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Influence of an inclined magnetic 
field and heat and mass transfer 
on the peristaltic flow of blood 
in an asymmetric channel
M. A. Abdelhafez 1, A. M. Abd‑Alla 1, S. M. Abo‑Dahab 2 & Yasmine Elmhedy 1*

This article presents a theoretical study on heat and mass transfer analysis of the peristaltic flow of 
blood conveying through an asymmetric channel in the presence of inclined to the magnetic field. 
The effects of ratio of relaxation to retardation times, non‑uniform parameter, the non‑dimensional 
amplitude, Hartman number and phase difference have been taken into account. The governing 
coupled non‑linear partial differential equations representing the flow model are transmuted into 
linear ones by assuming that the wave is very long with a small Reynolds number. The converted 
mathematical formulations are solved analytically via the Mathematica software. Analytical 
expressions for the dimensionless velocity profiles of fluid, temperature, concentration, pressure 
gradient, increase in pressure, heat transfer coefficient and shear stress of the blood are derived. The 
velocity, temperature, concentration, pressure gradient, increase in pressure, heat transfer coefficient 
and shear stress were calculated numerically for different values of the parameters, which were 
represented graphically and find their physical meaning.

In the human vascular system, the heart is the building block organ which pumps oxygenated blood to the body 
and deoxygenated blood to the lungs through the blood vessels (arteries, veins, and capillaries). For a healthy life 
cycle, the active and energetic functioning of the heart is necessary. In modern days, one of the most common 
causes of death in the world is cardiovascular diseases, like arteriosclerosis and post-stenotic dilation. Athero-
sclerosis (medically called stenosis) in a blood vessel is the partial occlusion of the blood flow region in the vessel 
by the accumulation of atherosclerotic plaques due to the deposits of fat, cholesterol, calcium, and other harm-
ful material. Over the time, stenosis solidifies and make arterial wall rigid, inflexible, and constricts the blood 
vessel which limits the oxygenated blood supply to the organs and other parts of the body, and leads to severe 
complications, including myocardial infarction, strokes, angina pectoris, and cerebral strokes. An aneurysm or 
dilatation refers to a debilitating of a blood vessel wall that generates a hump, or enlargement, of the vessel. In a 
two dimensional channel the vital principles of peristaltic pumping has been studied in Jaffrin and  Shapiro1 and 
values of various parameters that governing the flow are clarified. Influence of long wavelength at low values 
of Reynolds number on the peristaltic flow has been illustrated in  Manton2. In the closed form solutions, the 
impact of heat transfer in the presence of a magnetic field on the peristaltic transport is examined in Akram and 
 Nadeem3. In an asymmetric channel with porous medium, the peristaltic transport of Phan-Thien-Tanner fluid is 
investigated by Vajravelu et al.4. Srinivas et al.5, have been studying the effect of mass and heat transfer on MHD 
peristaltic flow via porous medium. In an inclined asymmetric, Vajravelu el al.6 are discussed the peristaltic flow 
of a conducting Jeffrey fluid. In a tube with an endoscope, the influence of radially magnetic field on peristaltic 
transport of Jeffery fluid investigated by Abd-Alla el at.7. In two dimensional flow of Williamson fluid, the effect 
of Newtonian and Joule Heating are illustrated by Hayat et al.8. Srinivas et al.9 discussed the peristaltic flow of a 
Newtonian fluid under heat transfer and porous medium in a vertical channel. Rajvanshi and  Wasu10 study the 
MHD squeezing flow under heat transfer by using Brinkman model. In asymmetric channel, the partial slip is 
investigated on the peristaltic flow of Williamson fluid by Akram et al.11. For a couple stress fluid, the simulated 
peristaltic transport of chyme in the small intestine is discussed in Akbar and  Nadeem12. In a vertical annulus, 
the peristaltic transport of limousine fluid under mass and heat transfer is studied by Akbar and  Nadeem13. In 
drug delivery systems, the applications of nanofluids peristaltic transport is illustrated in Tripathi and Be’g14. 
Ojjela et al.15, are investigated under the presence of a magnetic field between two layers of a porous medium, the 

OPEN

1Department of Mathematics, Faculty of Science, Sohag University, Sohag, Egypt. 2Department of Mathematics, 
Faculty of Science, South Valley University, Qena, Egypt. *email: yasmine.elmhedy@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-023-30378-5&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5749  | https://doi.org/10.1038/s41598-023-30378-5

www.nature.com/scientificreports/

influence of thermophoresis on an unsteady two-dimensional laminar incompressible mixed convective chemi-
cally reacting transport and heat transfer Jeffery fluid. Under a uniform, normal magnetic field, the heat transfer 
on the peristaltic magnetohydrodynamic flow of the Jeffery fluid is illustrated via a porous medium in a vertical 
echelon channel by Krishna et al.16. In asymmetric channel, the impact of temperature independent viscosity is 
addressed on the peristaltic transport of Jeffery fluid by Hasona et al.17. The nonlinear radiative peristaltic flow of 
Jeffery nanofluid in a vertical asymmetric channel is discussed in Hayat et al.18. The impact of aligned magnetic 
and properties of channel wall, are addressed on the peristaltic flow of a Jeffery nanofluid under heat and mass 
transfer by Sucharitha et al.19. Ramesh and  Devakar20 have examined Effects of Heat and Mass Transfer on the 
Peristaltic Transport of MHD Couple Stress Fluid through Porous Medium in a Vertical Asymmetric Channel. 
It is explored in Javed et al.21 the influence of elastic wall on peristaltic transport in an asymmetric channel. Sal-
eem et al.22 are investigating the effect of inclined magnetic and velocity second boundary conditions into the 
peristaltic flow of a Jeffery fluid under heat and mass transfer in asymmetric channel. Through a non-uniform 
channel, the peristaltic flow of non-Newtonian fluid is inspected in Imran et al23. In the presence of heat transfer, 
the MHD peristaltic flow of Jeffery fluid in the compliant walled channel is addressed by Javed et al.24. Through a 
porous media channel, the influence of chemical reaction and magnetohydrodynamic in the peristaltic transport 
of a non-Newtonian Jeffery fluid is inspected by Abbas et al.25.

Recently, Abo-Dahab et al.26 discussed the double-diffusive peristaltic MHD Sisko nanofluid flow through 
a porous medium in presence of non-linear thermal radiation, heat generation/absorption, and Joule  heating27 
investigated the heat and mass transfer in a peristaltic rotating frame Jeffrey fluid via porous medium with 
chemical reaction and wall properties.

Most of the studies mentioned above were focused mainly on analyzing the MHD flow of blood through 
the an asymmetric channel with the heat and mass transfer phenomenon. Therefore, the novelty of the current 
research article is to explore the impact of magnetic field on blood in an asymmetric channel with the heat and 
mass transfer effect. The governing equations have been modeled under the assumption that the wave is very long 
with a small Reynolds number. This problem has been solved analytically under certain boundary conditions and 
obtaining analytical solution of velocity, temperature, concentration, pressure gradient, increase in pressure, heat 
transfer coefficient and shear stress, which were calculated numerically at different values of physically impor-
tant parameters. It was possible to represent these results graphically and find the physical meaning for them.

Formulation of the problem
The model demonstrates the peristaltic transport of a viscous liquid through tapered horizontal channels of asym-
metric dimensions of infinite length. The asymmetry in the flow is due to the propagation of peristaltic waves of 
different amplitudes and phases on the walls of the channel, assuming that the liquid is under the influence of 
a magnetic field inclined to the vertical is constant B0 and that the flow is produced by trains propagating with 
steady speed c along the tapered asymmetric channel walls as shown in Fig. 1.

The geometry of the wall surface is defined as

where b is the half-width of the channel, d is the wave amplitude, c is the phase speed of the wave and (< 1) is 
the non-uniform parameter, � is the wavelength, t is the time and X is the direction of wave propagation. The 

(1)Y = H2 = b+m′X + d sin

[

2π

�

(

X − ct
)
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(2)Y = H1 = −b−m′X − d sin
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2π

�
(X − ct)+ ϕ

)

Figure 1.  Schematic of the problem.
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phase difference φ  varies in the range 0 ≤ φ ≤ π ,φ = 0  corresponds to symmetric channel with waves out of 
phase and further b, d and φ satisfy the following conditions for the divergent channel at the inlet dcos

(

φ
2

)

≤ b.

It is assumed that the left wall of the channel is maintained at temperature T0 while the right wall has tem-
perature T1.

The constitutive equations for an incompressible Jeffrey fluid are

where T  and S are Cauchy stress tensor and extra stress tensor, respectively, p is the pressure,I  is the identity 
tensor, �1 is the ratio of relaxation to retardation times, �2 is the retardation time r̈ is the shear rate and dots over 
the quantities indicate differentiation with respect to time.

In laboratory frame, the equations of continuity, momentum energy and concentration are described as 
follows

where

where U  and V  are the velocity components in the laboratory frame ( X  , Y  ), k1 is the permeability of the porous 
medium, ρ is the density of the fluid, p is the fluid pressure, k is the thermal conductivity,µ is the coefficient of the 
viscosity, Q 0 is the constant heat addition/absorption, C p is the specific heat at constant pressure, σ is the electri-
cal conductivity, g is the acceleration due to gravity T  is the temperature of the fluid, C is the concentration of the 
fluid, Tm  is the mean temperature, Dm  is the coefficient of mass diffusivity, and K T is the thermal diffusion ratio.

The relative boundary conditions are

Introducing a wave frame ( x ,y ) moving with velocity c away from the fixed frame ( X, Y  ) by the 
transformation

where −u, v are the velocity components in the wave frame ( x , y ), p is pressures and P fixed frame of references. 
We introduce the following non-dimensional variables and parameters for the flow
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where ε = d
b is the non-dimensional amplitude of channel,δ = b

�
 is the wave number,k1 = �m′

b  is the non-uniform 
parameter, Re is the Reynolds number, M is the Hartmann number,K = k

b2
 Permeability parameter, Pr is the 

Prandtl number, Ec  is the Eckert number, β is the heat source/sink parameter, Br(= EcPr) is the Brinkman 
number, Sc Schmidt number and S r Soret number.

Solution of the problem
In view of the above transformations (12) and non-dimensional variables (13), Eqs. (5)–(9) are reduced to the 
following forms:

where

Applying long wave length approximation and neglecting the wave number along with low-Reynolds numbers.
Equations (14)–(18) become

The relative boundary conditions in dimensionless form are given by

The solutions of velocity, temperature and concentration with subject to boundary conditions (24) and (25) 
are given by
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where

The coefficients of the heat transfer Zh1 and Zh2 at the walls y = h1andy = h2

The instantaneous volum rate is defined as

The gradient of the pressure is defined as

The increase of the pressure is defined as

where

Numerical results and discussion
In an asymmetric chaneel, we have obtained the closed form dimensionless expressions for the velocity u , tem-
perature θ , concentration �, Heat Transfer Coefficient Zh1 pressure gradient dpdx , pressure rise �p� and tangential 
stress sxy are analyzed carefully. The physical variations in velocity profiles of both fluid, temperature, concentra-
tion, Heat Transfer Coefficient, pressure gradient, pressure rise �p� and tangential stress with respect to these 
sundry parameters are analyzed and discussed through the graphs 2–9.

Figures 2 shows the variations of the velocity distribution u with respect to the distance y for different physical 
parameters of the ratio of relaxation to retardation times �1 , non-uniform parameter k1, the non-dimensional 
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amplitude ε, Hartman number M and phase difference ϕ . It is observed that the velocity distribution decreases 
with increasing of relaxation to retardation times, non-uniform parameter and phase difference while it increases 
with increasing of non-dimensional amplitude and Hartman number. It is noticed that the velocity satisfied the 
boundary conditions. On the otherhand, in the presence of a magnetic field, the influence of the assisting com-
ponent of the magnetic force overcomes the impeding effect of the opposing component, resulting in a gradual 
increase in flow velocities.

Figures 3 shows the variations of the temperature distribution θ with respect to the distance y for different 
physical parameters of the parameter number N , Prandtl number Pr, non-uniform parameter k1 and heat source/
sink β .  It is observed that the temperature distribution increases with increasing of y − axis, as well it increases 
with increasing of parameter N  , Prandtl number, non-uniform parameter and heat source/sink. It is noticed 

Figure 2.  Variation of the velocity u concerning the axial-y with different values of �1, k1, ε, M,ϕ.
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that the temperature satisfied the boundary conditions. These figures show that the fluid (blood) temperature 
increases for increasing values of the Prandtl number. This is because the higher values of the Prandtl number 
cause the fluid to have power thermal diffusivity and hence an increases in the fluid temperature.

Figure 4 shows the variations of the Concentration � with respect to the distance y for different physical 
parameters of the Schmidt number Sc, Sort number Sr, heat source/sink β ,  Prandtl number Pr and parameter 
number N . It is observed that the Concentration distribution increases with increasing of y − axis, as well it 
decreases with increasing of Schmidt number, Sort number, heat source/sink, Prandtl number and parameter 
number N, Prandtl number Pr . It is noticed that the Concentration satisfied the boundary conditions.

Figures 5 and 6 show the variations of the heat transfer coefficients of the upper chanel Zh1 and the heat 
transfer coefficients of the lower chanel Zh2 with respect to the distance x for different physical parameters of 
the parameter N , non-uniform parameter k1, heat source/sink β , and Prandtl number Pr . It is observed that the 
heat transfer coefficients of upper and lower chanel increase and decrease with increasing of parameter N , non-
uniform parameter, heat source/sink β and Prandtl number Pr . It is noticed that the heat transfer coefficients 
are in oscillatory behavior, which may be due to peristalsis.

Figures 7 show the variations of the pressure gradient dpdx with respect to the distance x for different physical 
parameters of the heat source/sink β , Hartman number M, non-uniform parameter k1, the non-dimensional 
amplitude ε, and phase difference ϕ . It is observed that the pressure gradient increases with increasing of, heat 
source/sink, while it is in oscillatory behavior in the whole range, which may be due to peristalsis.

The influences of the phase difference ϕ, thermal slip γ and viscosity parameter ε are illustrated in Fig. 8. It is 
observed that the pressure rise �p� increases rapidly with the increase of heat source/sink β , Hartman number 
M, non-uniform parameter k1, the non-dimensional amplitude ε. when F ∈ (−300, 0), while it decreases when 
F ∈ (0, 300). As expected, that pressure rise gives larger values for small volume flow rate F and it gives smaller 
values for large volume flow rate. Moreover, the peristaltic pumping occurs in the region −300 ≤ F ≤ 300, 
otherwise augmented pumping occurs.

Figure 9 shows the variations of the tangential stress sxy with respect to x− axis for various values of non-
uniform parameter k1, heat source/sink β , ratio of relaxation to retardation times �1, phase difference ϕ and 
Hartman number M. From these figures, we observe that with the increase of non-uniform parameter and heat 

Figure 3.  Variation of the Temperature θ concerning the axial-y with different values of N , k1, Pr, β.
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Figure 4.  Variation of the Concentration � concerning the axial-y with different values of Sc, Sr,β , Pr,N.
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Figure 5.  Variations of the heat transfer coefficient concerning the axial-x with different values of 
(a)N = 0.1 _, 0.3 . .., 0.5 −− , (b) K1 = 0.01 _, 0.05 . .., 0.09 −− , (c)β = 0.01 _, 0.05 . .., 0.09 −− , 
(d)Pr = 1 _, 2 . .., 3−−.

Figure 6.  Variations of the heat transfer coefficient concerning the axial-x with different values of 
(a)K1 = 0.1 _, 0.3 . .., 0.5 −− , (b) Pr = 0.1 _, 0.2 . .., 0.3−− , (c) ε = 0.1 _, 0.14 . .., 0.18 −− , 
(d)N = 0.3 _, 0.4 . .., 0.5−−.
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Figure 7.  The gradient of Pressure concerning the axial-x with different values of ε,β ,M, k1,ϕ.
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source/sink a tangential stress sxy is increasing, while it decreases with increasing of ratio of relaxation to retar-
dation times, phase difference and Hartman number. It is noticed that one can observe the tangential stress is in 
oscillatory behavior, which may be due to peristalsis.

Conclusion
The analytical solution has been obtained for velocity, temperature, concentration, pressure gradient, pressure 
rise, tangential stress and heat transfer coefficients have been discussed graphically. The major findings of the 
performed analysis are listed as follows:

1. An increase in M while keeping all the other parameters fixed results in decrease of velocity.
2. It is observed that the concentration field increases with the increases in N , β , Pr and Sr.
3. Heat transfer coefficients increase with increasing of N , Pr and β in chanal.
4. The shear stress at the channel center and flow impedance are significantly reduced by increasing the mag-

netic field
5. Therefore, the judicious magnetic field can significantly regulate the motion of blood in the an asymmetric 

channel.
6. The obtained results of the present study may be useful in medical applications because they serve as useful 

estimations that can control the streaming blood as well as magnetic field.

Figure 8.  The pressure rise concerning the axial-F with different values of (a)           β = 0.1 _, 0.2. .., 0.3 −− , 
(b) M = 0.6_, 0.7 . .., 0.8−− , (c) K1 = 0.1 _, 0.3 . .., 0.5 −− , (d)ε = 0.1 _, 0.5 . .., 0.9−−.
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