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Composition, structure 
and robustness of Lichen guilds
Salva Duran‑Nebreda 1* & Sergi Valverde 1,2*

Symbiosis is a major engine of evolutionary innovation underlying many extant complex organisms. 
Lichens are a paradigmatic example that offers a unique perspective on the role of symbiosis in 
ecological success and evolutionary diversification. Lichen studies have produced a wealth of 
information regarding the importance of symbiosis, but they frequently focus on a few species, 
limiting our understanding of large‑scale phenomena such as guilds. Guilds are groupings of lichens 
that assist each other’s proliferation and are intimately linked by a shared set of photobionts, 
constituting an extensive network of relationships. To characterize the network of lichen symbionts, 
we used a large data set ( n = 206 publications) of natural photobiont‑mycobiont associations. 
The entire lichen network was found to be modular, but this organization does not directly match 
taxonomic information in the data set, prompting a reconsideration of lichen guild structure 
and composition. The multiscale nature of this network reveals that the major lichen guilds are 
better represented as clusters with several substructures rather than as monolithic communities. 
Heterogeneous guild structure fosters robustness, with keystone species functioning as bridges 
between guilds and whose extinction would endanger global stability.

Lichens are symbiotic organisms composed of a fungus (mycobiont), one or more photosynthetic partners 
(photobionts, typically algae or cyanobacteria see Fig. 1a, b) and other microbial  species1,2. In the wider eco-
logical context, lichens provide several services that are essential for ecosystem functioning: from weathering 
of rocks increasing the bioavailability of  minerals3 to carbon and nitrogen  fixation4. By virtue of the wildly dif-
ferent metabolisms of photobionts and mycobionts, lichenization provides new biological traits that can enable 
both partners to colonize a wider range of  environments5,6, including  extreme3,7,  polluted8,9 or anthropogenic 
 ecosystems10. In consequence, lichens are more than the sum of their constituent symbionts, emphasizing the 
relevance of non-fraternal organismality as a source of evolutionary  innovation11,12.

Symbiosis is a natural hot spot for diversity and  innovation13,14, the evolutionary potential of a lichen symbiont 
must take into account the extraordinary repertoire of traits gained by acquiring a new partner. However, it is 
widely acknowledged that specificity of the mycobiont-photobiont association as well as the spatial distribution 
of their component species largely drives the formation of new lichen  organisms6,15–18. Indeed, many symbionts 
are quite stringent in the partnerships they form, which are often determined by biophysical  gradients19–24 or 
substrate  preferences18. Selective mycobionts do not always use the entire niche of their photobionts and are 
therefore sometimes restricted to certain climatic conditions. It has also been suggested that highly specific 
mycobionts are typically restricted to few environments and display limited ecological  range25,26. Conversely, 
mycobionts capable of colonizing different habitats often are less stringent in their partnerships, interacting with 
various available  photobionts13,17.

Collectively, the set of natural associations between photobionts and mycobionts defines a network of 
 symbionts27,28, where each interaction corresponds to a singular lichen species (Fig. 1c). It has been proposed 
that within this network lichen species organize in communities known as photobiont-mediated  guilds29. Guilds 
are groups of lichen species that are ecologically connected by sharing one or more  photobionts29,30 (Fig. 1d). 
Fungal species in a guild can benefit each other by propagating a common set of partners, driving the establish-
ment of connected lichen species into new or marginal  habitats31, while competing for space and  resources32.

Much of our current understanding on photobiont-mycobiont partnerships comes from studies involving a 
few lichen species or geographical  areas17,19,23,24,33–38. However, mycobiont-photobiont partnerships do not happen 
in isolation, they are part of a larger web of interactions supporting the assembly and maintenance of communi-
ties, and understanding them requires a systemic approach. Many species interaction networks are classified 
as nested or modular. A modular network is made up of sparsely linked clusters of dense  subgraphs39–41. These 
communities or modules may arise due to evolutionary and environmental  constraints42, or they may represent 
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common functional qualities, such as groupings of closely related proteins implicated in cell communication. The 
other common structural feature of ecological networks is  nestedness43,44. Nestedness relates to the hierarchical 
organisation in the network where nodes display a tendency to interact preferentially with subsets of partners of 
better-connected  nodes45. This concept is particularly important in ecological network studies focusing on the 
spatial distribution of species, their interactions, and degree of individual specialisation.

Modularity and nestedness are conceptually distinct structures that are negatively correlated; for example, 
a network with a high degree of modularity is typically associated with a low degree of nestedness. When 
compared to null models, however, certain empirical networks may exhibit both  patterns43, suggesting the pos-
sibility of coexisting nestedness and  modularity46. Recent studies involving small sets of lichen species and their 
interactions have revealed diverging structural patterns: from distinct clusters of strongly interacting species in 
Peltigera  lichens38 to an embedded specialist-generalist structure in Nephroma33. Different explanatory causes 
have been proposed for the observed nested and modular patterns, including evolutionary  constraints38 as well 
as the variations in the nature of the underlying ecological  interactions33 (i.e. mutualistic vs. non-mutualistic 
relations). The general organization of photobiont-mycobiont associations and its connection to guilds remains 
largely unknown.

Here, we address these open questions by reconstructing the photobiont-mycobiont network, aggregating dec-
ades of research using Sanders and Masumoto’s meta-study47. This network records many observations ( n = 206 
publications), highlighting critical scales that operate beyond the species level, such as photobiont-mediated 
guilds. We combine several network metrics in order to understand the topological signature of guilds. Our 
findings show that taxonomy alone cannot comprehensively recapitulate guild topology. Network modularity, 
in particular, does not completely predict species composition of guilds. The heterogeneous structure uncovered 
by our analysis fosters robustness, with keystone species functioning as bridges across guilds and whose removal 
promotes network fragmentation and potentially driving global instability.

Results
Defining the global photobiont‑mycobiont association network (PMAN). Previous research has 
focused on lichenization among few species of mycobionts and photobionts, providing an insufficient under-
standing of symbiotic interactions at the largest scales. For example, symbiotic ties could be have been shaped by 
the presence of additional interactions in a larger community. In this context, network techniques have been par-
ticularly successful in the study of  mutualistic39 and  antagonistic46 networks from small to large spatio-temporal 
 scales48,49. Here, we recreate the largest network of lichen symbionts to date using the full data set of symbiont 
pairings assembled in a recent meta-study by Sanders and  Masumoto47. This system belongs to the general 
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Figure 1.  A network perspective on lichen symbioses. (a) schematic representation of lichen symbiosis at 
the ecological level. Photobionts (yellow) provide energy fixation though elaborated metabolites while the 
mycobiont (blue) comprises the majority of the lichen body and provides protection to various environmental 
challenges. (b) Example lichen body, including distinct organs to segregate algal and cyanobacterial photobionts 
(e.g. cephalodia). Here, lichen reproduction takes place asexually through soredia, which include both the 
algal (yellow) and fungal (blue) partners in each propagule. (c) Each individual lichen species (grey boxes) 
is composed by a mycobiont ( Mj ) and one or more photobionts ( Pi ). (d) The set of associations among 
photobionts and mycobionts defines a bipartite network, its structural analysis can reveal the presence of 
mesoscale structures, like guilds, related to the underlying ecological relations and evolutionary history.
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class of bipartite networks, which have links between nodes of different types. Figure 2 displays the photobiont-
mycobiont association network (PMAN) representing this dataset, where blue and yellow nodes correspond to 
mycobionts and photobionts respectively.

The photobiont‑mycobiont network is modular and not nested. To validate the presence of struc-
tural patterns, we compared the photobiont-mycobiont network to a bootstrap model that maintains the entire 
degree sequence for each  compartment41,50,51 (see “Materials and methods”). This gives a negative control that 
can help us determine the significance of the structures under  consideration52,53. Figure 3a shows the distribution 
of modularity values for an ensemble of bootstrap randomizations (histogram with shaded region) compared 
to the real data set average modularity (dashed vertical red line). This suggests that the lichen network is highly 
modular, more than the expected value for the null models ( p < 10−5 ), consistently with a significant decrease 
in nestedness ( p < 10−5 , see Fig. 3b and Table 2). Following standard analyses of data  completeness54,55, we 
studied the modularity and nestedness of subsamples using half the dataset, i.e. real networks and their randomi-
zations with half the number of observed network links (see Fig. 4). We discovered that modularity and nested-
ness are maintained in both circumstances, implying that the presented patterns are robust and independent of 
sampling depth.

Figure 2.  Photobiont-mycobiont association network. Bipartite network representation of the full dataset 
analysed in our study. Interactions in this network involve two different types of nodes: blue nodes correspond 
to mycobionts, and yellow nodes indicate photobiont species. The network consists of 34 isolated components, 
the largest of which has average degree �k� = 2.524 (see Table 1). Network layout was automatically generated 
with the FMMM algorithm (see “Materials and methods”).
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Differences between topological versus taxonomic signatures of guilds. Guild organization has 
been traditionally linked to photobiont identity (or “photobiont-mediated guild”), and more precisely, at the 
genus  level29,33,54. Following this approach, Fig. 5a shows the PMAN where each mycobiont is labelled using 
the genus of their closest photobiont (see “Materials and methods”). The labelled network comprises several 
contiguous clusters containing related mycobiont species, i.e., belonging to the same genus. Here, the network 
appears to display a higher density of connections within each of the guilds than with outside nodes, which sug-
gests that guilds display a common structural signature based on modularity.

We compare topological modules to well-known guilds to study the link between taxonomically-specified 
guilds and modularity (see “Materials and methods”). In the PMAN there are 56 taxonomy-defined guilds and 
140 topological modules. We find that topological modules are statistically smaller than the taxonomy-defined 
guilds, with an average size of 7.61 species per module versus 26.11 species per guild ( p < 10−4 , see Fig. 5b). 
Smaller guilds have a strong matching with topology-predicted modules, whereas larger guilds include several 
smaller modules embedded within them (see the highlighted cases of Asterochloris and Trebouxia). This is com-
puted using Jaccard’s similarity  indices56 between each guild (defined by taxonomy) and each module (defined 
by topology). A guild or a module here are the set of fungal and photobiont species that have a given label. There 
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Figure 3.  Nestedness and modularity in the photobiont-mycobiont network. Here we show (a) modularity 
denoted as QB and (b) nestedness calculated as the full network NODF (see “Materials and methods”). The 
empirical values are shown as vertical red dashed lines, while bootstrap null model distributions are shown as a 
histogram of probability density obtained from 100 independent randomizations of the network.

Table 1.  General properties of the photobiont-mycobiont network.

General properties Definition Value

P Number of Photobionts 156

M Number of Mycobionts 926

S=P+M Number of Species 1082

I Number of Interactions 1311

C  = I/(P×M) Connectance 0.00906

〈k〉 Mean degree 2.4196

〈kP〉 Mean Photobiont degree 8.3910

Max(kPi) Max Photobiont degree 75

〈kM 〉 Mean Mycobiont degree 1.4136

Max(kMi) Max Mycobiont degree 9

Table 2.  Structural properties of the photobiont-mycobiont network. From left to right, mean betweenness 
centrality for photobionts and mycobionts ( BCP and BCM respectively), modularity ( QB ) and whole nestedness 
(NODF). Null model metrics were calculated from 100 independent realizations of the network. P-values were 
obtained from t-test statistics in normally distributed variables ( QB , NODF) or Mann-Whitney U rank non-
parametric test in non-normally distributed data ( BCP and BCM).

Centrality Modularity Nestedness

〈BCP〉 p-value 〈BCM〉 p-value 〈QB〉 p-value 〈NODF〉 p-value

Data 0.0188 – 0.0026 – 0.722 – 1.879 –

Bootstrap 0.01254 0.3435 0.0014 0.1848 0.691 < 10−5 2.419 < 10−5
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are 21 guilds with average Jaccard similarity less than 0.5, indicating a significant discrepancy between topology 
and taxonomy, while the remaining 35 have very similar communities (Fig. 5c).

The lack of matching between taxonomic and topological classification implies the existence of other struc-
tural patterns beyond the mesoscale defined by guilds. Empirical support to this hypothesis is found in the 
internal structural diversity of two major guilds: Coccomyxa and Trebouxia. These guilds are well established in 
the  literature29,32 and provide a reliable microcosm whose individual components been extensively characterized, 
making them an ideal test-bed for our approach. Figure 6a shows a schematic representation of guilds proposed 
by  Rikkinen29, while Fig. 6b, c, on the other hand, shows the sub-networks of the same guilds with the most cur-
rent information. These representations intuitively show distinct properties, but the network approach allows 
us to quantify these differences more precisely.

Guild interconnectivity matches major photobiont groups. At a bigger scale, it is important to 
assess whether there the interconnectivity among guilds is structured or not. Are there any non-trivial patterns 
beyond the level of guild organization? We build a guild interaction network (GIN) where nodes represent the 
major guilds (consisting of at least 5 species) and edges connect each pair of guilds that share at least one myco-
biont species (see “Materials and methods”). Figure 7 depicts the adjacency matrix (a) and the circular layout 
(b) for the GIN. Using adjacency as a surrogate for distance in this network, we can estimate node similarity 
and lay out guilds using the fastcluster  algorithm57. The photobiont phylogeny can be partially recovered in the 
GIN: several large green algae guilds cluster together (from Heveochlorella to Asterochloris) followed by smaller 
modules containing some green algae, Xanthophytes and cyanobacteria located in its own domain. In Figure 7b, 
the network representation allows us to show additional information: edge width is proportional to the number 
of shared species amongst guilds, while node size is proportional to the number of species in each guild. Guilds 
are colored according to photobiont type, green for green algae, blue for cyanobacteria and yellow for yellow-
green algae. In agreement with our prior clustering analysis, every cyanobacterial guild groups together except 
for Nostoc. This implies that the large-scale organization of guilds is not random, but rather the result of biologi-
cal traits or evolutionary constraints that bring physiologically similar species closer together in the network.

Guild and species contribution to network robustness. We investigate the PMAN’s ability to with-
stand various types of perturbation while also providing some topologically-based insights to preservation 
efforts through the identification of keystone species and guilds. The degree of network fragmentation caused 
by species extinction is quantified using global efficiency, which reflects how costly it is to convey information 
across nodes. Global efficiency falls as the distance to a given node increases, eventually approaching zero in a 
fully disconnected system (see “Materials and methods”).

Figure 8a shows the effects of different strategies of species removal on the global efficiency of the PMAN: 
random removal of species (blue), removal based on degree (green) and removal based on centrality (yellow). The 
PMAN is particularly resistant to random component failure; even after removing 120 nodes at random (about 
10% of the network), the overall efficiency of the system is barely affected. This is consistent with many observa-
tions in heterogeneous biological  networks58, which contain a backbone of nodes driving global connectivity, 
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Figure 4.  Validation of patterns in subsampled networks. Modularity (a) and Nestedness (b) patterns for 
subsampled networks in green (containing randomly half of the reported interactions) as well as their edge 
randomization counterparts (red). Distributions shown contain 50 independent data points of the subsampling 
and edge randomization each. The patterns reported for the full network of more modular than expected and 
less nested than expected are maintained, thus suggesting that these are not caused by sampling biases.
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but most species have few connections and their extinction has a much more limited influence on the system’s 
structure. In contrast, the network is particularly vulnerable to targeted node removal, whether based on degree 
or node centrality. While topological network properties are unlikely to inform ecological damage, this sort of 
study might help guide conservation strategies that seek to prevent fragmentation and the buildup of ecological 
damage.

Figure 8b shows a simulated cascading extinction event, in which random species disappear and with a given 
probability this effect is propagated to neighboring species. When the chance of propagation increases, the 
amount of affected species increases, reaching the totality of the system when the probability is 1. This type of 
analysis is carried as a comparison between the the real data set (blue) versus an ensemble of bootstrapped net-
works (orange) acting as negative controls. On average, the real data set is more robust to cascading extinctions 
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predicted by photobiont taxonomic information in the largest subweb of the photobiont-mycobiont association 
network. Large guilds are represented by color, while minor guilds are represented by grey (clusters with fewer 
than five nodes). Network layout was automatically generated with the FMMM algorithm (see “Materials and 
methods”). (b) Module size distributions for two methods of guild allocation: a topological definition based 
on network modularity (blue) and a taxonomic definition of guild membership based on photobiont genera 
(orange). Taxonomic guilds are significantly larger than the topological modules (p-value obtained from t-test 
statistic). (c) Topological modules are incorporated into guilds. For each module-guild pair, we show the 
Jaccard’s similarity index, which is the intersection over union of the two sets of species. Some guilds (in blue) 
correspond to topologically defined modules, while others include several modules (in orange, see text).
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Figure 6.  Evolution of photobiont-mediated guild networks. (a) Schematic representation of the guild 
relationships and composition as proposed by Rikkinen (adapted  from29). An updated view of the Trebouxia 
guild (b), as well as the Coccomyxa guild (c). Network visualizations were generated with OGDF library (see 
“Materials and methods”).
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Figure 7.  Global connectivity between photobiont genera. Using the photobiont genus as the foundation for 
lichen guilds, we reconstruct the guild network’s adjacency matrix (a), where white squares represent at least one 
mycobiont shared by photobiont genera. Photobionts are sorted using their pairwise distances and fastcluster 
algorithm (see “Materials and methods”). In (b) we show the corresponding network representation, where 
link widths are proportional to the amount of shared mycobionts between photobiont genera, node sizes are 
proportional to the number of species (both photobionts and mycobionts) belonging to that guild and and are 
colored according to their group: green for green algae (Chlorophyta and Charophyta), blue for cyanobacteria 
and yellow for yellow-green algae (Xanthophyta). Network visualizations were generated with OGDF library (see 
“Materials and methods”).
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for a wide range of values. The modular pattern present in the PMAN (which is removed in a bootstrap) acts as 
a firewall, limiting the reach of harmful effects to local domains.

Some guilds and species have a greater influence than others in providing global resilience due to their 
placement within the network as well as their local characteristics (Fig. 8c). Of particular interest are the guilds 
Scytonema and Gloeocapsa, which act as bridges to the major cyanobacterial guild Rhizonema. In addition, 
species within the major guilds Elliptochloris, Symbiochloris and Chloroidium have relatively high centralities. 
Remarkably, these are fragmented guilds (they do not form continuous clusters in Fig. 5a) and their constituent 
species often lie at the intersection between other major guilds in the network.

Discussion
At the core of the lichen symbiosis is the association between two unequal partners, a fungus and a phototroph. 
The flexibility of this association is key to understand the resilience of lichen species to polluted and antropogenic 
 ecosystems10 and their capacity to adapt to new  environments6. Understanding and documenting single partner-
ships has been a major focus of lichen research. However, mycobiont-photobiont partnerships do not happen in 
isolation, they are part of a larger web of interactions that shapes their chances of formation and success. While 
much effort has been invested in characterizing individual associations, the global network of interactions that 
maintain the lichen symbiosis remains unknown. Using the most comprehensive data set of mycobiont-photo-
biont partnerships to date, we addressed the multi-scale nature of lichen symbiosis from a network perspective.

Ecological networks have emerged as a powerful tool to formalize biotic interactions, including mutualis-
tic, antagonistic and more complex  relations59. This characteristic makes them particularly useful to study the 
so called photobiont-mediated  guilds29: communities of lichens that share a common set of photobionts and 
facilitate each other’s propagation, but also compete for space and resources. Lichens depend on a set of cou-
pled ecological interactions involving species dispersal, facilitation and competition, which are in turn shaped 
by guild  structure32. Mycobionts within a guild are able to promote the establishment of one another into new 
habitats by extending the ecological range of their  partners33. For example, spore-producing lichens that require 
a compatible photobiont upon reproduction are indirectly facilitated by the asexual lichens within their guild 
already established in that  environment30.

Previously, guilds have been defined by photobiont taxonomic identity, but this characterisation has been 
constrained by the scope of the data sets, which have often included a limited amount of lichen species or geo-
graphical  locations17,23,32–36. An aggregated network perspective allows us to tackle the structural signature of 
lichen guilds and provides a solid foundation to address how the general patterns of association in the lichen 
symbiont network affect its robustness.

Our analysis shows that the PMAN displays a statistically significant modular and non-nested organisation 
when compared to the null model. This is consistent with previous observations of Peltigera  lichens38. Further-
more, we compare the processes of guild allocation based on photobiont taxa and topologically defined guilds, 
testing pre-established assumptions regarding guild structure and composition. Beyond the proposed guild 
mesoscale, we can identify other relevant scales in lichen symbiosis. Small taxonomy-defined guilds usually 
match with topological modules, and are typically composed by a single photobiont linked to a few mycobionts. 
Instead, larger guilds like Asterochloris and Trebouxia are rather complex communities with many interacting 
sub-modules. This newly reported scale in the PMAN suggests that additional underlying ecological or genera-
tive constraints (such as habitat range or trait-dependent associations) may play an important role in shaping 
guild structure.
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Figure 8.  Guild contribution to network robustness. (a) Decay of global efficiency (and robustness) with 
increasing number of extinct species for different removal strategies. Centrality-based (yellow) removal of 
species affects the global path lengths and connectivity more than degree-based (green) or random removal 
of species (blue). (b) Surviving fraction of species in a cascading extinction event in the real (blue) and the 
bootstrapped (orange) data set. All simulations include 100 independent replicates in (a) and (b), with the solid 
lines representing the mean value of the distribution and the shaded area around it encompasses one standard 
deviation of the sample. In (c) we show the average betweenness centrality for the species in each guild, bars 
stand for the standard error in the distribution.
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According to the GIN analysis, trait-dependent associations may also inform large-scale interactions between 
photobiont genera. We found that guilds are connected in a non-trivial manner consistent with the evolutionary 
history of photobionts, separating algae and cyanobacteria into two identifiable clusters. A possible explanation 
to understand these findings might be the unique way by which some cyanobacteria are lichenized. Lichens 
harboring cyanobacterial and algal partners segregate them in the same organism using specific organs called 
 cephalodia60. The use of specific and non-universal morphological structures for cyanobacterial symbionts points 
at a distinct proximal evolutionary origin for these innovations and highlights the importance of morphological 
novelty as a driver of the patterns observed in the GIN. Putting these two structural patterns together, the PMAN 
recapitulates evolutionary history at the largest scales, but is inconsistent with taxon-based guild definitions at 
the smallest scales.

The network approach has the potential to give insights into the underlying symbiotic associations. The nature 
of the lichen symbiosis, whether mutualistic, antagonistic, or somewhere in between, is a subject of debate within 
the  community61–64. Some authors regard lichen symbiosis as mutually beneficial among  partners36,64, while oth-
ers propose a more complex relationship analogous to photobiont domestication by  mycobionts63,65. Under the 
lens of facultative mutualism, symbiosis can be malleable, defined by additional factors like species  density66 or 
the quality of the external  environment62. In harsh conditions, photobionts in association with fungi are better 
protected from external challenges like predation, UV radiation and extreme  temperatures67. Yet in optimal 
environmental conditions there are opportunity costs to living in association; the photobiont might be better 
off free-living instead of transferring metabolites to its host in exchange for a protection that is not required.

Theoretical studies have used different arguments to explain the presence (or absence) of modularity and nest-
edness in ecological networks, including ecological stability, spatial constraints, or the strength of  coevolution68–70. 
Evolutionary network models have shown that the topological features of an ecological network determine its 
resilience, stabilizing structural patterns based on the types of interactions it shows. For instance, nestedness 
is often the key pattern found in mutualistic  networks39,68, while modular structures are commonly associated 
with antagonistic  networks42,68,69. Modularity and nestedness are negatively correlated but they can also co-occur 
in sparsely connected random  networks43. This observation highlights the remarkable structure of the PMAN, 
which even at low connectance values displays modular, non-nested structures. An important aspect is that 
nestedness can also be produced for-free by the evolutionary generative  rules71, and it is still unclear if nested-
ness correlates with stability according to more recent  metrics72. Nestedness and modularity are not exclusive 
to particular interaction  types73, and they can also coexist, occupying different scales in the ecological network 
(e.g. modules that are themselves  nested46,74,75) or different dimensions of hypergraph  ecologies76. Our results 
suggest the presence of non-mutualistic interactions among lichen symbionts, whether antagonism or faculta-
tive  mutualism42,68,69.

Network structure can have a significant impact on the resilience and persistence of species and 
 ecosystems58,77. How perturbations propagate in ecological networks has been the subject of numerous studies, 
bridging the gap between topology and population dynamics. Fragmentation of the ecological network can have 
a detrimental influence on effective diversity and disrupt the flows of matter, energy, and ecosystem  services78,79. 
In turn, diversity has a buffering effect in accumulation of damage and the effects of perturbations in ecologi-
cal  systems80. However, not all species have the same contribution to network resilience. Removal of central or 
highly connected species can pose larger threats to network integrity (see Figure 8c). A modular structure also 
impacts the spread of cascading extinctions, confining perturbations to small groups of  species69,81. The symbiotic 
network presented here benefits from both of these patterns: hub species keep the network connected even when 
individual species are randomly removed, and the highly modular structure increases resilience by functioning 
as a firewall compartmentalizing damage.

In conclusion, we found evidence of the modular signature of guilds in the dataset of aggregated photobiont-
mycobiont associations. However, in 25 of the 56 guilds there is lack of agreement between taxonomically defined 
guilds and topological modules, revealing a wealth of structural patterns operating at multiple scales. This stands 
in stark contrast to the largest patterns of interaction in the network, which closely follow major evolutionary 
groups. Our analysis shows that some guilds have a greater influence than others in terms of network robustness. 
Future work will have to address the biological reasons explaining the origin of the reported structural patterns 
in symbiont networks. Incorporation of topological patterns in theoretical models will improve our knowledge 
about symbiotic network robustness, which is essential to anticipate biodiversity losses and extinction cascades.

Materials and methods
Data set. To build the bipartite network of photobiont-mycobiont associations, we use the data from a recent 
meta-study47. This work compiles over 200 publications in the field of lichen symbiosis, describing natural inter-
actions between symbionts. The data was supplemented with additional well-known interactions (Lobaria’s 
cyanobiont partners) that were missing in the original data set. The meta-study by Sanders and Matsumoto 
focuses on publications after 1988 Tschermak-Woess’ influential review and especially those publications pro-
viding molecular evidence of species identity. This dataset is, however, biased towards geographical locations in 
the western world (namely, Europe and North America). Most symbiont pairs are genetically validated through 
sequencing efforts and correspond to a recent wave of publications in the field, but the earliest publications in 
the data set (e.g. “A monography on algal culture” by Chodat, 1913) do not provide the same degree of validation. 
Thus, the data set contains some degenerate information in which, symbionts are identified only up to the genus 
level instead of the species level ( ≈ 30 % of the data). Similar patterns as those reported here were found in the 
analyses pertaining the non-degenerate network, as well as those limited to the largest subweb.

From the list of naturally observed associations, we can define a photobiont-mycobiont association network 
(PMAN) G = (P,M,E) in terms of the two disjoint sets of photobiont P and mycobiont M species and another 
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set of edges (i, j) ∈ E capturing the symbiotic association between partnering species i ∈ P and j ∈ M . The graph 
G can be also written as a biadjacency matrix Bij with dimensions corresponding to the size of each set of species. 
Any given entry in the matrix equals zero if there is no interaction between species i and j and equals 1 other-
wise. From the PMAN, we can further define a guild interaction network (GIN), Ŵ = (V , I) composed of a set 
of guilds u, v ∈ V  and their interactions I. Links (u, v) ∈ I in this network indicate whether a pair of photobionts 
belonging to different guilds share one or more mycobionts. We can compute the (weighted) adjacency matrix 
A = [Auv] of the GIN as follows:

where the membership function gi indicates what guild the photobionts species i belongs to, and δ(a, b) = 1 when 
a = b or 0, otherwise. The V × V  square matrix A represents an unipartite network whose entries measure how 
many mycobionts are shared between pairs of photobiont genera.

Network visualization. Network visualizations were generated with Python 3.9 scripts, using NetworkX ver-
sion 2.882 and the OGDF open-source  library83. The layout algorithm used was the Fast Multipole Multilevel 
Method (FMMM) by Hachul and Jünger84.

Taxonomical definition of guilds using label propagation. In order to establish taxonomical guilds we use a 
variation on the classical label propagation algorithm by Raghavan, Albert and  Kumara85. In our bipartite label 
propagation algorithm, photobiont nodes are labeled with their genus, while mycobionts are left unlabeled. 
Mycobiont nodes then acquire their surrounding photobiont tags sequentially but in a random sequence, and 
each community grows isotropically. In the case that a mycobiont has neighbors in different communities, a dual 
community allocation is proposed for that given node. At the end of this iterative process, nodes tagged with the 
same labels are grouped together as guilds. This is a simple and effective method for discovering any underlying 
structure in the PMAN network that is led by taxonomic information.

Network metrics. Modularity. A number of metrics have been used to assess the modular structure of 
ecological systems, but a popular method examines the degree of modularity at the topological  level86. Given a 
partition of the set of nodes given by the function c(i) indicating the module label to which the node i belongs, 
modularity Q calculates the difference between the proportion of links inside each module and the predicted 
fraction when connections are randomly rewired:

where A = [Aij] is the adjacency matrix of the (unipartite) network, 2m =
∑

ij Aij is twice the number of edges, 
ki =

∑

j Aij is the degree of node i, and δ(a, b) = 1 when a = b or 0, otherwise. The previous definition must be 
modified for a bipartite network to add the requirement that no connections exist between nodes of the same 
 type87. In this case, the bipartite modularity ( QB ) is defined as:

where B = [Bij] is the bipartite adjacency matrix, and qi =
∑

j Bij and rj =
∑

i Bij is the degree of photobionts 
and mycobionts species, respectively. Here, we measured the bipartite modularity of the PMAN using a custom 
implementation of the biLOUVAIN  algorithm88 in Python 3.9 (see link to open repository in data availability), 
which heuristically finds a modularity maximizing arrangement of photobionts and mycobionts into a non-
predetermined number of modules. Initially, each node is allocated to its own community and then, iteratively, 
the algorithm finds and applies a community allocation change (swapping the module of a single node) that 
yields an increase in the overall modularity. This process stops when the algorithm cannot find a community 
swap that further increases the global modularity beyond a predetermined threshold ρ (in our case ρ = 10−6 ). 
The bipartite modularity QB assesses how often a particular annotation of nodes into modules corresponds to 
interactions that are mostly inside each module ( QB = 1 ) versus mostly outside of each module ( QB = −1).

Nestedness. Nestedness is a global measure of the propensity of low-degree species to interact with a subset of 
highly interconnected species. This pattern is clearly identified by the network architecture; nestedness is a sys-
tematic arrangement of non-zero entries in the adjacency matrix. We compute the nestedness using the overlap 
and declining fill  (NODF89, see link to open repository in data availability) for the bipartite graph G = (P,M,E) 
with biadjacency matrix B = [Bi,j]:

where K = [NP(NP − 1)+ NM(NM − 1)]/200 is a normalisation constant, NP = |P| , NM = |M| , θ is the Heavi-
side function with θ(0) = 0 , and qi and rj are the degrees of nodes i ∈ P and j ∈ M , respectively. A high NODF 
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value implies that certain species’ interactions are a subset of other generalist species’ interactions (and so the 
network demonstrates nesting), whereas a low value indicates clustering (which is consistent with high modu-
larity). After determining the empirical nestedness values, they are compared against null model predictions to 
assess their statistical significance. Nestedness is sensitive to network size N = |P| + |M| as well as network con-
nectivity, according to theoretical and empirical investigations. We must compare empirical data with a bootstrap 
technique that keeps the size and fill of the PMAN’s adjacency matrix since we do not know the underlying null 
distribution of the test statistics.

Global efficiency. Latora and  Marchiori90 introduced a network metric of global integration that is inversely 
proportional to the average path length. The mean global efficiency (E(G)) of a network G can be defined as 
follows:

where dij is the length of the shortest path connecting any pair of nodes i and j, and N is the network size. 
Distances between pairs of nodes in disjointed subweb are infinite, as there is no path that can reach from the 
original node to the destination. An advantage of using the inverse of path length (instead of the alternative 
average distance) is that it allows computation of a finite efficiency value for graphs with fragmented networks. 
Efficiency calculations were carried out using the NetworkX version 2.8 of the algorithm for  Python82.

Betweenness centrality. Centrality measures propose a method to evaluate node or link importance given a 
certain network topology. Betweenness centrality (BC) of a given node is the fraction of shortest paths that pass 
through that node, considered over all other possible pairs of nodes within the network. A low betweenness 
centrality ( BC = 0 ) means that the node is not in the path to reach other nodes, and thus has no effect in the 
flow of information within the network. High Betweenness centrality ( BC = 1 ) means that the node is always 
involved in the traffic of information in the network and its removal could have major impacts in the network’s 
information flow, whether through rerouting of shortest paths (making them longer and thus a less well con-
nected network) or simply fragmentation impeding further communication between sets of disjointed nodes. 
Here, a bipartite or unipartite implementation is essentially the same, but a consideration must be given to the 
sampling mechanism of node pairs. The process can be substantially sped up at the cost of reliability by reducing 
the fraction of pairs considered in the analysis. All calculations shown in this publication correspond to the full 
set of nodes, computed following the standard algorithm by Borgatti and  Halgin91, as implemented in NetworkX 
version 2.882.

Robustness to species loss. We tested the effects of species removal on the global efficiency using three 
different strategies for choosing nodes: (1) Random, (2) Degree-based, and (3) Centrality-based. For the two 
latter strategies node choice was carried out using a propensity vector incorporating the normalized degree 
sequence and the normalized betweenness centrality (calculated as described in the prior section).

We also analyzed the effects of species extinction propagation in the symbiont network through a simulation 
of extinction  cascades92,93. In these simulations, a node is randomly chosen from the network (both in the empiri-
cal data set and the bootstrapped data set) and an “infection” process is carried out. While a node is infected (or 
becoming extinct) it can affect neighboring nodes with a given probability (a parameter fixed for each simula-
tion). If new nodes become extinct then the process continues until no new extinction events are produced. The 
reported results are the fraction of surviving species at the end of the extinction cascade. These simulations are 
carried out in 100 independent replicates (meaning a replicate for 100 different bootstraps of the original data 
set for the case of the negative control).

Statistical validation. Statistical significance of modularity and nestedness under sampling biases. Follow-
ing standard practices in studies of symbiotic  networks55, we further validated the patterns reported here by 
performing similar analyses on randomized subsets including only half the documented interactions for data 
 completeness94. We compared a set of 50 subsampled networks with the same amount of bootstrap edge ran-
domization of these subsampled networks. The subsampled networks containing 50% of the total interactions 
were more modular and less nested that their bootstrap counterparts, reinforcing the perspective that the pat-
terns reported here are meaningful and unlikely to be caused by limited sampling of the underlying interactions. 
Significance of differences in these metrics was quantified with a scipy t-test statistic, yielding the significance 
p-values of p < 10−5 for both modularity and nestedness.

Null models of bipartite networks. Validating the statistical significance of structural patterns is a common 
approach in network studies (i.e., two classic examples are motif  analysis95 and community  detection96). The 
goal here is to determine when empirical patterns depart from a baseline null model that provides the expected 
behaviour of a system. In this paper, we employ a bootstrap randomization of the bipartite network which 
preserves the original degree  distribution41. If each link connects two nodes, one of each class (photobionts 
and mycobionts), we break correlations in the system by untying connected nodes and connecting them at 
random. More specifically, we create the vectors −→M ,

−→
P  of length L (where L is the number of interactions in 

the PMAN) and each pair (Pi ,Mi) is composed of a photobiont identifier and a mycobiont identifier capable of 
forming a lichen species. Then, we randomize the order of the elements inside vectors −→M ,

−→
P  separately. Each 
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new pair (Pi ,Mi) after randomization represents potentially new lichen species (composed of partners that are 
not observed together in nature) but which preserve the original bipartiteness and degree heterogeneity.

Data availability
The datasets generated and analysed during the current study are available in the following figshare repository, 
https:// figsh are. com/s/ f856e 1d5d8 1720d 5536e. Example scripts for calculating modularity, nestedness and resil-
ience are available in the following figshare repository, https:// figsh are. com/s/ d1137 de1cb d9f10 ae803.
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