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Comparative validation 
of AI and non‑AI methods 
in MRI volumetry to diagnose 
Parkinsonian syndromes
Joomee Song 1,9, Juyoung Hahm 2,3,9, Jisoo Lee 2,4, Chae Yeon Lim 2,5, Myung Jin Chung 2,6,7, 
Jinyoung Youn 1, Jin Whan Cho 1, Jong Hyeon Ahn 1* & Kyungsu Kim 2,7,8*

Automated segmentation and volumetry of brain magnetic resonance imaging (MRI) scans are 
essential for the diagnosis of Parkinson’s disease (PD) and Parkinson’s plus syndromes (P‑plus). To 
enhance the diagnostic performance, we adopt deep learning (DL) models in brain MRI segmentation 
and compared their performance with the gold‑standard non‑DL method. We collected brain MRI 
scans of healthy controls ( n = 105 ) and patients with PD ( n = 105 ), multiple systemic atrophy 
( n = 132 ), and progressive supranuclear palsy ( n = 69 ) at Samsung Medical Center from January 2017 
to December 2020. Using the gold‑standard non‑DL model, FreeSurfer (FS), we segmented six brain 
structures: midbrain, pons, caudate, putamen, pallidum, and third ventricle, and considered them 
as annotated data for DL models, the representative convolutional neural network (CNN) and vision 
transformer (ViT)‑based models. Dice scores and the area under the curve (AUC) for differentiating 
normal, PD, and P‑plus cases were calculated to determine the measure to which FS performance can 
be reproduced as‑is while increasing speed by the DL approaches. The segmentation times of CNN and 
ViT for the six brain structures per patient were 51.26 ± 2.50 and 1101.82 ± 22.31 s, respectively, being 
14 to 300 times faster than FS (15,735 ± 1.07 s). Dice scores of both DL models were sufficiently high (> 
0.85) so their AUCs for disease classification were not inferior to that of FS. For classification of normal 
vs. P‑plus and PD vs. P‑plus (except multiple systemic atrophy ‑ Parkinsonian type) based on all brain 
parts, the DL models and FS showed AUCs above 0.8, demonstrating the clinical value of DL models in 
addition to FS. DL significantly reduces the analysis time without compromising the performance of 
brain segmentation and differential diagnosis. Our findings may contribute to the adoption of DL brain 
MRI segmentation in clinical settings and advance brain research.

Parkinson’s disease (PD) diagnosis is primarily based on clinical presentation. However, for atypical symptoms 
called red  flags1, brain magnetic resonance imaging (MRI) is essential for diagnosing Parkinson-plus syndromes 
(P-plus), such as multiple system atrophy (MSA) and progressive supranuclear palsy (PSP). MRI improves the 
diagnostic accuracy and can be used for monitoring disease  progression2. Brain MRI can reveal various features 
that appear in P-plus but not in  PD2–4. For instance, patients with PSP show marked midbrain  atrophy5, known 
as the hummingbird sign. In MSA- Parkinsonian type (MSA-P), the putamen is atrophic, with a flattened lateral 
border, and shows a hypointense signal on T1-weighted gradient-echo images. Patients with MSA-cerebellar 
type (MSA-C) show predominant atrophy in the pons and middle cerebellar peduncles, resulting in an increased 
midbrain-to-pons  ratio6 and a decrease in the magnetic resonance Parkinsonism  index7. Accordingly, quantitative 
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measures of the volume of these brain structures have also been assessed, showing high sensitivity and specificity 
in differentiating PD from P-plus8.

Although the diagnostic sensitivity and specificity obtained by evaluating the midbrain area are generally 
high for differentiating between PSP, MSA, and  PD9, the visual assessment of this area is not quantitative, lacks 
objectivity, and highly dependent on the physician’s skills or image acquisition. Consequently, diagnoses based on 
visual assessments have shown a broad spectrum of accuracy, even falling below 80%10–12. To develop a consistent 
and quantitative analysis of brain MRI, volumetry of the midbrain area has been used as an optimal predictor for 
accurate  diagnosis6,8,13,14. Thus, brain image segmentation has become an important stage in most downstream 
analyses based on prediction models or automated machine-learning (ML) methods for volumetry and diagnosis.

A trained physician’s manual segmentation of brain MRI scans is strenuous and time-consuming, and it 
requires a highly skilled specialist to correctly identify the brain structures. Various automated techniques using 
atlas-based or deep-learning (DL) techniques have been developed to overcome these problems. Although auto-
mated image segmentation models for the brain show  limitations15,16, FreeSurfer (FS)17 can extract brain struc-
tures with relatively high accuracy. Therefore, FS has been widely adopted as a non-DL automated segmentation 
 method17–21.

Various automated segmentation methods for brain structures have been developed, but their use in clini-
cal practice is limited, being typically used in one-time studies. This is attributable to the time-consuming and 
complex process of automated segmentation models compared with physicians’ simple visual assessments of 
brain MRI scans. For instance, the automated FS for segmentation takes more than 4.5 h per patient to segment 
the brain captured in an MRI scan. This complexity problem occurs because existing automated segmentation 
methods use atlas-based  registration22–25. In fact, expressing segmentation as an atlas-based registration problem 
requires considerable time, and FS must be optimized to obtain a coordinate transformation function suitable 
for the internal atlas model of each test sample.

An automated model for fast segmentation and diagnosis without involving intricate methods should be 
developed for clinical use. Although DL segmentation has been developed and used in various fields including 
brain  segmentation26–28, studies for the efficiency and accuracy of segmenting the specific parts of the brain MRI 
(e.g., separating midbrain and pons for Brainstem Substructure pipeline) of specific neurodegenerative diseases is 
still progressing. Unlike existing non-DL methods, DL may increase the analysis speed by completing segmenta-
tion using only forward computations based on learned parameters without requiring optimization processes 
such as registration. However, it is difficult to predict whether DL shows performance degradation compared 
with non-DL methods, especially in segmenting brain MRI of neurodegenerative diseases. Our study is signifi-
cant because it demonstrates the comparative performance of both DL and non-DL methods in segmenting 
brain MRI and applies them to diagnosing Parkinsonian diseases. In other words, this study took a further step 
by showing the differential diagnosis of parkinsonian diseases using brain segmentation by AI and non-AI models, 
not merely comparing the performance of segmentation between AI and non-AI models as previous  studies26.

Recent DL segmentation models are classified into convolutional neural network (CNN) and vision trans-
former (ViT) architectures. Accordingly, a representative model of each framework, V-Net29 and UNet trans-
former (UNETR)30, respectively, were adopted to perform volumetric 3D image segmentation in this study. 
The DL models were trained to segment brain structures on MRI scans for the diagnosis of neurodegenerative 
diseases, and their performances were analyzed and compared with an existing non-DL model, FS. Six brain 
structures that are important in classifying normal, PD, and P-plus cases were segmented: putamen, pallidum, 
midbrain, pons, caudate, and third ventricle. The volumes of the segmented areas were subsequently used to 
differentiate between normal, PD, and P-plus cases. As illustrated in Fig. 1, we compared the disease differentia-
tion accuracy and segmentation time of the DL models with those of FS, which were regarded as the reference 
(i.e., ground truth) for training the DL segmentation models. Therefore, the key contributions of our study from 
this comparative analysis are as follows: (1) We demonstrate that the gold standard DL models can extensively 
decrease FS inference time without compromising diagnostic performance (Table 1) and successfully reproduce 
the brain part segmentation results of FS in neurodegenerative diseases (Fig. 2), (2) Consequently, we show 
that DL enables a much less complex segmentation and comparable automatic diagnosis of neurodegenerative 
diseases as the current non-DL approach (Tables 2 and 3), promising the practical usage of DL-based brain MRI 
segmentation in the diagnosing or studying neurodegenerative diseases (e.g, differential diagnosis between PD, 
P-plus, and normal cases).

Results
Segmentation time of brain structures. 
Table 1 lists the time required to segment the six brain structures per patient. As mentioned in Section “Brain 
structure segmentation: baseline with FS”, the FS sequentially processes the remainder of the recon-all pipeline 
and the complete Brainstem Substructure pipeline. In FS segmentation time, we removed the time consumed for 
preprocessing (i.e., extracting the skull-stripped image from the original MRI) described in Section “Brain struc-
ture segmentation: baseline with FS”. The resulting time provides a fair comparison of the total times, because 
FS and DL models use the skull-striped MRI scan as input to derive the final segmentation results, indicated by 
bold values in Table 1. When including the pre-processing time, CNN-based V-Net and ViT-based UNETR were 
14 and 7 times faster than FreeSurfer, respectively.

To compare with FS processing time, we have added time for using CPU in DL models. The CNN-based 
V-Net and ViT-based UNETR are considerably faster than FS. On average, V-Net took 3.48 s to segment the 
six brain structures, and UNETR took 48.14 s using GPU and 51.26 s and 1101.82 s using CPU, whereas FS 
took approximately 15,735 s using CPU, being approximately 307 and 14 times slower than V-Net and UNETR, 
respectively. Despite calculating the time using CPU, the DL models were faster than FS by 14 to 300 times. Not 
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only GPU-based DL models, but CPU-utilized DL models also demonstrated to have significant performance 
compared to the non-AI method (i.e., FS).

Dice score of brain structure segmentation using DL models. Segmentation and prediction results 
of V-Net, UNETR and FS are illustrated in Fig. 2. The Dice score was obtained (Supplementary Table S1) to 
evaluate the performance of 3D image segmentation. The CNN- and ViT-based models showed high Dice scores 
above 0.85 for all the brain structures. The Dice scores were higher for the midbrain and pons than for the basal 
ganglia (i.e., caudate, putamen, pallidum), possibly because the brainstems are surrounded by cerebrospinal 
fluid and provide a stronger contrast for accurate segmentation. The ViT-based model showed a higher Dice 
score than the CNN-based model, which in turn showed a much shorter segmentation time than the ViT-based 
model (e.g., 51.26 s for V-Net and 1101.82 s for UNETR, as shown in Table 1). Although we evaluated V-Net and 
UNETR in different development environments of TensorFlow and PyTorch, respectively, we expect the CNN-
based V-Net to be competitive in speed with the ViT-based UNETR given the segmentation speed difference of 

Figure 1.  Overview of the study. The diagnostic performance of Parkinsonian syndrome regarding analysis 
time and accuracy for extracting and segmenting brain structures were compared between DL models and FS. 
Disease diagnosis was performed using the extracted structures individually or comprehensively.

Table 1.  Measured segmentation time per patient obtained by using CNN-based V-Net, ViT-based UNETR, 
and FS using CPU. GPU running time is shown in the (). The time was calculated after the skull-stripped 
image was obtained. Data are shown as mean ± standard deviation. (V3, third ventricle).

CNN (s) ViT (s) FS (s)

Midbrain 8.5739± 2.50 (0.5827± 0.17) 174.37± 10.81 (7.5817± 0.47)
1698± 0.144

Pons 8.5385± 2.35 (0.5803± 0.16) 207.05± 46.46 (9.2242± 2.02)

V3 8.5341± 2.35 (0.5800± 0.16) 178.25± 10.35 (7.7525± 0.45)

14, 037± 1.5
Caudate 8.4590± 2.35 (0.5749± 0.16) 176.20± 10.35 (7.6610± 0.23)

Putamen 8.5561± 2.50 (0.5815± 0.17) 179.63± 10.81 (7.8112± 0.47)

Pallidum 8.6032± 2.65 (0.5847± 0.18) 186.32± 21.39 (8.1019± 0.93)

Total 51.26± 2.50 (3.48± 0.17) 1101.82± 22.31 (48.14± 0.97) 15, 735± 1.07
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Figure 2.  (a) Segmentation results of CNN-based V-Net (left 3D images in first column and red-highlighted 
areas in second column) and FS (right 3D images in first column and blue-highlighted areas in second column) 
for each brain structure. (b) Segmentation results of ViT-based UNETR (left 3D images in first column and 
red-highlighted areas in second column) and FS (right 3D images in first column and blue-highlighted areas in 
second column) for each brain structure.

Table 2.  Disease binary classification based on individual brain structures. Segmentation AUC of CNN-based 
V-Net, ViT-based UNETR, and FS. Mean ± standard deviation for threefold cross-validation and midbrain-to-
pons ratio segmentation are listed. *p < 0.05 indicates a significant difference in AUC between the DL models 
and FS. The best result for each volume segmentation method based on FS and DL in binary classification is 
shown in bold.

Case Midbrain Pons Midbrain/pons V3 Caudate Putamen Pallidum

Normal vs. PSP

V-Net 0.73± 0.06 0.69± 0.03∗ 0.65± 0.08 0.83± 0.09∗ 0.54± 0.04 0.74± 0.01∗ 0.78± 0.05∗

UNETR 0.69± 0.06 0.64± 0.05∗ 0.60± 0.07 0.84± 0.08∗ 0.57± 0.03 0.69± 0.03∗ 0.76± 0.05

FS 0.70± 0.06 0.89± 0.05 0.65± 0.08 0.82± 0.02 0.56± 0.06 0.62± 0.09 0.72± 0.11

Normal vs. 
MSA-P

V-Net 0.63± 0.05 0.60± 0.05 0.73± 0.03 0.73± 0.03 0.61± 0.02 0.73± 0.03 0.67± 0.10

UNETR 0.61± 0.05 0.67± 0.06 0.70± 0.05 0.70± 0.03 0.59± 0.03 0.73± 0.03 0.65± 0.09

FS 0.64± 0.04 0.65± 0.04 0.70± 0.05 0.73± 0.03 0.60± 0.06 0.70± 0.03 0.66± 0.08

Normal vs. 
MSA-C

V-Net 0.76± 0.11 0.90± 0.04 0.91± 0.02 0.56± 0.02 0.61± 0.01 0.65± 0.11 0.66± 0.09

UNETR 0.73± 0.08 0.86± 0.06 0.81± 0.15 0.58± 0.01∗ 0.57± 0.04 0.62± 0.10 0.66± 0.07

FS 0.76± 0.10 0.90± 0.04 0.91± 0.02 0.56± 0.01 0.62± 0.10 0.65± 0.10 0.71± 0.09

Normal vs. PD

V-Net 0.55± 0.02 0.53± 0.02 0.57± 0.04 0.61± 0.07 0.57± 0.02 0.55± 0.03 0.56± 0.02

UNETR 0.58± 0.03 0.55± 0.03 0.53± 0.04 0.63± 0.06 0.55± 0.04 0.54± 0.05 0.54± 0.03

FS 0.56± 0.02 0.52± 0.01 0.57± 0.04 0.61± 0.08 0.54± 0.02 0.57± 0.01 0.54± 0.02

PD vs. PSP

V-Net 0.71± 0.07 0.67± 0.03 0.58± 0.07 0.74± 0.09 0.54± 0.02 0.67± 0.03 0.75± 0.03

UNETR 0.67± 0.09 0.63± 0.07 0.57± 0.08 0.72± 0.10 0.52± 0.01 0.63± 0.01 0.72± 0.05

FS 0.69± 0.06 0.65± 0.04 0.58± 0.07 0.74± 0.11 0.52± 0.01 0.62± 0.03 0.71± 0.08

PD vs. MSA-P

V-Net 0.59± 0.07 0.67± 0.02 0.58± 0.06 0.65± 0.08 0.58± 0.02 0.67± 0.01∗ 0.65± 0.07

UNETR 0.56± 0.02 0.64± 0.02 0.67± 0.04∗ 0.59± 0.05 0.61± 0.03 0.66± 0.01∗ 0.63± 0.05

FS 0.59± 0.03 0.66± 0.02 0.58± 0.06 0.65± 0.08 0.59± 0.04 0.69± 0.04 0.66± 0.07

PD vs. MSA-C

V-Net 0.74± 0.06 0.90± 0.03 0.94 ± 0.02 0.56± 0.08 0.59± 0.06 0.50± 0.07 0.64± 0.06

UNETR 0.69± 0.02 0.82± 0.11 0.81± 0.16 0.56± 0.08 0.58± 0.01 0.57± 0.05 0.62± 0.05

FS 0.71± 0.06 0.90± 0.03 0.94 ± 0.02 0.57± 0.08 0.59± 0.06 0.59± 0.08 0.69± 0.10
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at least 10 times in our experiments. In addition, the CNN-based V-Net had a similar performance to the ViT-
based UNETR in actual disease classification, as listed in Table 2.

Binary classification based on individual brain structures. Using the estimated volumes, we per-
formed binary classification for cases normal vs. P-plus, normal vs. PD, and PD vs. P-plus, where P-plus com-
prised PSP, MSA-P, and MSA-C cases. The AUCs of the brain structures for each model were compared, as listed 
in Table 2, which also presents the AUC of the midbrain-to-pons  ratio31.

Among the 98 cases (7 cases of binary classification × 2 DL models × 7 cases of brain structures), there was 
no significant difference in AUC between the DL models and FS, except for 11 cases (i.e., cases where the p-value 
is less than 0.05). In over half of the 11 cases (i.e., 7 cases), AUCs of the DL models (i.e., CNN-based V-Net and 
ViT-based UNETR) were also no less than those of FS. This result demonstrated that the DL model reproduces 
the performance of the FS model successfully (i.e., obtains a performance similar to that of the FS). Furthermore, 
most of the cases for the CNN-based V-Net showed no lower AUC for disease classification than the cases for 
the ViT-based UNETR.

The highest AUCs in the comparison between the methods were higher in normal or PD vs. MSA-C 
(0.91–0.94) than in normal or PD vs. PSP (0.75–0.89). Among the brain structures, the midbrain-to-pons ratio 
showed the best performance in normal vs. MSA-C and PD vs. MSA-C, while the third ventricle and pallidum 
showed the best performance in normal vs. PSP and PD vs. PSP. The highest AUCs were not significantly differ-
ent in the classification of normal or PD vs. MSA-P (0.69–0.73) or PD (0.63).

Binary classification based on complete brain structures. Most AUCs of the DL models were not 
significantly different from those of FS, as listed in Table 3, although a considerable difference existed in the seg-
mentation speed between the models and FS, as listed in Table 1. In Table 3, the highest AUC of FS and DL mod-
els for each binary classification are indicated in bold. The highest AUCs of classification between PD vs. P-plus 
and normal vs. P-plus were higher than 0.8 in both DL models, except for PD vs. MSA-P (AUC > 0.76). There 
was no significant difference between FS and the DL models (p-value of 0.05 or higher) in all highest AUCs.

Table 3 shows that of the 28 cases (2 ML models × 2 DL models × 7 binary classifications), most cases (i.e., 24 
cases) had no significant differences with FS (i.e., with p-values above 0.05), proving the successful reproducabil-
ity of the performance of FS by DL models. Like listed in Table 2, the CNN-based V-Net achieved a better AUC 
than the ViT-based UNETR; in 9 of the 14 pairs of cases, the CNN-based V-Net outperformed the ViT-based 
UNETR. From the results of both LR and XGBoost, we confirm that considering all six brain structures (Table 3) 
resulted in a significantly higher AUC than when considering the individual structures (Table 2).

Discussion
We developed two DL models, V-Net and UNETR, which showed significantly faster brain segmentation than 
FS and a comparable accuracy. Our DL models shortened the segmentation time by 14 to 300 times compared 
with FS. Moreover, they showed robust high performance in differential diagnosis between PD and P-plus cases 
using the volume of segmented brain structures. The DL models were efficient (i.e., analysis speed 14 to 300 times 
faster than FS) and effective (i.e., comparable to FS in Dice score and AUC) in automated brain segmentation 
and disease diagnosis, even for simultaneous analysis of all brain structures and their individual analyses. Thus, 
the proposed DL models may promote the application of automated brain segmentation in clinical practice and 
facilitate efficient and accurate brain research in medicine.

Automated tools have scarcely been adopted for brain segmentation in clinical practice despite their high 
accuracy in the differential diagnosis of patients with  Parkinsonism13,16. This is mainly attributable to the com-
plicated and time-consuming process of automated brain segmentation compared with physicians’ qualitative 
visual assessment of brain MRI scans. Consequently, automated segmentation models have mainly been used in 
research settings that require quantitative brain measurements. Nevertheless, their application in clinical settings 
may increase with our DL models, which have shown much faster segmentation than FS with a similar accuracy. 

Table 3.  Binary classification of diseases based on all the brain structures. AUC in LR and XGBoost of CNN-
based V-Net, ViT-based UNETR, and FS. The AUC is expressed as the mean from threefold cross-validation. 
LR; logistic regression, XGBoost; eXtreme Gradient Boosting. The best result for each volume segmentation 
method based on FS and DL in each binary classification is shown in bold. *p < 0.05 indicates a significant 
difference in AUC between the DL models and FS.

Case

V-Net UNETR FS

LR XGBoost LR XGBoost LR XGBoost

Normal vs. PSP 0.89± 0.07 0.86± 0.05 0.89± 0.08 0.84± 0.04 0.89± 0.07 0.87± 0.06

Normal vs. MSA-P 0.78± 0.04 0.73± 0.003∗ 0.81± 0.03 0.77± 0.04 0.79± 0.001 0.82± 0.01

Normal vs. MSA-C 0.90± 0.03 0.93± 0.04 0.85± 0.12 0.90± 0.10 0.88± 0.04 0.95± 0.03

Normal vs. PD 0.60± 0.07 0.66± 0.02∗ 0.60± 0.04 0.60± 0.03 0.65± 0.07 0.70± 0.05

PD vs. PSP 0.80± 0.08 0.78± 0.001∗ 0.77± 0.13 0.75± 0.01 0.77 ± 0.10 0.76± 0.03

PD vs. MSA-P 0.76± 0.07 0.66± 0.03 0.71± 0.02∗ 0.68± 0.07∗ 0.79± 0.08 0.71± 0.02

PD vs. MSA-C 0.91± 0.04 0.87± 0.03 0.80± 0.19 0.80± 0.12 0.89± 0.07 0.91± 0.05
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The DL models may contribute to improve the accuracy of clinical diagnosis of PD or P-plus cases by providing 
precise brain image analysis. In addition, clinical trials that require quantitative brain measurement from a large 
population may be conveniently conducted using our fast and accurate DL models. In the past, methods for 
brain image analysis were time- and resource-consuming, even with an automated segmentation tool such as FS.

While V-net and UNETR showed significantly faster segmentation in both CPU and GPU, with satisfactory 
accuracy, the CNN-based V-Net may be more suitable in clinical settings for diagnosis based on volumetry of 
brain MRI scans. Note that the time was computed without the pre-processing time for the fairness of measuring 
the time. FreeSurfer’s segmentation time corresponds to the time taken in registration-based segmentation for 
the recon-all pipeline and brainstem substructures pipeline (Supplementary Fig. S1). Even if the pre-processing 
time is calculated, CNN-based V-Net and ViT-based UNETR were 14 and 7 times faster than FreeSurfer, respec-
tively. Although the ViT-based UNETR is the most recent DL model and shows a high Dice score, the number 
of training parameters is approximately 46 times larger than that of V-Net. As presented in Table 1, using CPU 
may take longer by 14 to 22 times. However, it is evident that compared to FS segmentation time, DL models’ 
processing time is quicker and have equivalent performance with FS. As the number of calculations increases 
with the number of trainable parameters, the hardware requirements increase in terms of graphics processing unit 
(GPU) memory and processing power. Consequently, the ViT-based UNETR may be considerably demanding 
for training and evaluation, requiring high specification GPU. The CNN-based V-Net showed an AUC generally 
higher than that of UNETR and lower Dice scores. Until the ViT performance is further improved, the CNN-
based V-Net, which uses fewer GPU resources, seems to be the best option for clinical practice.

Using gold standard machine learning based approaches, we showed AUC of diagnosis based on FreeSurfer’s 
segmentation and DL method’s segmentation to show that there is no significant difference between FreeSurfer’s 
and DL models’ segmentation results. Since our DL models are 14 to 300 times faster than FS without sacrific-
ing diagnostic performance, they are superior to FS in terms of clinical efficacy. In binary classification using 
individual brain structures, the relative order of the AUC of each brain structure was consistent with previously 
reported  results10,32. For instance, the pons and midbrain-to-pons ratio showed the highest AUC in classification 
of normal vs. MSA-C and PD vs. MSA-C cases. The third ventricle and pallidum showed the highest AUC in 
classification of normal vs. PSP and PD vs. PSP cases. The putamen showed the highest AUC in classification of 
PD and MSA-P cases. In the classification of PD vs. PSP cases, the third ventricle showed a higher AUC, whereas 
the midbrain showed a relatively lower AUC. Single measurements of the midbrain have failed to differentiate 
PSP from PD or  MSA33–35, despite classic MRI studies showing atrophic midbrain in  PSP7,11. On the other hand, 
the third ventricle has been shown to be a reliable marker for diagnosing early stage PSP from PD and late-stage 
 PSP36, and it has been added to a new version of the magnetic resonance Parkinsonism  index37.

For binary classification based on all six brain structures, significant improvements in the AUC were achieved 
in all models. In both DL models, the highest AUC of classification of PD vs. P-plus and normal vs. P-plus cases 
was above 0.8, except for PD vs. MSA-P cases. The relatively low AUC of classification between PD and MSA-P 
cases based on brain MRI cases has also been reported in previous  studies10,32. The limitation of clinical diagnosis 
may have contributed to the relatively low AUCs in these studies owing to the overlapping manifestations between 
PD and MSA-P cases. Clinical diagnosis of PSP and MSA-P has been reported to have the most frequent dis-
crepancy from autopsy-proven diagnosis, even when considering diagnostic  criteria38. No significant difference 
in brain MRI scans has been found between normal and PD cases, resulting in no significant AUC differences 
for classification between these cases.

Our study has some limitations. First, the diagnoses of PD, PSP, and MSA-C were not pathologically verified. 
Instead, movement specialists provided clinical diagnoses based on validated clinical consensus, providing only 
probable diagnosis. Second, we segmented six brain structures, namely, midbrain, pons, medulla, putamen, 
pallidum, and third ventricle, but disregarded other brain structures that may reflect different pathologic char-
acteristics between PD and P-plus (e.g., cerebellum, middle cerebellar peduncle). We excluded those structures 
owing to the low segmentation accuracy achieved by FS. Also, DL methods learn the coarse features in priority 
because they are the common region of training data, which are low frequency regions. This results in smoother 
image than the that of FS, mitigating the images’ minor artifacts on the outer rims. However, in the case of cer-
ebellum where smaller changes are essential, more specific study is needed to know whether our DL methods 
will be applicable to the segmentation of cerebellum’s small gyri, comparing them to manual segmentation of 
the cerebellum. Nevertheless, the differential diagnosis of P-plus using only the brain structures included in 
this study has been reported as  reliable31. Third, given memory limitations, we downscaled the output shape 
from 256× 256× 256 to 256× 256× 128 , which may have caused an information loss. Nevertheless, the Dice 
scores suggest a negligible impact of information loss, whereas using a downscaled input accelerates training and 
inference in DL models. Fourth, FreeSurfer does not support GPU (i.e., CUDA) for segmentation, which makes 
it difficult to compare the time between DL models. We have calculated the segmentation time using CPU and 
still concluded that DL models are faster by 14 to 300 times.

Automated segmentation of brain MRI scans has become an influential method for diagnosing neurodegen-
erative diseases, including movement disorders. Using the high-performance CNN- and ViT-based models, we 
significantly shortened the segmentation time of deep brain structures while obtaining comparable accuracy to 
the conventional FS segmentation. Despite the superior DL performance, no quantitative results of the compara-
tive analysis and evaluation of the performance of DL have been reported to date for the differential diagnosis 
of neurodegenerative diseases, including PD and P-plus. We found that the cost-effective CNN-based model 
achieves satisfactory performance in both segmentation and differential diagnosis compared with the most 
recent ViT-based model. Our DL models may contribute to the development of patient- and clinician-friendly 
segmentation methods that enable fast and accurate diagnosis and may provide a meaningful reference for hos-
pitals planning to introduce DL brain segmentation and diagnosis for neurodegenerative diseases.
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This study focuses on comparing whether AI is more effective in diagnostic performance than the existing 
representative non-AI method. Therefore, as the subject of this study is to compare techniques, comparison 
with clinicians was not performed in this study. It would be a promising future study to compare the accuracy 
of diagnosis between the machine learning methods and clinicians.

Methods
In this section, we describe the brain MRI data (Section “Data preparation”), FS implementation (Section 
“Brain structure segmentation: baseline with FS”), and DL method implementation (Section “DL models 
for brain structure segmentation”) for the volumetric analysis of key brain structures to diagnose neurode-
generative diseases. Figure 1 shows an overview of the study process considering the evaluation and com-
parisons between FS and DL models (i.e., modified V-Net and UNETR representing CNN and ViT DL 
architectures, respectively). Supplementary Fig. S1 shows a diagram of the overall performance comparison. 
We developed DL models with faster processing but similar segmentation performance to FS. The DL mod-
els were trained to reproduce and segment the results of FS for each brain structure Fi ∈ [0, 1]256×256×128 
as model output Vi ∈ [0, 1]256×256×128 by taking skull-stripped brain image I ∈ R

256×256×128 as input 
( i ∈ {pallidum, putamen, caudate, third ventricle, midbrain, pons} ), with resolution (h, w, d) (height h = 256 , 
width w = 256 , depth d = 128 ). The DL segmentation results for the six brain structures were stored as 3D 
binary masks ( Fi and Vi indicate the FS and DL-model masks for brain structure i, respectively), where each 
mask output contained intensities between 0 and 1 (area outside and inside the target brain structure, respec-
tively). By calculating the absolute volume of each or all the brain structures predicted by FS or DL models, we 
performed binary classification of PD, MSA-C, MSA-P, PSP, and normal cases, and calculated the area under 
the curve (AUC) of segmentation.

Ethical approval. All authors of this study confirm that all methods or experiments were performed in 
accordance with the Declaration of Helsinki and the relevant guidelines and regulations provided by the poli-
cies of the Nature Portfolio journals. This study was approved by the Institutional Review Board of the Samsung 
Medical Center (IRB number: SMC 2021-07-026). The written informed consent of the patients was waived by 
the Institutional Review Board of Samsung Medical Center because we used deidentified and retrospective data.

Data preparation. Study population and clinical assessments. 
We retrospectively screened patients from the Neurology Department of Samsung Medical Center between Janu-
ary 2017 and December 2020. Patients diagnosed with PD, probable MSA, or probable PSP were included in this 
study. The diagnosis for each patient was determined by movement disorder specialists based on the following 
criteria: PD was determined according to the United Kingdom PD Society Brain Bank  criteria39 using [18F] N-(3-
fluoropropyl)-2β-carbon ethoxy-3β-(4-iodophenyl) nortropane positron emission tomography, while probable 
MSA and PSP were diagnosed according to the second consensus diagnosis of  MSA40 and movement disorder 
society clinical diagnostic criteria for  PSP41, respectively. MSA cases were further classified as either MSA-P 
or MSA-C after reaching  consensus40. Patients with concomitant or structural brain lesions, including stroke 
and tumors, which may affect brain MRI scans, were excluded from the study. An age-matched healthy elderly 
population was included as the control group. Demographic information on age, sex, and disease duration until 
the brain MRI examination was collected, as listed in Table 4. We analyzed the data from 411 individuals and 
performed threefold cross-validation to train and evaluate the DL models. Each group consisted of 105 healthy 
controls and 105 PD, 69 PSP, 69 MSA-C, and 63 MSA-P cases.

We applied cross-validation with three outer folds for evaluation to mitigate bias in the validation and test 
sets and analyze the effect of set composition (combinations of cases in groups). The data were randomly divided 
into three sections, one for testing and two for training. Each group comprised 35 normal, 35 PD, 23 PSP, 23 
MSA-C, and 21 MSA-P cases.

Data acquisition and standardization. Axial brain MRI scans were acquired using a standard protocol for 
T1-magnetization-prepared rapid acquisition of gradient echo, with repetition/echo time of 11,000/125 ms, 
inversion time of 2800 ms, field of view of 240 mm, acquisition matrix size of 320× 249 , echo train length of 27, 
1 signal average, slice thickness of 5 mm, interslice gap of 1.5 mm, and scanning time of 198 s.

We included six brain structures that are involved in Parkinsonian syndromes in the gray matter, namely, 
the midbrain, pons, putamen, pallidum, caudate, and third ventricle. These areas are reported to have the 

Table 4.  Demographic and clinical characteristics of patients enrolled in this study. Data are shown as mean 
± standard deviation or n (%). PD Parkinson’s disease, PSP progressive supranuclear palsy, MSA-P multiple 
systemic atrophy-Parkinsonian type, MSA-C multiple systemic atrophy-cerebellar type.

PD ( n = 105) PSP ( n = 69) MSA-P ( n = 63) MSA-C ( n = 69) Normal ( n = 105)

Age (years) 69.83± 10.14 73.86± 7.85 71.58± 9.30 64.6± 9.04 68.29± 9.69

Sex (male) 56 (53.33) 45 (65.22) 46 (66.67) 31 (49.21) 52 (49.52)

Onset to MRI (years) 6.02± 6.09 4.68± 3.34 4.27± 2.82 3.01± 2.63 –
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highest sensitivity and specificity for differentiating Parkinsonian  syndromes13,16. The MRI scans were resized 
to 256× 256× 128 (i.e., number of slices in the coronal/sagittal/axial planes) to segment each structure.

The FS accepts Digital Imaging and Communications in Medicine (DICOM) or Neuroimaging Informatics 
Technology Initiative (NIfTI) files as inputs. DICOM is a compelling and flexible but complex format that pro-
vides interoperability between several hardware and software tools. Given its complexity, DICOM format was 
converted to NIfTI  format42. NIfTI is a more straightforward format than DICOM and preserves the essential 
metadata. In addition, it maintains the volume as a single file and uses raw data after a simple header, and NIfTI 
files can be loaded and processed faster than DICOM files for whole brain images. Therefore, we converted files 
in the brain MRI DICOM format into files in the NIfTI format using MRIcroGL.

Brain structure segmentation: baseline with FS. The extraction of brain structures obtained using 
atlas-based automated segmentation are necessary for training and validation before establishing an automated 
DL segmentation model. In this study, we used these results as DL ground-truth labels and evaluated the validity 
of DL model for generating the same label. As a representative technology for atlas-based automated segmenta-
tion (see details in Supplementary Section A.2), we selected FS (version 7.2), which is publicly available for neu-
roscience research and provides high segmentation  performance18–21,43,44. Additionally, FS no longer supports 
CUDA, thus unable to calculate the time using GPU.

To segment and extract the six brain structures using FS, it sequentially executes the recon-all45 pipeline 
and Brainstem Substructure  pipeline46. We used both pipelines because the recon-all pipeline does not support 
segmentation of brainstem structures (e.g., pons and midbrain). However, because the Brainstem Substructure 
pipeline receives pre-processed inputs from the recon-all pipeline, both pipelines should be executed. Therefore, 
the extraction of the six brain structures through FS can be divided into MRI scan pre-processing in the recon-
all pipeline and the remaining segmentation of the recon-all pipeline along with segmentation in the Brainstem 
Substructure pipeline. These processes are explained in Section “Data preparation” and Section “Brain structure 
segmentation: baseline with FS”.

MRI scan pre-processing for FS: motion correction and skull removal. The MRI scan pre-processing in the recon-
all pipeline of FS mainly consists of (1) motion correction, (2) normalization, and (3) skull stripping. Motion 
correction is conducted before averaging when various source volumes are used, compensating for small motion 
variations between volumes. FS constructs cortical surface models and the boundary between white matter and 
cortical gray matter to automatically match the brain images of patients, using  software17. In addition, intensity 
normalization is applied to the original volume. However, adjusting for intensity fluctuations may hinder inten-
sity-based segmentation. Instead, we scale the intensities of all voxels to the mean value (110) of white matter.

After correcting for motions and normalizing the data, FS removes the skull and provides the skull-stripped 
brain MRI scan. Removing intracranial brain cavities (e.g., skin, fat, muscle, neck, and eyeballs) may reduce 
human rater  variability47 and promote automated brain image segmentation and improve analysis quality. There-
fore, brain MRI scans should be pre-processed to isolate the brain from extracranial or nonbrain tissues in a 
process known as skull  stripping48. FS developers devised and applied in-house automated skull-stripping algo-
rithms to isolate intracranial cavities by default.

In this study, the steps of brain MRI scan pre-processing (i.e., skull stripping with motion correction and 
normalization of a brain MRI scan) took approximately 20 min. We converted the final skull-stripped images to 
NIfTI files with size of 256× 256× 128 , while the original brain MRI scan had a size of 256× 256× 256 , which 
was adjusted for efficient comparison with the DL models.

FS for brain structure segmentation. After pre-processing (Section “Brain structure segmentation: baseline with 
FS”), FS segments the six brain structures by applying the remaining processes of the recon-all pipeline and the 
complete Brainstem Substructure pipeline. After skull stripping, registration-based segmentation proceeds as 
follows. FS determines and refines the white and gray matter interfaces for both hemispheres. Then, FS searches 
for the edge of the gray matter, which represents the pial surface. With pial surfaces, FS expands and inflates 
sulci banks and gyri ridges. Subsequently, it extends again into a sphere and parcellates the cortex. After applying 
these processes, FS segments the brain. The recon-all pipeline encompasses some brain structures (i.e., putamen, 
caudate, pallidum, and third ventricle), while the Brainstem Substructure pipeline segments the midbrain and 
pons.

In this study, the final segmentation result was assessed with the same input size of 256× 256× 128 . The 
original size of the segmentation result was 256× 256× 256 , but it was adjusted to 256× 256× 128 for com-
parison with the DL models. In addition, we replaced FS with a DL model applied to the skull-stripped MRI scan 
(i.e., pre-processing result of the recon-all pipeline) to perform segmentation. For the replacement, we evalu-
ated whether the DL analysis is faster than FS analysis and whether the segmentation result of DL is sufficiently 
reproducible compared with that of FS. The differences between FS and DL segmentation are illustrated in Fig. 2.

DL models for brain structure segmentation. In this study, we used DL models and FS to segment 
the same skull-stripped images (i.e., images pre-processed by the FS recon-all pipeline, as described in Section 
“Brain structure segmentation: baseline with FS”). The original size of the skull-stripped image generated by FS 
was 256× 256× 256 , which was adjusted to 256× 256× 128 for DL segmentation owing to the limited GPU 
memory. We evaluated and compared the performance and analysis time of the DL models by replacing the seg-
mentation process of FS after skull stripping with DL. FS may be inefficient because it segments the entire brain 
image, requiring many hours of processing. In fact, FS takes at least 4.5 h to segment the six brain structures 
considered in this study because it requires atlas-based registration to transform the coordinates of the entire 
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MRI scan to segment specific brain structures. Consequently, FS cannot notably reduce the processing time 
even if only six brain structures were to be segmented. On the other hand, we verified that DL segmentation 
(e.g., using V-Net or UNETR) takes less than 1 min to 18 min per case to segment the six target brain structures. 
As DL models do not require complex registration, unlike non-artificial-intelligence methods (e.g., FS), they 
can substantially increase the processing efficiency. The implementation details of the DL models are described 
herein. As DL models, we adopted the CNN-based V-Net29 and ViT-based  UNETR30 using the segmentation 
results provided by FS as labels (Section “Brain structure segmentation: baseline with FS”). The two models were 
trained to reproduce FS segmentation.

CNN-based V-Net. V-Net has been used to segment an entire volume after training an end-to-end CNN on 
MRI volumes for revealing the  prostate29,49,50 The architecture of V-Net is V-shaped, where the left part of the 
network is a compression path, whereas the right part decompresses the features until the original input size is 
recovered. The left part of the network is separated into stages that operate at varying resolutions.

In this study, one to three convolutional layers were used in each step. A residual function was learned at each 
level. The input of the residual part was used in the convolutional layers and nonlinear operations. This output 
was added to the last convolutional layer of the stage. The rectified linear unit (ReLU) was used as the nonlinear 
activation function. Convolutions were applied throughout the compression path. The right part of the network 
learned a residual function similar to that of the left part. V-Net has shown promising segmentation results, and 
using this model in our application improved performance. The model was adjusted according to the available 
memory. The proposed architecture is illustrated in Fig. 3. The left part used a residual block (ResBlock) and 
maximum pooling (MaxPooling). ResBlock was applied to all the blocks with an input size of 256× 256× 128 . 
On the other hand, 3D MaxPooling reduced the depth, height, and width of the feature maps to reduce their 
resolution. The right part also used ResBlock but replaced MaxPooling with UpConvolution, which consisted of 
3D upsampling, batch normalization, ReLU activation, and convolutional layers ( 5× 5× 5 filter, same padding, 
and stride of 1). Upsampling increased the resolution of the feature maps, and batch normalization improved 
convergence throughout the  network51.

ViT-based UNETR. UNETR30 is a transformer architecture for 3D medical-image segmentation. There is a 
study that used UNETR as brain tumor  segmentation52, but no study was held for brain parts segmentation. It 
uses a transformer as the encoder to learn the sequence representations of the input volume and capture global 
multi-scale information while adopting U-shaped architectures for the encoder and decoder. The proposed 
architecture is illustrated in Fig. 4. UNETR followed a contracting–expanding path with an encoder comprising 
a stack of transformers connected to a decoder through skip connections. The encoder directly used 3D patches 

Figure 3.  Architecture of CNN-based 3D segmentation using V-Net. ResBlock, MaxPooling, and 
UpConvolution were used to reduce the depth, height, and width. The output shown in the figure is the 
segmentation of pallidum. (Conv convolution layer,  BN batch normalization).
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and was connected to a CNN-based decoder via a skip connection. A 3D input volume was split into homogene-
ous nonoverlapping patches and projected onto a subspace using a linear layer. Position embedding was applied 
to the sequence and then used as input to the transformer. The encoded representations at different levels in the 
transformer were retrieved and sent to a decoder via skip connections to obtain the segmentation results.

Implementation details of DL models: training and inference. For the DL models, the input comprised a brain 
mask and the corresponding patient’s segmented brain structures in the MRI scans, which were merged into 
an array of dimension 256× 256× 128 . The ground truth of each brain structure was segmented using FS. For 
evaluation, threefold cross-validation of the test data was applied to calculate the Dice score and Dice loss. We 
implemented V-Net in TensorFlow and Keras and trained it for 100 epochs. For UNETR, PyTorch and  MONAI53 
were applied, and the model was trained for 20,000 iterations. Both models used Python language and were 
trained using an NVIDIA Tesla V100 DGXS GPU with a batch size of 1 and an initial learning rate of 0.0001. For 
CPU, Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20Ghz was used.

We evaluated the accuracy of the evaluated models using the Dice score by comparing the expected segmen-
tation with V-Net (or UNETR) and FS outputs. The Dice score measures the overlap between the reference and 
predicted segmentation masks. A Dice score of 1 indicates perfect spatial correspondence between the two binary 
pictures, whereas a score of 0 indicates no correlation. We used the Dice loss to determine the performance of the 
three outer cross-validations on their test sets for the corresponding structures. If Fi and Vi are the ground-truth 
mask and its prediction for each brain structure, respectively (i.e., FS segmentation mask Fi and its DL predic-
tion mask Vi , respectively, as shown in Fig. 1), the Dice  score54 for each brain structure i ∈ {pallidum, putamen, 
caudate, third ventricle, midbrain, pons} is derived as

where ◦ denotes the Hadamard product (i.e., component-wise multiplication) and || · ||1 is the L1-norm (i.e., sum 
of absolute values of all components). Moreover, we measured the segmentation time for evaluation.

Statistical analysis for binary classification of cases. We obtained the absolute volumes from the six segmented 
brain structures (i.e., pons, putamen, pallidum, midbrain, caudate, and third ventricle) predicted by the DL 
models (i.e., CNN-based V-Net or ViT-based UNETR) or FS. Based on the absolute volume of the individual 

(1)Dice =
2||Vi ◦ Fi||1

||Vi||1 + ||Fi||1
,

Figure 4.  Architecture of ViT-based UNETR directly connected to a CNN-based decoder via skip connections 
at different resolutions for segmentation. (Deconv deconvolution layer, Conv convolution layer, BN batch 
normalization, MLP multilayer perceptron).
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brain structures, we calculated the AUC of the binary classification of diseases, normal vs. P-plus, normal vs. PD, 
and PD vs. P-plus cases. The AUC was computed based on the receiver operating characteristic curve produced 
by the correlation between the predicted absolute volume of each brain structure and each case.

Disease binary classification was conducted using the six segmented brain structures individually or collec-
tively. For individual analysis, the AUC was derived through thresholding-based binary classification by obtaining 
the absolute volume of the individual structures. For a comprehensive analysis of all structures, we additionally 
considered an ML classification algorithm to perform disease binary classification with the six volumes as inputs. 
For the classification algorithm, binomial logistic regression (LR) and extreme gradient boosting (XGBoost) 
were used. LR is a statistical model widely used in ML  classification55–57. XGBoost is a well-established method 
that produces advanced results among gradient-boosting-based  techniques58 (e.g., XGBoost successfully won 
17 out of the 29 ML tasks posted on Kaggle by  201559). In both methods, we evaluated the AUC obtained by the 
DL model and FS through threefold cross-validation.

Data availability
The authors declare that the main data supporting the results of this study are available within the paper. The raw 
datasets from Samsung Medical Center are protected to preserve patient privacy but can be made available upon 
reasonable request provided that approval is obtained from the corresponding Institutional Review Board. For 
the request for data availability, please contact Jong Hyeon Ahn at jonghyeon.ahn@samsung.com.

Code availability
The code that used for the DL models is available on GitHub: https:// github. com/ kskim- phd/ AI_ vs_ FS.
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