input image is padded with blank. To reduce the padded area, three images are concatenated vertically as one 
image before using the mosaic method.

Optimization of YOLOv5’s hyperparameter.  Parameters function as a critical part of the convolution 
network, it controls the entire training process and has a great impact on the performance of the final detection 
model. For models with a brand-new framework, tuning parameters one by one can be time-consuming and 
inefficient. Furthermore, inadequately tuned parameters can not fully reflect the performance of the model. 
Fine-tuned parameters can boost the recall and precision by setting a suitable threshold which is instrumental 
in obtaining a performant model.

Figure 3.   The structures of G-C3, improved SKConv and GhostConv.
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In this paper, 12 parameters in G-YOLO are chosen to evolve using MWOA, their names and ranges are 
shown in Table 2. To be cost-efficient, the number of individuals is set to 5, the iteration number is set to 10.

The fitness function receives the newcome parameters, dispatches them to G-YOLO, and then activates the 
training of the detection model. After the G-YOLO training process, the evaluation score of the model is passed 
back to MWOA as the fitness. Trained with the optimal hyperparameters, the final whale optimization G-YOLO 
(WOG-YOLO) model is obtained.

The evaluating indicators are P, R, F1, and mAP. P refers to precision, which calculates the ratio of the num-
ber of correct detection results TP and the number of total detection results(TP + FP ). R refers to recall, which 
calculates the ratio of the number of correct detection results TP and the number of actual objects(TP + FN ). 
F1 is based on the harmonic mean of P and R, which considers both P and R. The indicators and scores are 
calculated by following formulas:

(21)P = TP

TP + FP

(22)R = TP

TP + FN

(23)F1 =2 · P × R

P + R

Figure 4.   G-YOLO.
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where k is the number of classes.

Results
The experiment is based on Ubuntu 18.04, using NVIDIA A2000 GPU. The batch size is 8, the number of training 
epochs is 100, the image size is 640× 640 , the confidence threshold is 0.25, and the NMS IOU threshold is 0.5.

The default and the optimized hyparameters are shown in Table 3. The most representative indicator mAP is 
used in the evaluation of YOLOv5s, WOG-YOLO, YOLOv745, YOLOX46 and Faster-RCNN2 and the results are 
shown in Table 4, the ablation study of WOG-YOLO is shown in Table 5 and the loss curve is shown in Fig. 5. 
The mAP of YOLOv5s is 92.5% and the F1-score of YOLOv5s is 90.0% . By adding an extra detection head, its 
mAP improved by 0.6% . Based on YOLOv5-4heads, its C3 module is replaced by the lightweight G-C3 module 
(G-YOLO), which reduces the mAP by 0.3% . Compared with the YOLOv5s model, the final WOG-YOLO’s 
overall mAP increases by 1.7% , its mAP of the pedestrian increases by 2.6% , and its mAP of the cyclist increases 
by 2.3% . As pedestrians and cyclists have comparatively smaller features than cars, the WOG-YOLO model is 
more sensitive to small objects and has greater precision.

As shown in Fig. 6, WOG-YOLO has excellent capability to detect small objects. Moreover, when part of the 
object is covered by other things, WOG-YOLO still has reasonable detection ability.

(24)AP =
∫ 1

0

P(R)dR

(25)mAP =
∑k

i=1 APi

k

(26)score = 1

0.1P + 0.1R + 0.2F1+ 0.6mAP

Table 2.   12 hyperparameters in YOLOv5.

Hyperparameter Description Lower limit Uppper limit

lr0 Initial learning rate 1.00E−05 1.00E−01

lrf Final OneCycleLR learning rate 0.01 1

Momentum SGD momentum 0.6 0.98

Weight_decay Optimizer weight decay 0 0.001

Warmup_epochs Warmup epochs 0 5

Warmup_momentum Warmup initial momentum 0 0.95

Warmup_bias_lr Warmup initial bias lr 0 0.2

Box Box loss gain 0.02 0.2

Cls Class loss gain 0.2 4

Cls_pw Class BCELoss positive_weight 0.5 2

Obj Object loss gain 0.2 4

Obj_pw Object BCELoss positive_weight 0.5 2

Table 3.   The default and optimized hyperparameters in YOLOv5.

Hyperparameter Default Optimized

lr0 0.01 0.01243

lrf 0.01 0.01289

Momentum 0.937 0.98000

Weight_decay 0.0005 0.00076

Warmup_epochs 3 3.22050

Warmup_momentum 0.8 0.89787

Warmup_bias_lr 0.1 0.08197

Box 0.05 0.04843

Cls 0.5 0.57263

Cls_pw 1 1.18040

Obj 1 1.20690

Obj_pw 1 0.83334
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Conclusion
To accurately identify objects in autonomous driving, a stable and effective detecting algorithm is needed. A 
novel and efficient optimization algorithm with WOA and GWO is proposed for improving the G-YOLO model.

The hunting strategy of GWO is improved and it’s integrated into WOA, thus the basic structure of MWOA 
is formed, furthermore, adaptive scaling factor, population concentration ratio, and improved position update 

Table 4.   Indicators of YOLOv5s, WOG-YOLO and other algorithms.

Model Indicator Pedestrain Cyclist Car Total

Faster-RCNN mAP(0.5)/% 86.2 87.4 92.9 88.8

YOLOX 87.5 91.4 95.1 91.3

YOLOv7 88.2 92.0 96.1 92.1

YOLOv5s 89.2 91.9 96.4 92.5

WOG-YOLO 91.8 94.2 96.6 94.2

Table 5.   Results of WOG-YOLO with different improvements.

Model Indicator Pedestrain Cyclist Car Total

YOLOv5s

Precision/% 92.4 92.5 95.0 93.3

Recall/% 80.2 87.9 92.5 86.9

F1/% 85.9 90.2 93.7 90.0

mAP(0.5)/% 89.2 91.9 96.4 92.5

YOLOv5-4heads

Precision/% 91.7 90.1 94.2 92.0

Recall/% 81.0 88.6 90.5 86.7

F1/% 86.0 89.3 92.3 89.0

mAP(0.5)/% 90.4 93.1 95.9 93.1

G-YOLO

Precision/% 91.7 88.8 94.3 91.6

Recall/% 81.7 89.9 91.3 87.6

F1/% 86.4 89.3 92.8 90.0

mAP(0.5)/% 90.6 91.9 95.9 92.8

WOG-YOLO

Precision/% 94.0 91.3 95.8 93.7

Recall/% 83.2 88.8 91.4 87.8

F1/% 88.3 90.0 93.6 91.0

mAP(0.5)/% 91.8 94.2 96.6 94.2

Figure 5.   Loss of YOLOv5s and WOG-YOLO in the training processes.
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method are implemented in MWOA. In comparison with PSO, GWO, WOA, and WhaleFOA, MWOA is verified 
by different kinds of benchmark functions to have greater precision and better global solving ability.

By replacing the C3 block with the G-C3 block and adding an extra detect layer, the highly optimizable 
G-YOLO is proposed. To improve G-YOLO’s performance, 12 hyperparameters are optimized by MWOA. The 
G-YOLO model is trained and evaluated using the self-built dataset containing 5325 images, thus the final 
whale optimization G-YOLO(WOG-YOLO) model is obtained. Compared with the 92.5% mAP and 90.0% F1 
in YOLOv5s, WOG-YOLO is 1.7% better in mAP and 1.0% in F1. For small objects like pedestrians and cyclists, 
WOG-YOLO increases the respective mAP by 2.6% and 2.3%.

In conclusion, the proposed method is an applicable and highly optimized approach to obtain a robust and 
efficient detection model in autonomous driving.

Data availibility
The datasets generated and analysed during the current study are available in Kitti.
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