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An extended Hilbert transform 
method for reconstructing 
the phase from an oscillatory signal
Akari Matsuki 1, Hiroshi Kori 1,2 & Ryota Kobayashi 2,3,4*

Rhythmic activity is ubiquitous in biological systems from the cellular to organism level. 
Reconstructing the instantaneous phase is the first step in analyzing the essential mechanism leading 
to a synchronization state from the observed signals. A popular method of phase reconstruction is 
based on the Hilbert transform, which can only reconstruct the interpretable phase from a limited 
class of signals, e.g., narrow band signals. To address this issue, we propose an extended Hilbert 
transform method that accurately reconstructs the phase from various oscillatory signals. The 
proposed method is developed by analyzing the reconstruction error of the Hilbert transform method 
with the aid of Bedrosian’s theorem. We validate the proposed method using synthetic data and show 
its systematically improved performance compared with the conventional Hilbert transform method 
with respect to accurately reconstructing the phase. Finally, we demonstrate that the proposed 
method is potentially useful for detecting the phase shift in an observed signal. The proposed method 
is expected to facilitate the study of synchronization phenomena from experimental data.

Rhythmic activity is ubiquitous in biological systems, including cortical networks in the brain1,2, human heart 
and respiratory system3–5, circadian rhythm6,7, gene expression8, and animal gait9–11. The phase description 
approach12,13 describes the state of a multi-dimensional nonlinear oscillator using a variable called the phase 
and derives a reduced phase equation from a nonlinear dynamical system. This approach has promoted the 
understanding of how a population of nonlinear oscillatory elements can synchronize or form a cluster state. 
Theoretical studies based on the phase equation have been used to investigate the potential mechanisms under-
lying synchronization phenomena, including mutual coupling among the elements and the common inputs to 
the elements14,15.

Fundamental questions in complex systems include how a system in the real-world achieves synchronization 
and what is the essential mechanism that leads to a synchronization state16. While the theoretical studies provide 
potential explanations for the synchronization phenomena, they cannot directly answer these questions. It is 
essential to reconstruct the instantaneous phase from observed data (e.g., signals or time series) and to infer 
the phase equation from the reconstructed phase. Many studies have focused on the latter step, that is, they 
have developed the inference methods for the phase response curve17–21 and the coupling function22–30 from 
the phase (various reviews discuss this topic31,32). Conversely, a few studies33,34 have focused on the former step, 
i.e., the reconstruction of the instantaneous phase from an observed signal. An accurate phase reconstruction is 
necessary to study the synchronization phenomena in data because these inference methods assume the perfect 
phase reconstruction.

There are two primary approaches to reconstructing the instantaneous phase from an oscillatory signal. One 
simple approach to reconstructing the phase is to use linear interpolation between the subsequent marker events. 
For example, the phase is defined as 0 or 2π at the time of the action potential (spike) for neuronal oscillators17–19 
or a heartbeat3. This method can accurately reconstruct the phase when the noise level is not very high. However, 
this method is not applicable to signals without identifiable marker events, such as neuronal spikes. An alternative 
phase reconstruction approach is to apply the Hilbert transform to the observed signal16,35,36. An advantage of the 
Hilbert transform method is that it is applicable even when there is no well-defined marker. Consequently, the 
Hilbert transform method has been applied to a variety of systems, e.g., the respiratory system in human3,5, the 
gene expression in a cell8, and the human brain activity29,37–39. The limitation of the Hilbert transform method 
is that it can reconstruct the physically interpretable phase from a limited class of signals, i.e., the narrow band 
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signals37,40. Therefore, it is necessary to carefully develop a pre-processing procedure via trial and error, which 
hinders the application of this method to oscillatory signals. Theoretical studies in signal processing have clarified 
the mathematical conditions of the signals on which the Hilbert transform method can reconstruct a meaningful 
phase37,40,41. However, only a few attempts have been made to develop a method for reconstructing the phase 
from more general signals.

In this study, we propose an extension of the Hilbert transform method that can reconstruct the inter-
pretable phase from a wider variety of signals. Here, we consider a particular class of signals, called “weakly 
phase-modulated signals”, which are an extension of the sinusoidal signals from which the conventional Hilbert 
transform method can reconstruct the phase. These signals are also regarded as a subclass of phase-modulated 
signals33,34. We first demonstrate that this conventional method cannot accurately extract the phase from these 
signals (Fig. 1). Then, we derive a new algorithm to reconstruct the phase from the phase-modulated signals and 
empirically show that the proposed method improves the reconstruction performance.

This paper is organized as follows. We first review the conventional Hilbert transform method for reconstruct-
ing the instantaneous phase from data. In addition, we illustrate the limitation of the conventional method using 
an example. Second, we present the proposed method for reconstructing the instantaneous phase and examine 
the computational complexity of the algorithm. Third, we evaluate the performance of the phase reconstruction 
and compare its performance with that of the conventional method. Finally, we conclude this study and discuss 
future directions.

Results
Estimating the instantaneous phase from an oscillatory signal.  A standard method for recon-
structing the instantaneous phase from an oscillatory signal is based on the Hilbert Transform (HT)16,35,36. This 
method calculates the phase from the analytic signal, defined as

where x(t) and H[x(t)] are the observed signal and its HT

where P.V. refers to the Cauchy principal value. The HT method reconstructs the instantaneous phase by the 
argument of the analytic signal

It is well-known that the HT method can reconstruct the interpretable phase from a particular class of signals. 
Let us consider the sinusoidal signal

where ω̂ is the effective frequency, and φ0 is the initial phase. The HT method can perfectly reconstruct the 
interpretable phase from the signal: φH(t) = ω̂t + φ0 . Furthermore, it is possible to extend this result to signals 
with slow amplitude modulation

where the amplitude AL(t) is the low-pass-filtered signal whose Fourier coefficients of the frequency higher than 
the effective frequency ( f > ω̂ ) vanish. It can be shown42 that the HT method can perfectly reconstruct the phase: 
φH(t) = ω̂t + φ0 . However, the HT method can only reconstruct the interpretable phase from a particular class 
of signals, i.e., the narrow band signals37,40.

In this study, we extend the HT method for a general type of signal, which we call “weakly phase-modulated 
signals”

where φ(t) = ω̂t + u(t) is the phase of the signal and u(t) is a small phase-modulation.
We applied the HT method to a phase-modulated signal (Fig. 1a). Figure 1b demonstrates that the HT method 

can accurately track the linear trend ω̂t and estimate the effective frequency ω̂ even from a phase-modulated 
signal. Note that this method (Fig. 1c, red) cannot accurately reconstruct the phase-modulation φ(t)− ω̂t . Then, 
we analyzed the power spectrum of the phase-modulation φ(t)− ω̂t to investigate the effect of the HT method. 
Figure 1d compares the power spectrum of the phase-modulation reconstructed using the HT method with that 
of the true phase-modulation. We plotted the frequency range of 8.0 < f < 11.5 because the phase-modulation is 
given by the sum of two sinusoidal functions whose frequencies are 

√
2ω̂ ≈ 8.89 and 

√
3ω̂ ≈ 10.9 , respectively. 

The result indicates that the HT method behaves like a low-pass filter, that is, it suppresses the spectral density 
of the peak frequencies ( f =

√
2ω̂,

√
3ω̂ ). Motivated by this observation, we investigate how the HT method 

changes the power spectrum in the following subsection. We extend the HT method for reconstructing the 
instantaneous phase from an oscillatory signal by preserving the power spectrum of the phase-modulation u(t).

Note that it is critical to reconstruct the phase-modulation u(t) accurately to study the synchronization 
mechanism16, even though the modulation is small (Fig. 1b,c). Many methods for inferring the phase coupling 

(1)ζ(t) = x(t)+ iH[x(t)],

(2)H[x(t)] = π−1P.V.

∫ ∞

−∞

x(τ )

t − τ
dτ ,

(3)φH(t) = arg [ζ(t)].

(4)x(t) = A0 cos
(

ω̂t + φ0
)

,

(5)x(t) = AL(t) cos
(

ω̂t + φ0
)

,

(6)x(t) = A0 cosφ(t),
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function rely on the assumption that the phase has been perfectly reconstructed; consequently, the bias in the 
phase reconstruction may induce serious effects on the inference results.

Figure 1.   Reconstruction of the instantaneous phase from an observed signal. (a) Observed signal x(t) (Eq. 6) 
with u(t) = 0.2

(

sin
√
2ω̂t + cos

√
3ω̂t

)

 . (b) Instantaneous phase φ(t) (Eq. 6). (c) Phase-modulation u(t). (d) 
Power spectrum of the phase-modulation. The dashed line in (b–d) represents the true phase, the phase-
modulation, and its power spectrum, respectively. The red and blue lines represent the reconstructions by the 
conventional HT method and the proposed method, respectively. Dotted vertical lines in (d) represent the 
dominant frequencies of the true phase-modulation: 

√
2ω̂ and 

√
3ω̂ , where ω̂ = 2π is the effective frequency. 

Note that we plotted a part of the signal and the start time of the plot is redefined as 0.
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Proposed method.  As we observed in Fig. 1, the conventional HT method cannot reconstruct an interpret-
able phase from phase-modulated signals. In this subsection, we extend the HT method to include the phase-
modulated signals (Eq. 6).

Let us assume that the signal is sampled at N time steps with a constant interval �t . We consider a phase 
modulated signal (Eq. 6) sampled at time t = k�t

where A0 is the amplitude and φ[k] := φ(k�t) is the instantaneous phase at time t = k�t.
We can analyze the effect of the phase-modulation on the phase reconstructed via the HT method with the 

aid of Bedrosian’s theorem. The true phase-modulation u[k] := u(k�t) and its reconstruction via the HT method 
uH[k] := φH(k�t)− ω̂k�t can be represented as Fourier series:

where ωn = 2nπ/N , and cn and cHn  are given by the discrete Fourier transform of u[k] and uH[k] , respectively. 
Assuming that the phase-modulation is small: ε := maxk |u[k]| ≪ 1 and the sampling interval �t is small 
enough, we can derive a formula that clarifies the relation between the Fourier coefficients ( cn and cHn  ) by neglect-
ing higher order terms O(ǫ2) (see “Method” for the derivation),

where m is an effective frequency index, that is, the discretized frequency ωm corresponds to the effective fre-
quency ω̂ : ωm = ω̂�t , and z̄ denotes the complex conjugate of a complex number z. The number of data points 
N is assumed to be even. If this number is odd, the term N/2 should be replaced with (N − 1)/2 . This result 
(Eq. 9) illustrates the effect of the HT method on the phase-modulation in the frequency domain. Equation 
(9) shows that the phase reconstructed by the conventional HT method is inconsistent with the true phase for 
phase-modulated signals. This is because the Fourier coefficients reconstructed via the HT method cHn  are not 
equal to those of the true phase-modulation cn . In addition, the result (Eq. 9) implies that the HT method acts 
as a low-pass-like filter to the phase-modulation u(t).

Here we consider two types of signals to illustrate the formula (Eq. 9) that describes the effect of Hilbert 
transform on the power spectra. First, let us consider the phase-modulated signal with a single frequency com-
ponent j(< N/2):

where α is a non-zero complex value. If the phase-modulation frequency is lower than the effective frequency: 
ωj < ωm , the HT method perfectly reconstructs the true phase, i.e., cHn = cn for all n. Conversely, when the 
phase-modulation frequency is higher than the effective frequency: j > m , the amplitude of the reconstructed 
phase-modulation is half of the true phase-modulation, i.e., cHn = cn/2 for all n. Indeed, Fig. 1d shows that the 
Fourier coefficient of the reconstructed phase-modulation cHn  is smaller than the true modulation cn near the 
dominant Fourier modes ( 

√
2ω̂ and 

√
3ω̂).

In the second example, we consider the phase-modulation given by the Ornstein–Uhlenbeck process

where k and σ are constant and η(t) is the Gaussian white noise with zero mean and unit variance. Figure 2 com-
pares the power spectrum of true phase-modulation with that of the reconstructed phase-modulation by using 
the HT method. While the HT method accurately reconstructs the power spectrum for frequencies lower than 
the effective frequency, it underestimates the power spectrum for frequencies higher than the effective frequency. 
The coefficient (1/2) in Eq. (9) implies that the HT method underestimates the power spectrum.

We can extend the HT method to accommodate phase-modulated signals. In the following, we describe the 
proposed method, which consists of five steps (Algorithm 1). First, we calculate the initial guess of the phase 
φH[k] by using the conventional HT method (Eq. 3). The Gibbs phenomenon dramatically impairs the phase 
reconstruction of the HT method when there is a large discrepancy between the values of the first and last 
point39. To mitigate this phenomenon, we extract the peaks from the signal and restrict the analysis to be from 
the first peak to the last one before applying the HT method. Second, we estimate the effective frequency ω̂ from 
the initial guess: ω̂ = (φH[N − 1] − φH[0])/T , where T = (N − 1)�t is the observation duration. Third, we 
calculate the discrete Fourier transform of the initial guess {cHn } ( n = 1, 2, . . . ,N ). Fourth, we correct the Fourier 
coefficient by inverting Eq. (9),

(7)x[k] := x(k�t) = A0 cos (φ[k]),

(8)u[k] =
N−1
∑

n=0

cne
ikωn , uH[k] =

N−1
∑

n=0

cHn e
ikωn ,

(9)c
H
n ≈



























cn − 1
2
c̄2m−n − 1

2
cn+2m for 0 ≤ n ≤ m− 1,

3
4
cn − 1

4
c̄n − 1

2
c3n for n = m,

1
2
cn − 1

2
cn+2m for m+ 1 ≤ n ≤ N/2− 2m,

1
2
cn for N/2− 2m+ 1 ≤ n ≤ N/2,

(10)cn =
{

α for n = j,
ᾱ for n = N− j,
0 otherwise,

(11)
du(t)

dt
= −ku(t)+ ση(t),
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where cPn is the corrected Fourier coefficient. The remaining coefficients cPn ( N/2 < n ≤ N − 1 ) are calculated by 
using the formula cPN−n = c̄Pn that reflects the fact that the phase-modulation u[k] is the real signal. In the fifth 
step, we reconstruct the phase-modulation by calculating the inverse Fourier transform of {cPn } . Then, we smooth 
the phase signal to remove artificial spikes in the signal. We identify outliers in the reconstructed phase using 
Median Absolute Deviation criteria43 and replace the outliers with a linear interpolation of the nearest neighbors.

Finally, we compare the computational complexities of the conventional HT method and the proposed 
method for reconstructing the phase of a signal. Computational complexity, that is, the dependency of the 
computational time on the data size, is critical when analyzing a long signal. Let us denote the number of data 
points of the signal as N. The computational complexity of the HT method is O(N logN) , because we calculate 
the discrete Hilbert Transform (HT) by using the discrete Fourier transform (see “Method”). Next, we evaluate 
the computational complexity of the proposed method. First, the proposed method computes the HT: O(N logN) 
(Step 1 in Algorithm 1). Next, the effective frequency is calculated: O(1) (Step 2). Then, the discrete Fourier 
transform is computed: O(N logN) (Step 3) and the coefficients of the Fourier transform are corrected: O(N) 
(Step 4). Finally, the method reconstructs the phase-modulation by calculating the inverse Fourier transform: 
O(N logN) and smoothing it: O(N logN) (Step 5). Therefore, the computational complexity of the proposed 
algorithm is O(N logN) , which is comparable to that of the conventional method. In terms of the complexity, 
the proposed algorithm is better than the iterative Hilbert transform embedding (IHTE)33: O(N2) , which is one 
of the state-of-the-art methods for reconstructing the phase.

Reconstruction performance of the proposed method.  Here, we examine whether the proposed 
method can accurately reconstruct the instantaneous phase from an observed signal. First, we consider an oscil-
latory signal (Eq. 6) with a constant amplitude A0 = 1 The sampling time interval and the duration of the simula-
tion are �t = 0.01 and T = 200 , respectively, unless otherwise stated.

We evaluated the performance of the phase reconstruction by analyzing the synthetic data based on two types 
of phase-modulated signals. The first signal is a quasi-periodic phase-modulation,

(12)c
P
n =



























2cHn for N/2− 2m+ 1 ≤ n ≤ N/2,

2cHn − 1
2
c̄
P
n+2m for m+ 1 ≤ n ≤ N/2− 2m,

Re
�

2cHn + c
P
3m

�

+ iIm
�

c
H
n + 1

2
c
P
3m

�

for n = m,

c
H
n + 1

2
c̄
P
2m−n

+ 1
2
c
P
n+2m for 0 ≤ n ≤ m− 1,

Figure 2.   Reconstruction of the power spectrum of the phase-modulation by using the HT method. We 
consider the OU type phase-modulation (Eq. 11) with the parameters k = 2.0 and σ = 0.1 . The power spectrum 
of the phase-modulation (dashed line) was compared with that of the reconstructed phase-modularion (red). 
Dotted vertical line represents the effective frequency ω̂ . The power spectrum is calculated by using the Hanning 
window w[k] = 0.5− 0.5 cos (2π(k − 0.5)/L), (k = 1, 2, . . . , L) , where L = 2

√
N  is the window width and N 

is the number of data points.
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where b is the amplitude of the phase-modulation. The second signal is the Ornstein–Uhlenbeck (OU) type 
phase-modulation (Eq. 11).

We applied the proposed method to a signal with quasi-periodic phase-modulation (Fig. 1a). Figure1c com-
pares the phase reconstructed via the proposed method (blue) with that reconstructed via the conventional HT 
method (red). While the proposed method accurately reconstructs the phase-modulation, the conventional 
method cannot reconstruct it. In addition, we compared the power spectrum of the phase-modulation with 
that of the reconstructed phase-modulations (Fig. 1d). We found that the proposed method can reconstruct a 
phase-modulation whose power spectrum is consistent with the true power spectrum. However, a small peak 
(frequency ∼ 9.2) appears in the power spectrum of the proposed method (Fig. 1d). This error might be due to 
the nonlinear effect O(ǫ2) ignored in the derivation of the proposed method.

Next, we applied the proposed method to a signal with the OU type phase-modulation (Fig. 3a). Similar to 
the case of the quasi-periodic modulation, the proposed method can reconstruct the phase-modulation (Fig. 3b) 
and its power spectrum (Fig. 3c) accurately. While the conventional HT method can track the slow trend of the 
phase fluctuation, it cannot accurately reconstruct the phase-modulation.

Furthermore, we examined whether the proposed method can reconstruct the phase given a larger phase-
modulation. We quantified the phase reconstruction performance based on the relative squared error (RSE):

(13)u(t) = b
(

sin
√
2ω̂t + cos

√
3ω̂t

)

,

Figure 3.   Reconstructing the instantaneous phase by the proposed method: a signal with the OU type phase-
modulation. (a) Observed signal x(t) given by Eqs. (6) and (11) with A0 = 1 . (b) Phase-modulation u(t). (c) 
Power spectrum of the phase-modulation. Dashed lines represent the true phase-modulation u(t) in (b) and its 
power spectrum in (c). The red and blue lines represent the reconstructions by the conventional HT method and 
the proposed method, respectively. Parameters are k = 2.0 , and σ 2 = 0.28 . Note that we plotted a part of signal 
and the start time of the plot is redefined as 0.
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where û[k] (u[k]) represents the reconstructed (true) phase-modulation, and N is the number of data points. 
Figure 4a shows that the proposed method consistently performs better than the conventional HT method for a 
signal with a quasi-periodic phase-modulation for a range of the phase-modulation amplitude b. Nevertheless, 
the error of the proposed method increases with increasing phase-modulation amplitude. The performance 
deterioration may be due to the nonlinear effects, i.e., O

(

ε2
)

 , which we neglected in the derivation of the method. 
Similarly, the proposed method consistently performs better than the HT method for a signal with an OU type 
phase-modulation even when the phase-modulation is not small (Fig. 4b). Even though we assumed a small 
phase-modulation to derive the proposed method, the results (Fig. 4) suggest that the proposed method provides 
better performance than the HT method for signals with moderate phase-modulations.

Then, we examined whether the proposed method can reconstruct the phase from a signal with the amplitude 
and phase-modulations. We consider a signal whose amplitude is modulated by a sum of sinusoidal functions

where ω̂ is the effective frequency,

Figure 5 demonstrates that while the proposed method can accurately reconstruct the instantaneous phase 
from the amplitude and phase-modulated signal, the conventional HT method cannot. This result can be under-
stood as follows. Bedrosian’s theorem42 states that the HT of the product of a high-pass and a low-pass signal 
with non-overlapping spectra is equal to the product of the low-pass signal and the HT of the high-pass signal 
(see Eq. 27). This theorem implies that the slow (or low-pass filtered) amplitude modulation (Eq. 5) will not 
impair the phase reconstruction by the conventional HT method. Thus, it is natural to expect that the proposed 
method works even when we observe the weakly phase-modulated signals.

Furthermore, we examined whether the proposed method is robust against slow amplitude modulation. We 
consider an amplitude and phase-modulated signal (15) with

Figure 6 shows the dependence of the reconstruction error on the amplitude r and frequency ν of the ampli-
tude modulation. The error does not depend on the amplitude, which indicates that the proposed method works 
even for signals with moderate amplitude modulation (Fig. 6a). While the error does not depend on the frequency 
ν in the range of ν < ω̂ (Fig. 6b), it increases when the frequency becomes larger than the effective frequency ω̂ . 
Nevertheless, the error of the proposed method is smaller than the HT method. Overall, these results suggest 
that the proposed method improves the phase reconstruction even for the signals with amplitude modulation.

Finally, we compare the phase reconstruction by the proposed method with that by the iterative Hilbert 
transform embedding (IHTE) method33. For the IHTE method, we used the proxi-phase based on the analytic 
signal (Eq. 3) and fixed the number of iteration K as 20. We stopped the iteration if the IHTE method returns 
an error. Here, we analyzed the phase-modulated signals (Eq. 6) with a constant amplitude: A0 = 1 . Figure 7 
demonstrates the phase reconstructions by the proposed method (blue) and the IHTE method (orange) from 
the quasi-periodic phase-modulated signals (Eq. 13). When the phase-modulation is small (Fig. 7a), the pro-
posed method can reconstruct the phase more accurately than the IHTE method. The relative squared error 
(Eq. 14) is 0.007 and 0.06 for the proposed method and the IHTE method, respectively. In contrast, when the 

(14)RSE =
∑

N

k=1(û[k] − u[k])2
∑

N

k=1 u
2[k]

,

(15)x(t) = A(t) cos
(

ω̂t + u(t)
)

,

(16)A(t) = 1+ 0.2
(

cos 0.6ω̂t + sin 0.7ω̂t
)

, u(t) = 0.2
(

sin
√
2ω̂t + cos

√
3ω̂t

)

.

(17)A(t) = 1+ r cos νt, u(t) = 0.2
(

sin
√
2ω̂t + cos

√
3ω̂t

)

.

Figure 4.   Effect of the amplitude of phase-modulation on the phase reconstruction error. (a) Quasi-periodic 
phase-modulation (Eq. 13). (b) OU type phase-modulation (Eq. 11). We plotted the mean and standard 
deviation of the errors calculated from 100 trials in (b). Parameters are set as ω̂ = 2π and k = 2.0 in (b).
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phase-modulation is large (Fig. 7b), the IHTE method performs better than the proposed method. The error is 
0.1 and 0.03 for the proposed method and the IHTE method, respectively. Next, we analyzed the noisy (OU type) 
phase-modulated signals (Eq. 11). When the noise amplitude of the phase-modulation is much smaller than the 
effective frequency ω̂ , the result is similar to the quasi-periodic phase-modulated signal (Fig. 7). The proposed 
method performs better for a signal with small phase-modulation, whereas the IHTE method performs better 
for a signal with large phase-modulation (data not shown). In contrast, the proposed method reconstructs the 
phase more accurately than the IHTE for noisy phase-modulated signals (Fig. 8). The relative squared error of 
the proposed and the IHTE method was 0.07 and 2 for a signal with small phase-modulation (Fig. 8a), and 0.1 
and 0.7 for a signal with large phase-modulation (Fig. 8b), respectively. These results suggest that the proposed 
method is suitable for the signals with small phase-modulation or noisy phase-modulation compared to the IHTE 
method. Note that a large error does not necessarily mean the poor performance of the IHTE method due to the 
difference in the phase definition (see “Discussion”).

Detecting a phase shift from an observed signal.  Biological oscillatory systems often exhibit “phase 
shifts”, that is, a rapid change in the phase of a rhythm. For example, the phase of a circadian rhythm can change 
as a result of light exposure44. It would be useful to develop a method for detecting the phase shifts in oscillatory 

Figure 5.   Reconstructing the instantaneous phase by the proposed method: a signal with amplitude and 
phase-modulation. (a) Observed signal x(t) (Eq. 15). (b) Phase-modulation u(t). The dashed line represents the 
true phase-modulation u(t), and the red and blue line represents its reconstruction by the HT method and the 
proposed method, respectively. Note that we plotted a part of signal and the start time of the plot is redefined as 
0.

Figure 6.   Effect of the amplitude modulation on the phase reconstruction error. Dependence of the error on 
the amplitude r (a) and the frequency ν (b) of the amplitude modulation. Parameter were set as ν = 4.4 in (a) 
and r = 0.1 in (b). The dotted vertical line in (b) represents the effective frequency ω̂ = 2π.
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Figure 7.   Comparison of the phase reconstruction methods: the signals with quasi-periodic phase-modulation. 
The proposed method and the IHTE method were applied to the phase-modulated signal (Eq. 6) with (a) small 
or (b) large quasi-periodic modulation (Eq. 13). The dashed line represents the true phase-modulation u(t), 
and the blue and orange lines represent its reconstruction by the proposed and the IHTE method, respectively. 
Parameters are b = 0.02 in (a), b = 0.1 in (b), and A0 = 1 and ω̂ = 2π in both panels. Note that we plotted a 
part of signal and the start time of the plot is redefined as 0.

Figure 8.   Comparison of the phase reconstruction methods: the signals with OU type phase-modulation. The 
proposed method and the IHTE method were applied to the phase-modulated signal (Eq. 6) with (a) small 
or (b) large OU type phase-modulation (Eq. 11). The dashed line represents the true phase-modulation u(t), 
and the blue and orange line represent its reconstruction by the proposed and the IHTE method, respectively. 
Parameters are σ = 0.02 in (a), σ = 0.2 in (b), and A0 = 1 , ω̂ = 1 , and k = 2 in both panels. Note that we 
plotted a part of signal and the start time of the plot is redefined as 0.
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signals. We examined whether the proposed method is potentially useful for detecting the phase shifts in data. 
As a minimal model, we consider a single oscillator exhibiting a phase shift:

where the interval [Tc ,Tc +�T ] represents the change period, i.e., the period in which the phase of the oscillator 
shifts with a frequency ω̂2 , and η(t) is the Gaussian white noise with zero mean and unit variance. The synthetic 
data were simulated with a total duration T = 10 and a change time Tc = 5.0.

Figure 9a shows an observed signal before and after the change period, with the frequency increasing after 
t = 5.0 . The proposed method can accurately track the change in the phase-modulation induced by the phase 
shift (Fig. 9b: blue). Conversely, it is difficult for the conventional HT method to infer the change period because 
of the smoothing effect in the reconstructed phase (Fig. 9b: red). Furthermore, we compared the phase recon-
struction error of the proposed method with that of the conventional HT method. We calculate the mean squared 
error between the reconstructed phase and the true phase. The proposed method achieved a smaller error than 
the HT method across a range of phase shift amplitude (ω̂2 − ω̂1)�T (Fig. 9c). Similar to the previous result 
concerning the reconstruction error (Fig. 4), the errors of these methods increase with increasing phase shift 
amplitude. In addition, we examined the dependency of the error on the duration of the phase shift �T when 
the phase shift amplitude is fixed. The error of the HT method increases as the shift duration decreases (Fig. 9d: 
red). Conversely, the error of the proposed method is small even for a signal with a small duration �T (Fig. 9d: 

(18)x(t) = cos
(

ω̂1t + u(t)
)

,
du(t)

dt
=

{

ση(t) for t /∈ [Tc, Tc +�T],
(

ω̂2 − ω̂1

)

+ ση(t) for t ∈ [Tc, Tc +�T],

Figure 9.   Detecting the phase shift from an oscillatory signal. (a) Observed signal x(t) (Eq. 18). (b) Phase-
modulation u(t). (c,d) Dependence of the phase reconstruction error on the phase shift amplitude in (c) and 
the phase shift duration in (d). We plotted the mean and standard deviation of the mean squared errors (MSEs) 
calculated from 100 trials in (c,d). Parameters were set as the effective frequency ω̂1 = 2π , the noise variance 
σ = 0.1 , the shift amplitude (ω̂2 − ω̂1)�T = 0.5 in (a,b,d), and the the shift duration �T = 0.2 in (a–c).
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blue). This result suggests that the proposed method is more suitable for detecting rapid phase shifts than the 
HT method.

Discussion
We proposed an extension of the Hilbert Transform (HT) method for reconstructing the phase from an observed 
signal. We addressed a limitation of the conventional HT method, that is, the conventional method has been 
proven to work only for the narrow band signals. We demonstrated that the conventional HT method cannot 
accurately reconstruct the interpretable phase from phase-modulated signals. Conversely, our method can extract 
the phase from these types of signals (Figs. 1, 3, 4). Furthermore, we have demonstrated the performance of 
the proposed method by using the simulated data with the amplitude- and phase-modulated signals (Figs. 5, 
6). Consequently, the extended HT method is a promising tool for investigating synchronization phenomena 
through analyzing oscillatory signals in biological systems.

A recent method for reconstructing the phase from a signal is the iterative Hilbert transform embedding 
(IHTE)33,34,45. While both the IHTE method and the proposed method aim to improve the HT method, there 
are several important differences between the two methods. First, the definition of phase is different between 
these methods. The proposed method assumes that the signal x(t) is decomposed into the amplitude A(t) and 
phase φ(t) by using the cosine function: x(t) = A(t) cos(φ(t)) . This definition can capture the non-stationarity 
in the signal and is used in the signal processing literature37,40,41. In contrast, the IHTE method assumes that 
the signal is described as follows: x(t) = S(φ(t)) , where S(φ) is the waveform function. This formulation allows 
us to incorporate the complex waveform, whereas it cannot handle the non-stationarity. Second, we compared 
the reconstruction performance of the proposed method and the IHTE method. The result suggests that the 
proposed method is suitable for the signals with noisy phase-modulation (Fig. 8), whereas the IHTE method 
achieved better performance for the signals with large quasi-periodic phase-modulation (Fig. 7b). Note that the 
deviation from the true phase might not indicate the poor performance of the IHTE method due to the differ-
ence in the phase definition. In addition, Gengel and Pikovsky developed the IHTE method for noisy signals45. 
A more systematic evaluation of these methods is beyond the scope of this study. Finally, the proposed method 
is suitable for analyzing long signals. The computational complexity of the proposed method is comparable to 
the original HT method: O(N logN) , where N is the number of data points. By contrast, the complexity of the 
IHTE method is O(KN2) , where K ∼ 20 is the number of iterations of the IHTE.

There are limitations to the proposed method, offering the opportunity for future improvements. First, we 
assumed that the phase-modulation u(t) is so small that higher-order terms are negligible. In addition, we 
assumed that the amplitude of the signal is approximately constant. Despite these assumptions, the numerical 
results (Figs. 4, 5, 6) indicate that the proposed method is, to some extent, robust against violations of these 
assumptions. As shown in Fig. 6, the amplitude modulation of higher frequency can impair the performance of 
the proposed method. It is difficult to derive an approximate expression of the phase obtained by the HT method, 
e.g., Eq. (29), when the amplitude varies in time. Further studies are required to develop a phase reconstruction 
method that is robust to amplitude modulations. For example, it would be interesting to extend the proposed 
method by using the state-space model46–49 to capture the amplitude modulation in a signal. Lastly, our method 
assumed a specific form of the observation signals, x(t) = A(t) cos(ω̂t + u(t)) . While this assumption seems 
to be reasonable for rodent local field potential (LFP) and human electroencephalogram (EEG) recordings49, 
it might fail for the signals from a nonlinear oscillator21 or ECG measurement24,50. The spectral domain of the 
amplitude A(t) and phase-modulation u(t) would be highly overlapping for these signals, which impairs the 
accuracy of the proposed method. Thus, the proposed method should be extended in future studies to analyze 
the signals whose waveform deviates from the cosine function.

Another future research direction is to apply the proposed method to a real-world dataset. We have shown 
that the proposed method can accurately reconstruct the high-frequency component compared with the con-
ventional HT method. Therefore, the proposed method should be able to improve the estimation performances 
of the phase equations from the observed signals in biological systems. Moreover, the proposed method can 
identify the phase shifts in oscillatory signals more accurately than the conventional method (Fig. 9). It would 
be an interesting future study to identify the phase shifts in the circadian rhythms using the proposed method.

Method
Discrete Hilbert transform.  We used the Hilbert Transform (HT) for discrete signals, i.e., we used the 
discrete HT to analyze the signals. In this subsection, we describe the definition and properties of the discrete 
HT. Let X(ω) be the Fourier transform of a continuous signal x(t):

The HT of x(t) (Eq. 2) can be written by using its Fourier transform36

where sgn denotes the sign function defined as

(19)x(t) =
∫ ∞

−∞
dωX(ω)eiωt .

(20)H[x(t)] =
∫ ∞

−∞
dω

(

−i · sgn(ω)
)

X(ω)eiωt ,

(21)sgn(x) =
{−1 for x < 0,

0 for x = 0,
1 for x > 0.
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The discrete HT is defined to satisfy the property similar to Eq. (20). We consider the inverse discrete-time 
Fourier transform of a signal (sequence) x[k] = x(k�t):

where Xn is the discrete Fourier transform of x[k], and ωn = 2nπ/N is the n-th frequency. The discrete HT of 
x[k] is defined as

where Sn is

Again, we assume that the number of data points N is even. If this number is odd, the term N/2 should be 
replaced with (N − 1)/2 . From this definition (Eqs. 23, 24), we can derive the formula implying that the discrete 
HT can also reconstruct the phase of the sinusoidal wave,

where 0 < ω < π is the frequency parameter.
Next, we introduce Bedrosian’s theorem, which states that the HT of the product of a high-pass signal and a 

low-pass signal with non-overlapping spectra is given by the product of the low-pass signal and the HT of the 
high-pass signal. Formally, it is written as follows:

Theorem  (Bedrosian’s theorem for the discrete Hilbert transform36,51) Let x[k] and y[k] ( k = 0, 1, . . . ,N − 1 ) 
be sequences with their Fourier transform Xn and Yn ( n = 0, 1, . . . ,N − 1 ), respectively. If there exists an integer 
0 < m < N/2 such that

then the discrete Hilbert transform of the product of x[k] and y[k] is written as

Analysis of phase‑modulation reconstructed via the conventional Hilbert transform 
method.  Here, we analyze the phase-modulation reconstructed via the conventional HT method. The aim of 
this subsection is to derive a formula (Eq. 9) that characterizes the relationship between the phase-modulation 
and its reconstruction. Let us assume that we observe a weakly phase-modulated signal

where φ[k] = ω̂k�t + u[k] is the instantaneous phase at time k�t , ω̂ is the effective frequency, and u[k] is a small 
phase-modulation: ε = maxk |u[k]| ≪ 1 . We shifted the time origin to satisfy φ[0] = 0 in the analysis. Note that 
the amplitude can be set as 1 ( A0 = 1 ) without loss of generality.

The HT method reconstructs the phase via the argument of the analytic signal (Eq. 3). Substituting Eq. (28) 
into Eq. (3), we obtain

where the approximation symbol ≈ represents that the higher order terms O(ǫ2) are neglected, and Im[z] denotes 
the imaginary part of a complex number z. Hence, the phase-modulation reconstructed via the conventional HT 
method uH[k] := φH[k] − ω̂k�t can be written as follows:

To analyze the discrete HT in Eq. (30), we consider the discrete Fourier series of the phase-modulation

(22)x[k] =
N−1
∑

n=0

Xne
ikωn ,

(23)Hd(x[k]) =
N−1
∑

n=0

(−iSn)Xne
ikωn ,

(24)Sn =
{

0 for n = 0,
1 for 0 < n ≤ N/2,
−1 for N/2 < n ≤ N− 1.

(25)Hd(cos(ωk�t)) = sin(ωk�t), Hd(sin(ωk�t)) = − cos(ωk�t),

(26)Xn = 0 for m ≤ n ≤ N−m,
Yn = 0 for 0 ≤ n ≤ m− 1, N−m+ 1 ≤ n ≤ N− 1,

(27)Hd

(

x[k]y[k]
)

= x[k]Hd

(

y[k]
)

.

(28)x[k] = cosφ[k],

(29)

φH[k] = arg [ cosφ[k] + iHd(cosφ[k]) ] = arg
[

cos
(

ω̂k�t + u[k]
)

+ iHd

(

cos
(

ω̂k�t + u[k]
)) ]

≈ arg
[

cos(ω̂k�t)− u[k] sin(ω̂k�t)+ iHd

(

cos(ω̂k�t)− u[k] sin(ω̂k�t)
) ]

= arg
[{

cos(ω̂k�t)+ i sin(ω̂k�t)
}

−
{

u[k] sin(ω̂k�t)+ iHd

(

u[k] sin(ω̂k�t)
)}]

=ω̂k�t + arg

[

1− e
−iω̂k�t

{

u[k] sin(ω̂k�t)+ iHd

(

u[k] sin(ω̂k�t)
)}

]

≈ω̂k�t − Im

[

e
−iω̂k�t

{

u[k] sin(ω̂k�t)+ iHd

(

u[k] sin(ω̂k�t)
)}

]

,

(30)u
H[k] ≈ f (u[k]) := −Im

[

e
−iω̂k�t

{

u[k] sin(ω̂k�t)+ iHd

(

u[k] sin(ω̂k�t)
)}

]

.
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where ωn = 2πn/N is a frequency of the n-th Fourier component,

is the n-th frequency component. For the derivation of Eq. (31), we used the formula cN−n = c̄n , which reflects 
the fact that the phase-modulation is a real signal. Here, the number of data points N is assumed to be even. If 
this number is odd, the term N/2 should be replaced with (N − 1)/2 . Due to the linearity of the HT, the recon-
structed phase-modulation can be written as

We can further calculate Eq. (32) for each term f (vn[k]) by dividing three cases based on a frequency index 
m = ω̂N�t/2π that corresponds to the effective frequency ω̂ . 

Case 1	� Low frequency modulation: 0 ≤ n ≤ m− 1 . Using Bedrosian’s theorem (Eq. 27) and Eq.(25), we have 

 Substituting Eq. (33) into Eq. (30), we obtain 

Case 2	� Middle frequency modulation: n = m . We have 

 where we used the definition of the discrete HT (Eqs. 23, 24). Substituting Eq. (35) into Eq. (30), we obtain 

Case 3	� : High frequency modulation: m+ 1 ≤ n ≤ N/2 . Using Bedrosian’s theorem (Eq. 27) and the definition 
of the discrete HT (Eqs. 23, 24), we have 

 Substituting Eq. (37) into Eq. (30), we obtain 

Substituting Eqs. (34), (36), and (38) into Eq. (32), we obtain the Fourier series of the phase-modulation 
reconstructed by the conventional HT method

(31)u[k] =
N−1
∑

n=0

cne
ikωn =

N/2
∑

n=0

vn[k],

vn[k] =
{

cne
ikωn for n = 0 or n = N/2,

cne
ikωn + c̄ne

−ikωn otherwise,

(32)uH[k] ≈
N/2
∑

n=0

f (vn[k]).

(33)Hd

(

vn[k] sin(ω̂k�t)
)

= −vn[k] cos(ω̂k�t).

(34)f (vn[k]) = vn[k].

(35)
Hd

(

vn[k] sin(ω̂k�t)
)

=Hd

(

(

cne
ikωn + c̄ne

−ikωn

) eikωn − e−ikωn

2i

)

=− 1

2

(

cne
2ikωn + c̄ne

−2ikωn

)

,

(36)

f (vn[k]) =Im

[

−e
ikωn

{

(

cne
ikωn + c̄ne

−ikωn

)

e
ikωn − e

−ikωn

2i
− i

2

(

cne
2ikωn + c̄ne

−2ikωn

)

}]

=Im

[

i

2

{

cne
ikωn − cne

−ikωn + c̄ne
−ikωn + cne

ikωn

}

]

=
(

3

4
cn −

1

4
c̄n

)

e
ikωn −

(

1

4
cn −

3

4
c̄n

)

e
−ikωn .

(37)Hd

(

vn[k] sin(ω̂k�t)
)

=
{

i
(

−cne
ikωn + c̄ne

−ikωn
)

sin(ω̂k�t) for m+ 1 ≤ n < N/2,

−icne
ikωn sin(ω̂k�t) for n = N/2.

(38)

f (vn[k]) =
{

Im
[

−e
−ikωm

{

cne
ikωn + c̄ne

−ikωn + cne
ikωn − c̄ne

−ikωn

}

sin ω̂k�t
]

for m+ 1 ≤ n < N/2,

Im
[

−e
−ikωm

{

cne
ikωn + cne

ikωn

}

sin ω̂k�t
]

for n = N/2,

=Im

[

icne
ikωn

(

1− e
−2iωm

)

]

(for m+ 1 ≤ n ≤ N/2)

=1

2
cne

ikωn + 1

2
c̄ne

−ikωn − 1

2
cne

ikωn−2m − 1

2
c̄ne

−ikωn−2m .
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where c.c denotes the complex conjugate of the terms in the curly brackets. In the derivation of Eq. (39), we 
assumed that the sampling interval is small enough, i.e., N ≥ 6m+ 2 . Finally, we obtain Eq. (9) by rearranging 
Eq. (39). Note that we can also obtain a similar formula between cn and cHn  (Eq. 9) even when the amplitude 
A(t) changes slowly, i.e., the amplitude is a low-pass signal whose spectrum does not overlap with the spectra 
of cosφ(t).

Phase reconstruction based on the discrete Hilbert transform.  Here, we describe the conventional 
HT method for reconstructing the phase φH[k] from a discrete oscillatory signal x[k]. First, we pre-process the 
signal in order to mitigate the Gibbs phenomenon: we detect the first and the last peak points of the signal, and 
delete all of the data points prior to the first peak or after the last peak. Next, we calculate the Fourier transform 
of x[k] to obtain Xn . Then, we calculate the discrete HT, Hd(x[k]) , according to Eq. (23). Finally, we reconstruct 
the phase by calculating the argument of the analytic signal φH[k] := arg (x[k] + iHd(x[k])).

Data availability
The datasets and simulation codes for generating the data are available at https://​github.​com/​Akari​Matsu​ki/​
AnExt​ended​Hilbe​rtTra​nsform.​git.

Code availability
The code of the extended Hilbert transform is available at https://​github.​com/​Akari​Matsu​ki/​AnExt​ended​Hilbe​
rtTra​nsform.​git.
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