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Seagrass deformation affects fluid 
instability and tracer exchange 
in canopy flow
Guilherme S. Vieira 1, Michael R. Allshouse 1 & Amala Mahadevan 2*

Monami is the synchronous waving of a submerged seagrass bed in response to unidirectional fluid 
flow. Here we develop a multiphase model for the dynamical instabilities and flow-driven collective 
motions of buoyant, deformable seagrass. We show that the impedance to flow due to the seagrass 
results in an unstable velocity shear layer at the canopy interface, leading to a periodic array of 
vortices that propagate downstream. Our simplified model, configured for unidirectional flow in a 
channel, provides a better understanding of the interaction between these vortices and the seagrass 
bed. Each passing vortex locally weakens the along-stream velocity at the canopy top, reducing 
the drag and allowing the deformed grass to straighten up just beneath it. This causes the grass to 
oscillate periodically even in the absence of water waves. Crucially, the maximal grass deflection is 
out of phase with the vortices. A phase diagram for the onset of instability shows its dependence on 
the fluid Reynolds number and an effective buoyancy parameter. Less buoyant grass is more easily 
deformed by the flow and forms a weaker shear layer, with smaller vortices and less material exchange 
across the canopy top. While higher Reynolds number leads to stronger vortices and larger waving 
amplitudes of the seagrass, waving amplitude is maximized at intermediate grass buoyancy. All 
together, our theory and computations develop an updated schematic of the instability mechanism 
consistent with experimental observations.

Seagrass is typically deformable, which allows the grass blades to reconfigure according to the fluid  load1. While 
emergent canopies—those that are in the inter-tidal zone and emerge above the water surface—need stiffness for 
the stems to stand up out of the water, fully submerged seagrass species (such as Halodule wrightii, Syringodium 
filiforme and Zostera marina) tend to stand up by  buoyancy2. In order to photosynthesize, submerged canopies 
typically occupy shallow coastal  environments3, and in some cases this results in a significant portion of the 
flow being obstructed by the canopy. Seagrass beds exhibit a particularly rich set of dynamic behaviors due to 
their collective interaction with the flow. Hydrodynamic processes resulting from these interactions influence 
environmental processes such as sedimentation, transport of dissolved  oxygen4 and nutrients, plant growth, and 
biomass  production5–8. Seagrass meadows also influence sediment deposition and  resuspension9, as vegetation 
can trap suspended  materials10 and reduce sediment  movement11.

Instabilities of flow through submerged canopies yield a phenomenon known as monami—the progres-
sive, synchronous oscillation of aquatic  vegetation8,12. Current explanations of  monami13–15 rely on the exist-
ence of a shear layer at the top of the grass bed due to vegetation drag. Through a mechanism similar to the 
Kelvin–Helmholtz  instability16, the enhanced velocity shear near the grass top creates a sheet of vorticity that 
destabilizes into vortices over time. These vortices perturb the flow, which locally changes the deformation of 
grass blades and leads to synchronous oscillations of the grass bed. These perturbations to the mean flow have 
been observed experimentally and feature “sweeps” and “ejections” that occur at the leading and trailing edges 
of vortices,  respectively17–19. Transport of material across the canopy has also been studied  experimentally20,21. 
Our numerical simulations provide a complementary and comprehensive picture of the fluid instability, vortex-
seagrass interaction, and tracer exchange between the seagrass bed and the overflow in terms of its dependence 
on seagrass buoyancy and Reynolds number.

There are numerous modeling challenges in capturing the properties of this system, primarily related to the 
feedback mechanism between flow and vegetation. In a two-way coupled dynamic model, the fluid applies a 
load on each vegetative structure, which causes a resultant deformation that, in turn, affects the  flow22. Thus, in 
general, the fluid flow must be solved simultaneously with the configuration of each structure. These challenges 
have demanded sophisticated studies, both  experimental19,23–26 and  numerical27–31. Most previous simplified 
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models fall into one of two categories: models of flow over a specified set of rigid  obstacles16,24, or models where 
grass deformation can occur, but does not impact the flow  profile32. Fewer  models33 emphasize the coupling 
between grass deformation and flow, and our study is unique as it presents numerical simulations of the coupled 
system resulting in monami.

This study builds on previous work by Singh et al.16 and Wong et al.33 in analyzing the dynamics of flow 
through a submerged seagrass canopy and its resultant instabilities. Although monami is manifested in the 
grass motion, the drag exerted by the vegetation on the flow is central to the instability, and the resulting flow 
structures persist in laboratory experiments even when deformable grass is replaced by rigid  dowels15,17. Singh 
et al.16 proposed the seagrass effect on the fluid be modeled as a continuum drag acting perpendicular to the 
blade, proportional to the number of stems per unit area, and established the dependence between viscous 
effects and flow instability by performing a linear stability analysis of flow through an array of rigid beams. Wong 
et al.33 expanded this model to account for flexible beams, derived the coupled equations of motion and relevant 
dimensionless groups, and performed a stability analysis to investigate conditions for the onset of instability.

We are interested in the impact that the grass blade deflection has on the onset of the instability, progression 
of the developed vortices, and material transport resulting from this interaction. Our model incorporates blade 
deformability into the two-phase model by Singh et al.16, but as opposed to the approach adopted by Wong 
et al.33, where the grass blades are modeled as linearly elastic flexible beams with one end clamped perpendicu-
larly to the seabed, our model relies on buoyancy for the submerged grass blades to stand up. The grass blades in 
our model do not resist shear (zero flexural rigidity) and are always in equilibrium with the flow (no contribution 
of the inertial term in the equations of motion for the grass). These assumptions simplify the equations of motion 
for the grass, while successfully reproducing the monami dynamics. Given the range of seagrass characteristics 
that vary from plant to  plant32 and depend on light  exposure34, the ratio of buoyancy to stiffness in restoring 
the grass to its upright position can vary by orders of magnitude. For Zostera marina, buoyancy is an order of 
magnitude stronger than the flexural  rigidity32 in restoring the shape of blades, while for grasses that extend out 
of the water, the flexural rigidity dominates.

To model a submerged seagrass bed, we solve the Navier-Stokes equations for two phases: the grass-free 
overflow, and the grass-bed in which the seagrass contributes a bulk volumetric drag F that depends on the blade 
positions and velocity field (Fig. 1). The drag is quadratic in the velocity normal to the grass  blades16,33 and hence 
depends on the grass shape, which in turn depends on the fluid drag. We model the shape of representative grass 
blades rooted to the bed in the center of each grid cell column (in plan view) by assuming a balance between drag, 
which deforms the grass blade in the direction of flow (horizontally), and buoyancy, which restores its shape to 
vertical. There are N  grass blades per unit area that are modeled by a single representative blade that imposes drag 
on the fluid, but because the simulation is two-dimensional, the representative blade does not fully block the flow.

Two-dimensional simulations are performed using a version of the non-hydrostatic Process Study Ocean 
Model (PSOM)35,36. The submerged seagrass bed of undisturbed height ℓ is modeled in an open channel of 
undisturbed water height H using a grid that conforms to the free surface h(x, t) and seagrass height hg (x, t) as 
seen in Fig. 1. Because free surface signatures have been identified above canopy-flows26, we allow the free surface 
height to vary. The along-channel coordinate is x, the vertical coordinate is z, and for the study described here 
variations in the cross-channel (y) direction are set to zero. The inflow velocity profile is in equilibrium with 
the grass, and within a buffer of the outflow boundary, we restore the velocity profile to the same equilibrium 
profile. All variables are non-dimensionalized using the undisturbed water height H as the characteristic length 
scale, the horizontal flow speed at the free surface U as the velocity scale, and H/U as the timescale. Variables 
are henceforth presented in dimensionless form. The dimensionless parameters that govern the solution are

Figure 1.  Schematic of the domain used in the simulations. The steady-state horizontal velocity profile u(z) 
is imposed as the velocity inlet boundary condition. A conformal map accounts for variations in h and hg 
to separate the overflow (where F = 0 , in blue) and seagrass (where F  = 0 , in green) regions of the domain. 
Buoyant grass blades deform by the flow, apply a drag F on the fluid, and the composite tip positions determine 
hg.
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These are similar  to33, except for the buoyancy parameter β . Here, ν∗ is the constant eddy viscosity, ρ is the fluid 
density, ρg is the grass density, g is acceleration due to gravity, cD is the quadratic drag coefficient, d is the thickness 
of the grass blades in the along-flow (x) direction, while b is the width of the grass blades (in the y-direction). 
The Reynolds (Re) and Froude (Fr) numbers are standard parameters. The height ratio (r) is chosen as 0.5 in all 
our simulations, and this does not play a dominant role in any of the overall observations presented in this paper. 
The parameter � governs the drag impedance by the seagrass, affects the velocity shear, and is chosen as 1. The 
buoyancy parameter β is the ratio of seagrass buoyancy to drag and influences the shape of the grass blades. More 
buoyant grass has larger β and deforms less due to the flow. Choosing b and d as independent parameters enables 
us to change β without affecting � . In this study, we perform numerical experiments for a range of Re, which is 
varied by changing ν∗ , and a range of β , which is varied by changing d. We analyze the onset of flow instability 
and amplitude of grass oscillations as a function of Reynolds number and grass deformation. We examine how 
the vortex position aligns with the shape of the seagrass bed for low amplitude grass blade oscillations and how 
the exchange of material across the grass canopy is affected by the system dynamics.

Results
Instability onset and progression. Before the instability onset, the flow and grass are both steady. The 
steady-state solution is a function of z alone, and can be calculated with a simplified one-dimensional coupled 
model that eliminates dependence in x and t (“Methods” section).

The steady-state velocity profile u(z) , grass shape (xg , zg ) , and corresponding blade angle with the vertical 
θ(z) , calculated for Re = 1000 , r = 0.5 , � = 1 , Fr2 = 0.1 , and a range of values of the buoyancy parameter β , 
which in our model quantifies to what extent the blade can deform, is presented in Fig. 2. Solutions are computed 
with fluid boundary conditions u = 0 (no-slip) at the bottom ( z = 0 ) and du/dz = 0 at the surface ( z = 1 ). The 
horizontal pressure gradient is adjusted so that u = 1 at the surface. For the grass, the tension is zero at the tip, 
and the position is fixed at the bottom. The overbar is used to represent the steady-state solutions, which are 
independent of x and t.

Whether the grass relies on bending stiffness (as  in33) or buoyancy (this study) to restore its shape, the shape 
of the deformed grass and its implication for flow instability and fluid exchange are qualitatively similar (Sup-
plementary information). The smaller β , the more blade deflection, the larger the angle θ  along the blade, and 
the smaller the steady-state height hg corresponding to the height of the tip. As β increases, the velocity shear 
du/dz at the canopy top ( z = hg ) monotonically grows, with the limiting case β → ∞ corresponding to a fixed, 
vertical blade, and maximum shear.

We initialize the channel model with the steady-state solution described above, and with no vertical velocity. 
For sufficiently large Re and � , the shear layer at the canopy top is unstable, and instabilities are triggered sponta-
neously after finite time. The simulation (Fig. 3) with Re = 1000 , r = 0.5 , � = 1 , Fr2 = 0.1 , and β = 0.10 exhibits 
the instability onset at t = 50 as seen in the vorticity ζ = ∂zu− ∂xw and vertical velocity w fields (Fig. 3a,c). In 
most of the domain, w ≈ 0 and ζ ≈ du/dz with maximum ζ right above the canopy top, but some oscillations 
in ζ for x ∈ [16, 30] , where shear-instabilities start to grow and induce alternating vertical velocities.

When the instability is fully developed at t = 500 (Fig. 3b,d), the vorticity rolls up to form vortices. Vortices 
are shed from x ≈ 7 , grow until x ≈ 16 , and stabilize in size as they propagate downstream with the flow (time 

(1)Re = UH/ν∗, β =
(ρ − ρg )gd

ρcDU2
, r = ℓ/H , � = cDNbH , Fr = U/

√
gH .

Figure 2.  Steady-state (a) horizontal velocity profile u(z) , and the corresponding (b) angle with the vertical θ(z) 
and (c) blade shape (xg , zg ) , for Re = 1000 , r = 0.5 , � = 1 , and Fr2 = 0.1 . Buoyant grass model, with no-slip 
velocity boundary condition at z = 0 , and β = 0.01 , 0.02, 0.04, 0.10, and ∞ (dotted). The black markers on (a) 
and (c) mark the vertical position of the corresponding canopy tip hg in each case.
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evolution video in Supplementary information). The vortex centers lie between maxima and minima of vertical 
velocity, which peak just above the canopy (Fig. 3d). We also observe alternating vorticity maxima and minima 
near the seabed at z = 0 (Fig. 3b), which indicates that flow perturbations induced by the vortices penetrate to 
the bottom and cause flow reversal ( u < 0 ) near the seabed, where the unperturbed velocity is already small due 
to the no-slip bottom boundary condition.

The space-time evolution of vertical velocity at the canopy top z = hg , where hg is the level corresponding 
to the steady-state canopy height (Fig. 4a), reveals an initial instability onset that originates around x ≈ 20 and 
t ≈ 50 and is swept out of the domain and replaced by unperturbed flow (video in Supplementary information). 
Another instability starts at t ≈ 100 , now closer to the inlet at x ≈ 10 , and develops to generate vortices almost 
periodically. Other than small variations that occur over time, notably a weakened vertical velocity field at 
x ≈ 30, t ≈ 300 and some fluctuation in the onset position, vortices are shed at a regular frequency proportional 
to the local fluid speed divided by the momentum shear layer  thickness37 similar to Kelvin-Helmholtz instability. 
The vortices lead to alternating positive and negative w signatures that propagate downstream.

The generated vortices have constant speed of propagation (0.6), period (4.5), and wavelength (2.7). The 
propagation speed corresponds the mean downstream velocity at the height of the vortex centers. The spatial 
rms of w evaluated along horizontal slices of the domain, wxrms(z, t) , at times t = 0 , 50, and 500 (Fig. 4c) is used 
to identify the height of the maximum wxrms(z, t = 500) , indicated with a black dot, and corresponds roughly 
to the height at which the vortex cores propagate (see Fig. 3b). In the steady-state horizontal velocity profile 
(Fig. 4d), this height has a horizontal velocity u = 0.6 , which matches the speed of propagation of the perturba-
tions (Fig. 4b), that therefore propagate like a convective instability.

The instability onset and strength of vortices can be assessed via the domain-wide rms of the vertical velocity 
wrms(t) = (

∑
i,k w(xi , zk , t)

2/(NiNk))
1/2 , where Ni and Nk are the number of grid cells in x and z, respectively. 

The vertical velocity rms not only tracks when an instability has developed, but also indicates the strength of the 
vortices. The seagrass bed’s response to the instability is assessed by the rms value of the grass height perturbation 
with respect to the steady state height hg over all blade representatives, δhrms

g (t) = (
∑

i(hg (xi , t)− hg )
2/Ni)

1/2 , 
and quantifies the vertical amplitude of grass blade oscillations.

The two quantities wrms and δhrms
g  , plotted as a function of t in Fig. 4e, are zero before the onset, when there 

is no vertical velocity and all blades are at the steady-state shape. Their values increase rapidly at the initial onset 
of instability at t = 50 , they decrease as the initial instability is swept from the domain, then increase again and 
assume nearly steady values for t > 150 as the long-term instability sets in. Because of the observed plateauing 
behavior of both curves, long-term values for wrms and δhrms

g  are defined as the time-average for t ∈ [300, 500] 
and used to inter-compare different cases in a parametric study.

Monami kinematics: effect of vortices on seagrass. We analyze the flow field, grass deflections, and 
free-surface height to evaluate how the instability interacts with the seagrass meadow to produce the oscillatory 
motion known as monami. The shear-driven instability induces a velocity perturbation field u′ = u − u with 
respect to the steady-state flow u = (u(z), 0) that deflects the grass blades from their steady-state position.

We subsample the domain to visualize two vortices at t = 500 in Fig. 5a–c. We find that h(x) and hg (x) are 
approximately sinusoidal and out of phase, with peaks of hg slightly lagging troughs of h (Fig. 5a). While h has a 
more symmetric, sine-like profile, hg is less symmetric, with a steeper increase than decrease. The vortex cores are 

Figure 3.  Instability onset at t = 50 (a,c), and developed, long-term behavior at t = 500 (b,d), for Re = 1000 , 
β = 0.10 , r = 0.5 , � = 1 , and Fr2 = 0.1 . (a,b) Vorticity field ζ = ∂zu− ∂xw , and (c,d) vertical velocity w. The 
solid black lines represent the instantaneous seagrass height hg (x, t).
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centered below the troughs of h and above the peaks of hg (Fig. 5a,b). The grass height hg is shown in Fig. 5b as a 
thick black line, and we observe that the clockwise vortices induce the grass blades beneath to straighten up. Near 
the seabed, directly below the vortices, negative vorticity values (in blue) indicate that horizontal velocity pertur-
bations are strong enough to reverse the direction of the flow near the no-slip bottom. This generates convergence 
(and divergence) sites along the bed resulting in flow separation points that propagate with the vortices and could 
export sediment from the seabed. The velocity perturbation field calculated with respect to u(z) (Fig. 5c) further 
helps to visualize the response of grass blades to the flow perturbation. In Fig. 5c, blades are colored based on 
the angle of deviation from the steady-state angle along the blade, δθ = θ − θ  . There are two clockwise eddies 
that appear in the velocity perturbation field that align with the high vorticity regions in Fig. 5b. Additionally, 
there are counter-clockwise vortices in between the vortex roll up highlighted by the velocity perturbation field, 
that induce a forward deflection of the blades. Blades immediately below the clockwise-vortices straighten up, 
while blades in between those vortices are subject to the action of counterclockwise-vortices superimposed on 
the mean flow that induce more deformation.

The distribution of hg (Fig. 5d) spans [0.475, 0.495] and is asymmetric with respect to the steady-state hg , 
showing that forward and downward deflection is more common and stronger than upward deflection. This is 
due to the fact that the drag force that deflects the grass acts normal to the blade. When the grass is downward 
deflected, the downward vertical velocity helps to enhance the deflection. When the grass is upward deflected 
with respect to its steady-state shape, the upward velocities are more or less parallel to the grass and do not con-
tribute as much to the grass deflection as the downward velocity. The perturbation in the velocity field does not 
ever reverse the flow in the upper part of the canopy and, as a result, the grass blades never move left from the 
vertical position. A schematic of how the vortices induce seagrass motion is presented in Fig. 5e. The increased 
downward deflection of the grass occurs ahead and behind the vortex, where the counter-clockwise perturbation 
to the mean flow and the downward velocity cause a greater drag on the blades and deflect them forward and 
downward from their steady-state position (Fig. 5c). We identify the sweeps and  ejections17 as corresponding to 
the perturbed velocity field immediately ahead and behind the vortices, around the seagrass height level (Fig. 5b). 
In the sweep region (ahead), the stronger velocity has a downward component and increases downward deflec-
tion of the grass. In the ejection region (behind), the weaker velocity has an upward component and induces an 
upward deflection of the grass with respect to its mean position.

Dependence of instability onset and waving amplitude on Reynolds number and grass buoy-
ancy. The shear-driven instability and monami occur only when the drag-induced shear is strong enough for 
the vortex sheet at the canopy top to become unstable. This occurs when the velocity is large enough, i.e. above 

Figure 4.  Hovmöler diagrams presenting the space and time evolution of the vertical velocity at the top of the 
grass bed w(x, z = hg , t) for (a) the full domain and (b) a focused region indicated by the black box in (a). The 
yellow line in (b) indicates a constant speed 0.6 of propagation of the perturbations. (c) Vertical velocity rms 
along x at t = 0 , 50, and 500. (d) Steady-state background horizontal velocity. (e) Time evolution of the spatial 
rms of w (blue) and (hg − hg ) (green), identifying the instability onset and long-term behavior from both fluid 
and grass perspectives.



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3910  | https://doi.org/10.1038/s41598-023-30401-9

www.nature.com/scientificreports/

some critical value of Re, and when the grass-induced drag ( � ) is sufficiently large. However, we find that β , 
the buoyancy parameter, also affects the instability onset and size of vortices. We use the long-term wrms as an 
indicator of instability and vortex strength, and δhrms

g  as an indicator of seagrass waving, to conduct a parametric 
study in which we vary Re and β over a range of values: Re ∈ [500, 1500] and β ∈ [0.02, 0.20] . We run a total of 
110 simulations, keeping the other parameters constant: r = 0.5 , � = 1 , and Fr2 = 0.1.

We find no instability ( wrms = 0 ) for small Re and β and that wrms increases for increasing values of Re and 
β , saturating for high values of both parameters (Fig. 6a). Larger wrms corresponds to stronger vortices inducing 
vertical velocities of greater magnitude, and it is reasonable to expect that as Re increases for fixed β , the shear 
layer becomes stronger as do the resulting vortices. As β is increased (for fixed Re), the more buoyant blades 
are less deflected from the vertical. This sharpens the mean velocity gradient ( du/dz ) and results in stronger 
instabilities. Less buoyant blades are more deflected for the same Re, impose less drag (which is largely due to 
the velocity component normal to the grass), and inhibit the development of instabilities for fixed Re. Though 
our model uses buoyancy, the result is that the less the deflection of stems, the stronger the instability, regardless 
of whether bending stiffness or buoyancy is restoring the grass blades to vertical.

The critical combinations (Re,β) in the instability diagram above which wrms > 0 (boundary between black 
and blue regions), define an instability curve in Fig. 6a. This curve is in agreement with the result that shear at 
the top of the canopy is the relevant criterion in determining the stability of steady unidirectional  flows33, as the 
velocity shear magnitude grows with both Re and β.

While wrms grows monotonically with Re and β (Fig. 6a), a non-monotonic behavior of the amplitude of wav-
ing, assessed by δhrms

g  , is observed in Fig. 6b. In general, the amplitude of grass motion or δhrms
g  increases with Re. 

However, the maximum δhrms
g  occurs for intermediate values of β . Small β suppresses the shear instability and 

creates small wrms , whereas for larger values of β (e.g. 0.20), the buoyancy of the grass resists its deformation, even 
though the fluid instability and wrms are stronger. For large β , the grass is almost vertical and the vortices do not 
induce an observable oscillatory motion. Grass oscillations are therefore maximized for specific combinations 
of (Re,β) , with maxima δhrms

g  observed for high Re with intermediate β values. The observed trends point to the 
fact that experiments using rigid  dowels15,17 may induce stronger vortices compared to what would be observed 
for more realistic, deformable seagrass beds.

Figure 5.  Instantaneous plots at t = 500 , for the (a) surface height h (solid blue line) and grass height hg (solid 
black line, with dashed line representing the reference steady-state height hg ), (b) contours of vorticity ζ and 
arrows representing the velocity field u , with the grass height perturbation (black line) amplified by a factor of 
4. (c) Perturbation velocity field u′ = u − u and grass blade representatives, with colors representing the angle 
of deflection with respect to the steady-state angle, δθ = θ − θ  , in radians. (d) Histogram of the grass height 
distribution within the entire domain, with inset representing the blade shapes corresponding to minimum 
(red), maximum (blue), and steady-state (black) height (bin width = 0.001). (e) Schematic of how vortices (iso-
vorticity contours) induce grass blade deflection, with arrows representing the velocity perturbation induced, 
and colors indicating how they deflect the grass blade locally. The blue line on top representing the free-surface.
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Material exchange across the grass bed. To evaluate the impact of the vortices and the grass deflec-
tion on material exchange between the seagrass bed and the overflow, we model a tracer field and evaluate its 
transport. The initial tracer distribution C0(z) = 2

(
hg − z

)
 is linear in z with C0 = 0 at the canopy top z = hg , 

C0 > 0 within the grass bed and C0 < 0 in the overflow.
The tracer transport and exchange is assessed for the same range of Re and β as above. A snapshot of the 

tracer distribution at t = 500 highlights how the material transport resulting from the vortices changes with 
grass buoyancy for β = 0.06 and β = 0.14 in Fig. 7a,b. The cores of the vortices lie predominantly above the 
canopy and the majority of material entrained from the seagrass bed by the vortices appears to come from the 
upper region of the grass bed (Fig. 7b) despite the vortex velocity signature extending well into the grass. Iso-
vorticity contours highlight the alignment of the material vortices (Fig. 7a,b) and the cores of highest vorticity.

Less buoyant blades, β = 0.06 , in Fig. 7a allow for a larger mean grass deformation and smaller vortices. As 
the vortices propagate down the channel in Fig. 7a, they grow in size and in the amount of material entrained. 
At the same time, material from the overflow is entrained into the grass at a greater rate as well. Vortices are 
shed from a more or less fixed location x ≈ 15 and grow primarily in vertical extent, as their widths appear to be 
approximately constant. For β = 0.14 in Fig. 7b, with more buoyant blades, the vortex size is effectively constant 

Figure 6.  Parametric sweep of (Re,β) combinations and the resulting long-term rms of the vertical velocity and 
grass height perturbation, for r = 0.5 , � = 1 , and Fr2 = 0.1 . Contour plots for (a) wrms tracking instability from 
the flow perspective, and (b) δhrms

g  from the seagrass bed perspective. Lines represent contour levels.

Figure 7.  Vortex size and tracer transport variability for β = 0.06 and 0.14. Instantaneous plots of (a,b) the 
tracer concentration C, with gray dashed lines representing iso-vorticity contours ( ζ = 1.5, 2, 2.5 ), and (c,d) 
vertical tracer flux φ , at t = 500 , with Re = 1000 and β = 0.06 and β = 0.14 , respectively. The solid black line is 
the seagrass height hg.
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throughout the same domain, meaning that the development region from no vortex to fully developed vortex 
is shorter compared to the previous case.

To quantify the vertical flux of tracer φ(x, z, t) and the tracer exchange induced by these instabilities, we define 
the vertical tracer flux as the product of the local vertical velocity and the tracer perturbation with respect to C0 , 
expressed as φ = w C′ , where C′ = C(x, z, t)− C0(z) . The instantaneous vertical flux at t = 500 in Fig. 7c,d for 
β = 0.06 and β = 0.14 , corresponding to the tracer fields in Fig. 7a,b, is positive or negative depending on the 
co-variance between w and C′ ; positive flux results from the upward (and downward) movement of anomalously 
high (and low) tracer anomaly. The flux both out of, and into, the grass grows as the vortex propagates down 
the channel for smaller β (Fig. 7c) . While an individual vortex is experiencing progressively more exchange as 
it propagates down the channel, the domain as a whole has reached steady-state with regards to the amount of 
exchange taking place. For β = 0.14 (Fig. 7d) the vortices are fully developed and have a constant size and the 
exchange into and out of the grass bed is balanced. The overturning that occurs inside the vortex cores is reflected 
by the red-green lobe patterns where the values of φ are dominated by the vertical velocities.

To quantify the relative amount of tracer exchange occurring between the seagrass domain and the overflow, 
we define the tracer exchange � at z = hg , for x ∈ [xa, xb] , as

Both φ and � should be viewed as relative, as their value depends on the initial tracer distribution. The time evo-
lution of �(t) is plotted in Fig. 8a for β ∈ [0.02, 0.20] , with xa = 20 and xb = 35 . The small oscillations observed 
in each of these curves relates to the vortex turnover time ( ≈ 10 ) and to new vortices entering and leaving the 
domain of integration (see Supplementary information for a video showing how the flux field φ synchronizes 
with the time-evolution of � for β = 0.06 and β = 0.14 ). Focusing of the long term variations, we observe that 
the exchange � grows once the instability starts, and plateaus in all cases for t > 300 . We therefore define the 
long-term average exchange �∗ as the time-average of �(t) for t ∈ [300, 500] . Tracer exchange, measured by 
this metric, is higher for less deformable blades (larger β ), when all other parameters are kept constant. �∗ var-
ies with the buoyancy parameter β and with Re (Fig. 8b,c). The increase in exchange with β and Re eventually 
saturates for β = 0.10 and Re ≥ 1300 . For larger Re, we observe a slight decrease in �∗ alongside an increase in 
the uncertainty associated with the long-term rms value.

The parametric study is used to investigate the dependence of the long-term average exchange �∗ on (Re, β ). 
The exchange in Fig. 8d shows strong correlation with the wrms trends previously observed in Fig. 6a. This result 
is in agreement with the comment  in21 that the exchange of a scalar would follow the same trend as the exchange 
of momentum, and decrease as canopy deformability and motion increases. For growing Re or β , however, larger 
variability is observed. This is also seen in Fig. 8b,c for large β and Re, respectively, and is potentially related to 
vortex merger events that become more common with increasing Re and induce temporal fluctuations on the 
exchange (Supplementary information).

(2)�(t) =

∫ xb

xa

|φ(x, z = hg , t)| dx.

Figure 8.  (a) Tracer exchange � as a function of time for β ∈ {0.02, 0.04, . . . , 0.20} . Long-term exchange �∗ 
(b) as a function of β , for Re = 1000 , (c) as a function of Re, for β = 0.10 , and (d) as a function of (Re,β) . Error 
bars in (b,c) correspond to the rms deviation from the mean, and colors match curves in (a). In (d), the colors 
represent the mean value �∗ for the given parameter combination, and the marker size represents the rms 
deviation from the mean.
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Discussion
In our model, where buoyancy and fluid drag determine the grass blade shape, we find that the Kelvin-Helm-
holtz-like flow instability weakens with more deflection of the blades. We hypothesize that this result will hold 
regardless of whether the grass deflection is restored by bending stiffness or buoyancy. As our blades stand up 
by buoyancy and have no flexural rigidity, the buoyancy parameter β controls the degree of deformation of the 
grass blades and yields analogous results to the Cauchy  number33,38 for flexible beam models (Supplemental 
information). This hypothesis is further supported by similarities between experiments featuring flexible blades 
with known  elasticity17 and our model. Changing the deflection mechanism, therefore, should not impact the 
qualitative behavior.

Schematics from previous studies indicated that clockwise-vortices forward-deflect the grass blades imme-
diately  below8,15,21,33,39. We find to the contrary that the vortices straighten the grass directly below their core 
because the horizontal velocity perturbation induced by the vortices acts in the opposite direction to the mean 
flow. This results in a lower drag force on the grass below the vortex core relative to steady-state, which makes the 
grass blades more erect. Our schematic of how the vortices induce seagrass motion (Fig. 5e) provides a revision 
of previous schematics in the literature and is consistent with the experimental measurements in Ghisalberti 
and  Nepf17 (Figures 7 and 8 in their paper), which report that the smallest horizontal velocity aligns with where 
the grass blades are most erect and the highest velocities where the grass is most deflected (Supplementary 
information). Our result that more deformable seagrass blades inhibit tracer exchange is also consistent with 
experimental observations. Nepf and  Ghisalberti21 find that exchange of momentum is most efficient for rigid 
canopies and exchange efficiency decreases as the deflection of the canopy increases. They conjecture that the 
exchange of a scalar should follow a similar trend and decrease as canopy deformability and deflection increase.

Our model of the instability and seagrass response also highlights some phenomena within the canopy that 
warrant further study. For cases of large � , where the flow speed within the canopy is much smaller than the 
overflow, the velocity perturbations induced by the vortices cause flow reversal near the seabed, which results 
in flow separation points that propagate with the vortices and could export sediment from the seabed. Sedi-
ment resuspension related to the presence of seagrass canopies has been observed in the  field40 and quantified 
in laboratory experiments. Seagrass canopies were found to increase seabed sedimentation compared to bare 
substrates, and the more blades per unit area, the greater the amount of sediment deposited on the  seabed41. 
Further enhancements of the model would be necessary to reflect the sediment transport dependence on the 
total kinetic  energy42 or the streaming of sediment through vegetative  channels43. Another feature that is con-
sidered in our model is the free surface and its variation relative to the position to the vortex. While Mandel 
et al.26 have measured experimentally the surface signature of the shear-instability that develops as flow moves 
through a canopy of rigid rods, their study does not consider the relative phase of the surface signature and the 
induced vortices. However, they provide a schematic (Figure 1 in their paper) indicating the surface wave crests 
immediately above the vortices, which is 180◦ out of phase with our model. Further experimental investigation 
of the relative phase as well as an analysis of the free-surface signature of monami with a moving grass bed could 
provide insight into the potential of remotely observing monami.

Despite qualitative agreement with experiments that feature larger scale oscillations of the grass, our model 
is developed for small amplitude blade oscillations. Higher order effects that have been neglected in our model, 
such as grass inertia, added mass, and virtual  buoyancy33,38, can be incorporated to model the grass meadow for 
oscillations of higher amplitude. Inertia may introduce another characteristic frequency to the oscillatory motion, 
and tracking how the blade moves in time and using the instant relative velocity between fluid and blade would 
more accurately represent the drag for faster, higher amplitude grass motion. Further refinement of the method 
used to distribute the blade forces onto the computational grid to account for the position of the blade and the 
center of neighboring cells in both x and z direction is also desirable, as it allows for a more accurate description 
for higher amplitude oscillations.

While we focused exclusively on the effects of Re and β in this study, variations of the dimensionless param-
eters r, � , and Fr also impact the results and can be addressed using the current version of the model. Addition-
ally, the model can handle variations in the canopy to free-surface height ratio r and spatially uneven �(x, z) . It 
can be used to study variable blade number per unit area N  , spatially variable grass parameters b, d, and drag 
coefficient cD . In the current study we explored the two-dimensional vortex regime and low amplitude grass 
oscillations, but performing three-dimensional simulations with the model would be especially beneficial to 
study instabilities along the y-direction and vortex interactions. Our model could also be used to compare with 
field studies of seagrass meadows that quantify fluid exchange above and within the  canopy44. Additionally, a 
study of tracer and sediment transport could be undertaken from a Lagrangian perspective, by applying coher-
ent structure detection methods. This could be used to more conclusively explain how the grass motion impacts 
material exchange. Finally, applications are not constrained to aquatic vegetation, and our model can simulate 
atmospheric flows through forests by adjusting the dimensionless parameters to produce the typical canopy 
deformations and velocity magnitudes.

Conclusions
Our two-phase model of buoyant, deformable, non-shear resistant seagrass blades captures the interaction of flow 
and submerged canopies, yields shear-instabilities that evolve into vortices and induce an oscillatory motion of 
the grass blades. While previous schematics of the vortex-grass interaction feature the greatest deflection of the 
grass immediately below the vortices, our model demonstrates that the velocity perturbation induced by these 
clockwise vortices acts to make the grass immediately below the vortex more erect than the surrounding canopy, 
forming the maxima in canopy height. Perturbations induced by the vortices to the background flow increase 
deflection ahead and behind the vortex.
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A stability study of the system as a function of (Re,β) demonstrates the onset of instability. The vertical veloc-
ity induced by the instability increases with both Re and β . As Re increases, the shear layer strength increases 
resulting in stronger vortices. Increased β , corresponding to more buoyant grass that is less deformable, also 
produces stronger vortices, indicating that the deformability of the grass reduces the vortex strength and delays 
the instability onset. A scalar field advected with the flow is used to quantify material exchange between the sea-
grass bed and overflow. Tracer exchange is a function of Re and β , with less deformable blades or larger Re 
leading to an increased shear above the canopy that results in stronger vortices inducing more exchange. Grass 
deformation, therefore, inhibits fluid exchange by decreasing the shear magnitude at the canopy top, the size of 
resulting vortices, and induced vertical velocities.

Methods
Non-hydrostatic model formulation. Numerical simulations are run using a version of the Process 
Study Ocean Model (PSOM)35,36, a finite-volume, non-hydrostatic model that we modify to account for the sea-
grass drag, recompute the blade shapes at each time step as a function of the velocity field, and solve the two-way 
coupled system of equations in dimensionless form. The governing equations for the fluid are the incompressible 
Navier-Stokes equations with an added body force term that models the seagrass drag on the fluid and is exclu-
sively applied within the seagrass phase. Following the process of homogenization  in33, this term accounts for 
the effects on the flow from all resulting forces applied by multiple seagrass blades on the fluid. The free-surface 
h satisfies the integral form of the kinematic condition, and a scalar tracer field of concentration C is advected 
with the flow.

We consider a dimensionless system of equations similar to the one used  by33, with a critical difference being 
the inclusion of the buoyancy parameter β to restore the grass deflection instead of the Cauchy number for bend-
ing stiffness. The five dimensionless parameters Re, β , r, � , and Fr defined in (1) uniquely determine the flow 
characteristics and can be varied independently by tuning the dimensional parameters ν∗ , d, ℓ , and N  , respec-
tively. The resulting dimensionless governing equations, obtained using the characteristic scales [x, z, h, hg ] = H , 
[u] = U  , [t] = H/U  , [p] = ρU2 , and [C, θ ] = 1 , are

For all the simulations presented, the steady-state velocity profile u(z) is imposed at both the inlet and outlet, 
and a restoring term is applied to a buffer region at the outflow boundary (omitted in Fig. 1) for x ∈ [L, Lr] . The 
buffer is used to suppress the vortices so the flow matches the outflow boundary condition, thereby minimizing 
reflections from the boundary. The bottom boundary has a no-slip condition for the velocity ( u = w = 0 ). Pres-
sure is constant at the free-surface. In this study, we explore two-dimensional solutions by allowing no variations 
in the y-direction within the model.

Buoyant blade equations. The seagrass bed is modeled using a single seagrass blade representative per 
cell center used in the numerical simulations (with the i-th representative rooted at (x = xi , z = 0) , Fig. 9a). 
There are N  grass blades per unit area, and each representative models the local averaged blade shape and con-
tribution to the flow. Neglecting flow in the y direction, the motion of each blade representative is confined to 
the the xz plane, and blade representatives are uniformly distributed in the x-direction.

All blade representatives are inextensible and have constant length ℓ . We solve for their shape as a func-
tion of the grass buoyancy and fluid load due to drag. The shape of a blade is described by the coordinates 
xg (s) = (xg (s), zg (s)) , which are measured with respect to its base at x = xi and parameterized by the distance s 

(3)

∇ · u = 0,
Du

Dt
+

1

Fr2
∇Hh+∇p−

1

Re
∇2

u + � sec θ f = 0, ∂th+∇H ·

∫ h

0

u dz = 0,
DC

Dt
= 0.

Figure 9.  (a) Schematic of a grass blade representative, rooted at xi , with grass coordinates in green. (b) Forces 
acting on an infinitesimal, inextensible blade element: tension T , drag per unit length fD , and buoyancy per unit 
length fB.
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along the blade ( s = 0 at the base and s = ℓ at the tip, Fig. 9a). The blade coordinates in the xz plane are uniquely 
determined by xi and the clockwise blade angle θ(s) with the vertical. The blade has width b (along y) and thick-
ness d (along x).

At every instant t, we assume the grass blades are in equilibrium with the flow, which corresponds to neglect-
ing the blade inertia (note that typically d ≪ b and the blade acceleration is small, which makes the inertial 
term negligible compared to the drag and tension contributions). The blades are buoyant ( ρg < ρ ) and do not 
resist shear (their flexural rigidity EI is negligible). Under these assumptions, the only three forces acting on the 
blade are: tension, drag, and buoyancy (Fig. 9b). Other force terms affecting the blade  motion38, such as virtual 
buoyancy and added mass, are neglected under our assumptions.

The tension T = (Tx ,Tz) is oriented along the blade. We assume that drag acting tangential to the blade is 
negligible. The drag per unit length fD is normal to the blade and obeys a quadratic drag law, and the buoyancy 
per unit length fB points upward:

where n̂ = (− cos θ , sin θ) is the upstream normal vector to the blade and ẑ = (0, 1) is the unit vector pointing 
upward.

After non-dimensionalizing the tension, drag, and buoyancy, the force balance for the blade element becomes

The boundary condition T(s = ℓ) = 0 at the grass tip allows us to solve for T(s) by integrating (5) from tip to 
base. Because T · n̂ = 0 , the local blade angle is

under the assumption that the blade does not overturn ( Tz > 0 and |θ | < π/2 along the blade). Finally, integrating

from the root up (for s = 0 to ℓ ) uniquely determines the instantaneous blade shape if the velocity field is known.

Fluid-blade coupling. The two-way coupling in our model accounts for the impact of the fluid velocity on 
the shape of the grass, as well as that of the grass shape on the fluid, via the drag force. The canopy height hg (x, t) 
separating the two phases—seagrass and overflow—depends on the instantaneous positions of all blades. Once 
the coordinates for all blade tips at the instant t have been determined, hg (x, t) is obtained by fitting a spline 
through the blade tips.

The relationship between the drag force per unit length f  , that acts on a blade representative and is used to 
solve for the blade shape, and the drag force per unit volume F , that acts on any point in the fluid and appears in 
the momentum equations, is obtained through the process of homogenization presented  in33. The force F on the 
fluid is proportional to � and to the secant of the local blade representative angle θ , which physically accounts 
for an increase in the effective number of blades per unit area when neighboring plants tilt. Everywhere within 
the grass bed, where z ≤ hg (x, t) , F = −� sec θ f  , and at the overflow, where z > hg (x, t) , we set F = 0 .

Note that while F is defined at any location (x, z), f  and θ are evaluated along the blade representatives only 
and are a function of (i, s). In order to distribute the drag from each blade element to its neighboring cells, we use 
a Gaussian kernel in the x-direction, with standard deviation 0.3�x . The relationship between f  and F couples 
the equations for fluid and grass blades, and an iterative under-relaxation method is used at each time step for 
each grass representative to attain convergence to the equilibrated grass shape.

Numerical grid and conformal map. A conformal map for the vertical grid coordinate accounts for 
variations in time of the seagrass height hg (x, t) and free-surface height h(x, t), allowing us to reproduce the 
monami dynamics in an open channel while maintaining a uniform grid in the transformed space. This requires 
transforming the equations and boundary conditions to solve them in the computational domain, as time and 
the physical domain  evolve35,36.

We discretize the physical domain with a smooth boundary fitted curvilinear grid, and map this domain 
onto a computational grid that is rectangular, uniform, and has Ni by Nk grid intervals in the x and z directions, 
respectively. The free-surface ( z = h(x, t) ) is mapped onto the top boundary of the rectangle in the computa-
tional domain. The seabed ( z = 0 ) is mapped onto the bottom boundary of the rectangle. Finally, the top of the 
seagrass bed ( z = hg (x, t) ) is mapped to the top edge of the Nkg-th cell row in the computational domain, so 
that the bottom Nkg cell layers correspond to the seagrass phase, where drag is applied, and the top (Nk − Nkg ) 
cells correspond to the overflow phase, where there is no drag. Cells corresponding to each of the two phases 
are illustrated in green and blue in Fig. 1.

The simulations presented here use Ni = 216 , Nk = 48 , and Nkg = 24 . The grid spacing in the physical 
domain is �x = 0.2 horizontally, so that Lr = 43.2 (the physical channel is 43.2 by 1), and �z ≈ 0.02 vertically 
(note that �z is non-uniform and varies depending on hg and h), and a uniform time step �t = 0.1 is used. The 

(4)fD = −
1

2
ρbcD(u · n̂)|u · n̂| n̂, fB = (ρ − ρg )gbd ẑ,

(5)
dT

ds
+ f + β ẑ = 0, where f = −

1

2
(u · n̂)|u · n̂| n̂.

(6)θ = tan−1

(
Tx

Tz

)
,

(7)
dxg

ds
= sin θ ,

dzg

ds
= cos θ
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horizontal length of the domain before the buffer region where the velocity profile is restored to u(z) is L = 36 , 
and the dimensionless domain considered for the analysis is x ∈ [0, L] , z ∈ [0, 1].

Data availability
The data in support of the reported findings are available from the corresponding author upon request. The code 
is available at  https:// github. com/ PSOM/ seagr ass_ bed. git.
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