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Cyber‑physical oil spill monitoring 
and detection for offshore 
petroleum risk management 
service
Yuewei Wang , Xiaodao Chen  & Lizhe Wang *

Petroleum industry has started to embrace the advanced petroleum cyber‑physical system (CPS) 
technologies. Offshore petroleum CPS is particularly hard to build, mainly due to the difficulty in 
detecting and preventing offshore oil leaking. During the oil exploration and transportation process, 
the remote multi‑sensing technology is typically employed for emerging service. It can be utilized for 
leak detection by enabling the underwater modeling of an offshore petroleum CPS. However, such a 
technology suffers from insufficient remote sensing resources and expensive computational overhead. 
In this work, a cross‑entropy based leak detection technique is proposed to detect the oil leak, which 
facilitates the understanding of the oil leak induced marine pollution. Furthermore, a hierarchical 
parallel approach is proposed on the super computer Tianhe‑2 to improve the efficiency of the 
proposed leak detection technique. Experimental results on Penglai oil spill events demonstrate that 
the proposed method can effectively identify the sources of oil spilling with accuracy up to 100%.

Advanced petroleum cyber-physical systems (CPS) technologies have been adopted in various activities in the 
petroleum industry where petroleum CPS optimization tools can facilitate the processes of petroleum explo-
ration, production and  management1,2. For example, there are studies on interwell connectivity of petroleum 
 reservoir3 and cyberattack analysis on the Oil and Gas ( O&G )  field4. For these petroleum CPSs, real-time pro-
duction data, together with static geological data, are employed to improve the petroleum system. In this work, 
we focus on the offshore petroleum CPS to detect and prevent offshore oil leaking.

The oil leaking events occur during oil exploration and transportation in the offshore petroleum industry. Oil 
leak can induce significant pollution in the ocean, which leads to various economical and environmental  issues5,6. 
Thus, a petroleum CPS which can allocate the leak point effectively for oil leak detection is highly  demanded7. 
However, locating the leaking point needs significant work due to the reason that the underwater oil spilling 
model is very complicated which can be impacted by a number of factors such as chemical transformations and 
biological consumption of the oil. This simulation of tracking oil at both vertical and horizontal is with features 
of nonlinear, time-varying and multi-variables8, such that, the model itself is significant complex. For this kind 
of model, it is difficult to directly locate the leaking point by utilizing the model inversely. However, in industry, 
an accurate leaking point estimation serves as a very important role for the emergency response of petroleum 
 CPS9,10. Collaborate the plain offshore oil leaking model needs to be improved by other techniques for the target 
problem.

During oil exploration and transportation, the remote multi-sensing technology is typically used for leak 
 detection11, enabling the underwater modeling of an offshore petroleum CPS based emerging service as shown 
in Fig. 1. The oil leaking accident is detected which can be analyzed using the remote sensing data. Synthetic 
Aperture Radar (SAR) is an effective and widely utilized remote sensing technique for oil spill  detection12,13. 
During the detection procedure, an assumed oil leak source can be placed in a numerical simulation; and can 
be evaluated by comparing the simulation results with remote sensing data. After that, the assumed oil leak 
source can be updated which targets to a better similarity to the remote sensing data. This procedure proceeds 
iteratively. Since satellites have their fixed and long revisit time, monitoring and detecting oil spill cannot rely 
only on the remote sensing data. The oil spilling simulation is normally combined with remote sensing tech-
nique. There are existing work on numerical oil models combining remote sensing data to provide continuous 
monitoring and detection of oil spill diffusion.  In14, the combination of satellite data of oil slicks surface with 
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Lagrangian trajectory models have been proposed for trajectory forecast on oil leaking.  In15, the MEDSLIK oil 
spill model is proposed to forecast the oil spreading situation by analyzing the remote sensing  image16. It was 
later improved to the MEDSLIK-II Lagrangian marine model which can be utilized to simulate the spread and 
transformation processes of leaking oil by using both SAR (synthetic aperture radar) data and optical image 
 data17.  In18, an Estuarine Coastal Ocean Model (ECOM-3d) was established by combining a remote sensor 
system that detects oil spills with a numerical simulation based on a dynamic data-driven application system. 
These existing techniques suffer from insufficient remote sensing resources and expensive computational cost, 
when working with realistic scenarios.

In this work, a new technique is proposed for offshore oil spill monitoring and detecting based on the numeri-
cal simulation and the remote sensing data. Leveraging the cross entropy technique, the proposed technique 
determines the offshore oil linking, which can also facilitate the understanding of the oil leak induced marine 
pollution and enabling the better solutions. To significantly improve the efficiency of the proposed method, a 
hierarchical parallel approach is proposed to speed up the proposed method on super computer. Contributions 
of this paper are summarized as follows.

• A cross entropy optimization technique is developed for the offshore oil spill detection, to understand of the 
oil leak induced marine pollution.

• The unstructured grid Finite Volume Community Ocean Model (FVCOM) based on unstructured triangle 
grid is utilized to simulate oil leak process, to fit complex terrain and improve the simulation accuracy.

• A hierarchical parallel approach is proposed to deploy the oil leak source detection method on super 
computer Tianhe-2. In this way, the in time responses of offshore petroleum detection CPS system can be 
enhanced for the further disaster prevention.

• The proposed technique is applied to analyze the real oil spill event in Penglai, China. Our case study dem-
onstrates that the proposed method can effectively identify the sources of oil spilling with accuracy up to 
100%.

Compared to the conference version of this  paper19 which proposed a petroleum spill source detection method 
on a single computation node, this paper significantly extends it to develop a hierarchical parallel computing 
technique for oil spill detection. To leverage the technique of parallel computing, the numerical model of oil 
spilling is also changed from the ECOM-3d to the FVCOM. FVCOM, based on unstructured triangle grid, 
can simulate the complex coastline and massive diversity island in offshore region with accuracy. In addition, 
the improved method has been deployed to the super computer Tianhe-2 to meet the service efficiency for the 
offshore petroleum risk management. Sufficient computing on resource Tianhe-2 supports the numerical simu-
lation and spill source detection with massive parallel execution. The proposed hierarchical parallel computing 
technique in this paper significantly increases the efficiency of the emerging service to make in time responses 
for oil leak accident.

Figure 1.  Illustration on remote sensing helped offshore oil spill monitoring and detection in offshore 
petroleum CPS based emerging service.
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Preliminaries
FVCOM is an unstructured grid, primitive governing equations based coastal ocean and estuarine numeric simu-
lation model. It was developed by Chen et al. in  199920. FVCOM originally targeted at solving the 3-D current 
simulation; and current version of FVCOM imbibes advantages of traditional ocean circulation models, the finite-
difference method and the finite-element method. By the help of its discretized method for governing integral 
equation, the accuracy and efficiency of the simulation can be achieved. With increasing number of researchers 
participated in FVCOM development, FVCOM has been extended with components including sea ice module, 
surface wave module, generalized biological module, 3-D Lagrangian particle tracking module, et al. Leveraging 
by the high performance computing technique, FVCOM can be parallel executed on computing clusters. Due 
to aforementioned metrics of FVCOM, it has became a widely used ocean numerical simulation model. In this 
paper, FVCOM is utilized to simulate the oil particle movement in an oil leak  accident21.

Numerical equations in FVCOM include conservation equations, momentum equations, temperature, salin-
ity, and density equations. Conservation equations are built to simulate the movement of water in mathematics. 
Unstructured triangular grids are the basic units to build conservation equations. Momentum, continuity, tem-
perature, density, salinity conservation equations are formulated to describe the dynamic relationship between 
grids. As shown in Fig. 2, four triangle grid instances are created at sea level to discretize the marine region for 
further dynamic analysis. The unstructured, non-overlapped grids can flexibly deal with complex  terrain22. For a 
node Ni on sea level, the distance of the node Ni to its projection node Nt

i  on ocean surface is δ ; and the distance 
of the node Ni to its projection node Nb

i  on seabed is h. There are scalar factors are associated to each node which 
can be utilized to illustrate the state of the ocean system. These scalar factors are: the seabed depth h (sea-level 
standard), the surface height δ (sea-level standard), the z velocity component γ , the salinity S, temperature T, 
density ρ , vertical eddy coefficient and thermal vertical eddy diffusion coefficient κ and κT . Besides, x, y and 
z velocity components v(α,β , γ ) are placed at centroids of each triangular gird. For each triangular grid, the 
continuity equation is:

The momentum equations are formulated as:

where Fα , Fβ and Fγ represent the horizontal and vertical momentums in different direction. P represents the 
pressure which includes air pressure at ocean surface and hydrostatic pressure. q represents non-hydrostatic 
pressure. C represents the Coriolis parameter. The temperature, salinity, and density equations are as  follows21.

where FT and FS represent the thermal and salt diffusion parameters. The numerical procedure is described by 
the above partial differential equations, which are solved by the semi-implicit solver.
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on sea surface and seabed.
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Based on the velocity field created by conservation equations, the Lagrangian particle tracking module con-
tinuously releases petroleum particles. The dynamic movements of each particles can be described by ordinary 
differential  equations21.

where Ln(t) is the particle n location at a time t. L′n is the speed of the particle n. v is the velocity field calculated 
by the model. The temporal movement is determined by the location of the particle and the time. To tackle the 
problem, the formula can be transformed into discrete  integral21:

The equation discretizes the time interval and cumulative velocity to obtain the particle locations. The 4-stage 
explicit Runge-Kutta method is utilized to solve the integral problem. For more details regarding the Lagrangian 
particle tracking module of FVCOM, please refer to  literature21.

Methods
Based on oil leak numeric simulation model illustrated in the last section, in this section, the details of the 
proposed method are introduced as follows. The fundamental theoretical foundation for the cross entropy opti-
mization method, the workflow of the proposed method while applying in solving the oil leak source detection 
problem, and the parallel method are introduced as follow.

Theoretical foundation. Cross entropy (CE) optimization method is essentially an important sampling 
based Monte Carlo approach for optimization. The CE method is a relatively efficient technique for tackling 
complex optimization  problems23. It treats an optimization problem as a rare event searching problem which 
can be achieved through iteratively tuning the Probability Density Function (PDF) of solutions. In this paper, 
the probability of the physical location of possible oil leak source is treated as a rare event. The CE method are 
utilized to efficiently locate the leaking point positions. The principle of the CE method is illustrated in this 
section. Cross-Entropy (CE) method is an important sampling based Monte Carlo approach for optimization.

For optimization problems, tentative solutions can be presented as Xv
1 ,X

v
2 , . . . ,X

v
n . Those solutions can be gen-

erated in the decision domain ξ according to the PDF f (Xv , v) where v is the initial PDF characterizing parameter. 
Note that, since the solution PDF is unknown at the beginning, the f (Xv , v) can be initialized by experience and 
it is to be tuned to obtained the solution PDF in this technique. After generating solutions Xv

1 ,X
v
2 , . . . ,X

v
n , they 

are applied into the problem to obtain corresponding results. Assume that the target optimization problem is to 
maximize the result value and can be presented as:

where S(x) is a real-valued function to calculate the result and γ ∗ denotes the maximum result among all possibly 
solutions. If the parameter v in the PDF f (Xv , v) is set to u, a new set of random samples Xu = (Xu

1 ,X
u
2 , . . . ,X

u
n ) 

can be generated. The later generated solutions can be evaluated as:

where �q is the quality of a solution vector Xu , γ is a real number. The probability of which S(Xu) is greater than 
γ can be defined as

where Eu is the expectation and I(*) is the indicator function, which can map the solution vectors to the targeted 
problem S(Xu) and evaluate the solution qualities. For instance, I{�q≥0} equals to 1 if and only if �q ≥ 0.

The target of the CE method is to minimize the upper bound which is real number γ on the problem func-
tion S(Xu) . In that case, under high probability, �q is less than 0 and γ is the maximum value γ ∗ of the problem. 
In order to compute l for a given γ , crude Monto Carlo algorithm is a practical method. Numerous samples are 
generated from solution domain ξ to estimate l as

where �qi is the quality of a solution vector Xi . Estimating l accurately requires a large quantity of samples 
which would bring in the high computational overhead, especially when �qi ≥ 0 is a rare event. To tackle this 
problem, the CE method utilizes the important sample approach to avoid significant number solutions. The CE 
method defines a different PDF h(X, w) on solution domain ξ for important samples. Calculate the l̂  combined 
with h(X, w) to estimate l as:

The PDF h(X, w) is defined as:
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The Eq. (10) can be converted into:

The PDF h(X, w) is still difficult to calculate while the l̂  is unknown. The CE method provide a distance computa-
tion method for two PDF h(X,w) and f(X,v) utilizing Kullback-Leibler distance. The definition of the Kullback-
leibler distance is:

To obtain the minimize Kullback-leibler distance between h(X, w) and f(X, v), the w requires to:

Combine the Eq. (11) and the Eq. (14). There is:

which can be simplified as:

Due to the important sample is utilized in Eq. (16), the Eq. (16) can be written as:

According to the Eq. (17), any reference parameter p can make the equality holds. In order to obtain the value 
of the variable v, the Eq. (17) can be changed into:

The estimation value of v can be calculated as:

where the samples X1,X2, . . . ,Xn are generated by the PDF f(X, p). p can be calculated by taking the derivative as:

CE based Offshore Oil Spill Detection Method. To obtain the accurate coordinates of the oil spill posi-
tion, the CE based Oil Spill Source Detection (COSSD) method for offshore petroleum field is proposed in this 
work. It proceeds iteratively and in each iteration, a number of candidate leak sources are generated according 
to the solution PDF. For each candidate leak source, an oil spilling scenario is simulated and the polluted area 
on the surface of seawater can be obtained by the simulation. The simulation results are used in the candidate 
leak source evaluation. The evaluation is based on the mismatch value between the polluted area on the surface 
by the simulation and the area through analyzing the remote sensing satellite. Candidate leak sources with small 
mismatch values are considered as good quality samples and can be used to update the solution PDF in the next 
iteration.

The workflow of the COSSD method is shown in Fig. 3. Firstly, initialize the candidate oil leak sources PDF in 
the offshore region. A large number of candidate oil leak sources are generated by the initial PDF. Each candidate 
oil leak source is fed into the FVCOM model to simulate oil leak. Oil leak simulation results are compared to 
the remote sensing data to determine the qualities of the candidate oil leak sources. According to the simula-
tion qualities, elite simulations can be selected to update the PDF of candidate oil leak sources. The simulation 
process is iteratively executed until the stop criteria being achieved. At the end of the proposed algorithm, the 
oil leak source location is obtained.
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Algorithm 1 the COSSD method.

Require: The remote sensing data and initial environment parameters.
1: Set i= 0.
2: Calculate the coordinate range [POSmin,POSmax] of the oil spilling location.
3: Initialize The solution PDF f (X ,ui) of leak source in the decision space by setting the characterize parameter ui according

to geographical properties.
4: Generate a sample set {x0 = {lat0, lon0,dep0}, x1 = {lat1, lon1,dep1}, x2 = {lat2, lon2,dep2}, . . . , xn =

{latn, lonn,depn}} of latitude value, longitude value and depth value for candidate leaking locations, according to f (X ,ui).

5: Simulate the oil leaking situation for each solution samples.
6: Evaluate samples by comparing results of simulations and remote sensing data.
7: Select m top quality samples {x̂1, x̂2, x̂3, ..., x̂m}.
8: Update solution PDF f (X ,ui+1) by using equation (20).
9: i= i+1.
10: Check the stop criteria with the updated solution PDF f (X ,ui). If stop criteria has not been satisfied, repeat steps 4 to 9.
Ensure: The computed oil leaking locations.

The details of the proposed COSSD method is illustrated in Algorithm 1. The input of the proposed algorithm 
is the remote sensing data and geological related parameters. At the beginning of the algorithm, the searching 

Figure 3.  Illustration of the COSSD method workflow.
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range for oil spill source and the location PDF f (X, ui) for the leak source are initialized in step 2 and step 3. 
Note that the search zone for the leak source and the solution PDF are initialized according to the geographi-
cal properties. In step 4, samples of candidate leak sources are generated according f (X, ui) . These candidate 
leak sources are simulated in step 5. In this step, samples of leak sources can be simulated in parallel, since the 
scenarios are independent from each other. The simulation results of leak sources are evaluated in step 6 by 
comparing the simulation results and the remote sensing data. The leak sources of which simulation results that 
are close to remote sensing data can be treated as good quality samples. In step 7, top m samples which denoted 
by {x̂1, x̂2, x̂3, . . . , x̂m} are selected, which are used to update the solution PDF f (X, ui+1) by equation (20) in step 
8. In step 10, the stop criteria, which is the quality of the top sample, is checked to decide if the next iteration is 
necessary. If the simulation results by the top sample are close to the remote sensing results, the leak source can 
be determined. Otherwise, the next iteration (from step 4 to step 9) needs to be performed.

The COSSD method solves a rare event searching problem by important sampling. The sampling evaluation in 
every iteration is based on the simulation result. As the principle of the FVCOM mentioned above, the dynamic 
analysis consists of PDEs and ODEs, which bring in a large computational expense and are highly time-con-
suming24,25. Thus, to guarantee the efficiency of the proposed COSSD method, a parallel technique is necessary.

A hierarchical parallel approach for the COSSD method executing on super computer. To 
improve the performance of the proposed COSSD method, super computers are employed to improve the com-
putation efficiency.

The super computer can be divided into the login nodes and compute nodes. Users can access the login node 
and compute node by the network connection protocols. Login nodes have authority to apply for the specific 
number of cores to utilize. After login and basic operation environment initialization, task batches are submit-
ted to compute nodes. By the help of multi-processors each compute node, computing tasks can be massively 
parallel executed on the super computer.

Targeting at efficiency of parallel execution, a parallel task scheduling approach is proposed in this paper 
to fully embrace the advanced hardware architecture. The parallel task scheduling approach is shown in Fig. 4. 
Firstly, on the master node, for the FVCOM simulation requests, ocean factors which include the current field, 
wind field, salinity, temperature are initialized. After that, potential leak source regions are also initialized on the 
master node based on primary solution space. The potential leak source regions can be initialized at a coarse level. 
In the meantime, the corresponding oil leak source distribution PDF is initialized and a number of candidate 
leak sources are generated in the potential region. To significantly speed up computing part, the evaluation of 
the candidate oil leak source locations, which is most time-consuming in the proposed COSSD method, is dis-
tributed to the multiple slave nodes. Each slave node is assigned to process multiple FVCOM simulations. Note 
that, as shown in Fig. 5, these multiple FVCOM simulations can be executed in parallel with a level-1 granularity 
and each FVCOM simulation can be executed in parallel with a level-2 granularity. Thus, the proposed COSSD 
method embraced with the super computer is executed in a hierarchical parallel way. The main task on the master 
node is blocked until the the FVCOM simulation tasks on slave nodes are all completed. The rest tasks including 
the evaluation, PDF updating and stop criteria determination are performed on the master nodes.

Results
Targeting to research on a severe practical accident, Penglai 19− 3 oilfield accident in 2011, Bohai sea in east of 
China is chosen to conduct experiments in this paper. In this section, the experiment setup information and the 
experiment details are introduced as follows.

Experimental setup. To fully describe the experiments in details, the study region, which is Bohai sea and 
the super computer, which is Tianhe-2 are introduced in following subsections.

Figure 4.  Illustration of the COSSD method parallel workflow.
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Region of study. The Penglai 19− 3 oil field is located in the south of central Bohai Sea 11/05 contract area, the 
Tan-Lu fault zone as shown in Fig. 6. This area is at end of the Bonan  uplift27. The exploration range of the oil 
field is from 117.5◦ E to 122.5◦ E in terms of longitude and it is from 37◦ N to 41◦ N in terms of latitude. The Bohai 
Sea is semi-closed with an average water depth of 18  m28. The 2011 oil leaks were the first large-scale subsea oil 
spill in China recent  years29. According to ConocoPhillips China Statistics, the accident results in the release of 
approximately 700 barrels of oil and 2500 barrels of mineral oil-based drilling mud onto the  seabed30. Due to the 
transmission pipeline laying on the seabed generally, in this experiments, we assume that the depth of the oil spill 
location is constant. The geological model which are utilized to simulate the process of oil spilling is  FVCOM31. 
The FVCOM model can solve the time dependent, three dimensional equations for the conservation of mass, 
momentum, salt, heat and turbulence quantities in an in-compressible hydrostatic fluid.

In this experiment, the simulation accuracy are defined as the difference between the simulated the oil pollu-
tion area on the surface of the seawater and the picture taken by the remote sensing satellite. For instance, assum-
ing that the pollution area on the surface is represented by 10, 000 pixels, and 8000 pixels covers the area of real 
pollution which is taken by the remote sensing satellite, the accuracy of simulation is 80% . Remote sensing data 
utilized in our experiment are obtained on June 11th, 2011 at Bohai Sea Penglai 19-3 Oil field. Advanced Synthetic 
Aperture Radar (ASAR), produced by Environmental Satellite (Envisat), is utilized to oil leak extraction. With the 

Figure 5.  Illustration of multiple simulation tasks scheduling on the super computer.

Figure 6.  Bohai sea area from google earth. Imagery/Maps data: Google Earth, TerraMetrics and TMap 
 Mobility26.
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Wide Swath (WS) mode, ASAR has better coverage range and radiation accuracy in oil spill  detection32. A large 
number of researches attempt to accurately detect oil spill in  ASAR32,33. Thus, in this paper, a single threshold 
segmentation method, proposed by Yan, et al. in  201518, is utilized to extract oil leak region.

To verify the effectiveness of the proposed COSSD method, a heuristic algorithm, Particle Swarm Optimiza-
tion (PSO) method is utilized in this paper. The PSO method is a widely-used evolutionary method which has 
been widely applied in resources allocation, susceptibility analysis and intelligent  diagnosis34–36. Besides, the 
Dynamic remote sensing Data-Driven Application System (DDDAS) based oil spill detection approach is also 
utilized as a comparison method since this technique is also targeting to solve the oil spill problems in Bohai  sea18. 
To illustrate the efficiency of the proposed parallel method, a serial implementation of the proposed method is 
also execute on a single compute node of the super computer.

Super computer Tianhe‑2. To improve the real-time performance of the proposed COSSD method, super com-
puter Tianhe-2 is utilized to improve the computational efficiency significantly. Tianhe-2 is super computer 
developed by National University of Defense Technology in 2003. Super computer Tianhe-2 composed of about 
17, 920 compute  nodes37. The peak computation times of Tianhe-2 can up to 5.49× 1016 times per second, and 
the stable computation times can up to 3.39× 1016 times per  second38. These nodes can be divided into big data 
nodes and Graphic Processing Units (GPU) nodes which are deployed in the different parts of super computer. 
In this paper, due to the computational characters being highly CPU relied, all experiments are applied to big 
data nodes. The big data node includes two processors, which is intel Xeon E5-2692 v2 contains 12-core with 2.2 
GHZ and 32 GB memory. To significantly enhance the efficiency of the proposed method, 20 FVCOM cases are 
distributed on 10 big data nodes for parallel execution. For each FVCOM case, 12 cores are allocated to execute.

Experiment result. To evaluate the proposed method, the PSO method and DDDAS-based oil spill loca-
tion detection  approach18 are utilized to examine the proposed method’s effectiveness and efficiency. We make 
the following observations.

• The effectiveness of the proposed COSSD method has been demonstrated by comparing the simulation results 
of the proposed algorithm and the remote sensing data. As shown in Fig. 7, from the July 5th, oil particles 
are iteratively dropped at location 120.0874◦ E in terms of longitude and 38.5023◦ N in terms of latitude. The 
oil film rapidly spread on the surface of the ocean. When the simulated oil spill area is added to the image 
taken by remote sensing satellite at July 11th, the accuracy of the proposed COSSD method can reach 100%.

• The oil spilling location detection accuracy of the DDDAS-based oil leak location detection approach, the PSO 
method, and the proposed COSSD method is shown in Fig. 8. Note that the accuracy of the DDDAS-based 
oil spill location detection approach is limited by the prior knowledge of approximate petroleum spilling 
location while the PSO method and proposed COSSD method search the oil leak source in the whole Bohai 
sea region. The search range for DDDAS-based oil spill location is from 120◦01′ E to 120◦01′ E in longitude 
and 38◦17′ N to 38◦27′N in latitude. The proposed COSSD method is (100%− 83.36%)/83.36% = 19.96% 
out-performance in accuracy than the DDDAS-based oil spill location detection approach. As shown in 
Table 1, the PSO method takes 5 iterations to search for a 73.58% accuracy oil leak source location while the 
proposed COSSD method takes only three iterations and detect a 100% accuracy location. The COSSD is 
(100%− 73.58%)/73.58% = 35.91% more accurate than the PSO method.

• When comparing the runtime for each algorithm, we guarantee maximum iteration time is 5, and in each 
iteration, only 20 samples require to process. The stop condition is accomplished 5 iterations, or the accuracy 
is over 90% . Uniform sampling is utilized to generate the particles in the first generation for the PSO method. 
The proposed COSSD method takes 3 iterations to obtain the 100% accuracy oil leak location, and the PSO 
method takes 5 iterations only to reach 73.58% accuracy. Note that, 72.76% accuracy is achieved after two 
generations, but in the next 3 generation, the PSO method can not detect a much better result with over 80% 
accuracy. The coverage procedure is much more remarkable for the COSSD.

• The oil spilling location detection efficiency of the PSO method, a serial implementation of the proposed 
COSSD method, and a hierarchical parallel approach based on the proposed COSSD method are verified. 
The DDDAS-based oil leak location detection approach is not utilized to compare the efficiency because the 
three-dimensional Estuarine Coastal Ocean Model (ECOM-3d) is utilized to simulate the oil particle moving 
trajectory, and it can not directly execute on Linux. The ECOM obstacle the experiment on the same platform, 
which is not comparable. As shown in Fig. 9, the PSO method takes 7415.83/174.37 = 42.53 times longer 
than the hierarchical parallel approach based on the proposed COSSD method. The serial implementation 
of the proposed COSSD method also takes 4658.82/174.37 = 26.72 times longer than the parallel process.

Table 1.  The optimization result of the PSO method and the proposed COSSD method.

Iteration 1 2 3 4 5 Oil leak location coordinate

PSO 0% 72.76% 73.58% 73.58% 73.58% (120.0581◦E, 38.5079◦N)

COSSD 0% 64.13% 100% – – (120.0874◦E, 38.5023◦N)
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Figure 7.  Simulation results of the proposed COSSD method.

Figure 8.  The accuracy comparison of the DDDAS-based oil spill detection approach, the PSO method, and 
the proposed COSSD method.
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Conclusions
In this paper, aiming at the emerging service for the offshore petroleum CPS, a COSSD method is developed 
which can process remote sensing data by exploring the power of rare event probability theory and essential 
sampling. To gain higher efficiency, the simulation and quality evaluation process are paralleled by a hierarchical 
parallel approach to deploying the COSSD method on super computer Tianhe-2 to reduce the time consum-
ing of executing the same calculation repeatedly. The remote sensing data which is obtained at the oil spilling 
accident that happened in Bohai in June 2011 is the test sample to examine the accuracy and efficiency of our 
research. After 3 times generation, the accuracy is up to 100% . With the acceleration of 10 nodes of Tianhe-2, 
the executing time of simulation and evaluation of 20 generating samples of the hierarchical parallel approach 
can provide 26.72× speedup than the serial implementation and 42.53× speed up than the PSO method. As the 
conclusion above, the accuracy and execute time of locating the oil spilling coordinate on remote sensing data 
utilizing a hierarchical parallel approach for the CE based offshore oil spill detection method on Tianhe-2 for 3 
times are 100% and 174.37 minutes.

Data availibility
All the data used in this study are publicly available. The ASAR for oil leak film extraction is obtained from 
European Space Agency (https:// earth. esa. int/ eogat eway/ instr uments/ asar). The coastline data and the ocean 
bathymetry data for numerical simulation are obtained from National Oceanic and Atmospheric Administra-
tion (NOAA) National Centers for Environmental Information at https:// www. ngdc. noaa. gov/ mgg/ shore lines/ 
gshhs. html and https:// ngdc. noaa. gov/ mgg/ global/ global. html. The output of simulation (in NetCDF format) 
are available from the corresponding author on reasonable request.

Code availability
The Python Codes for marine data processing are available on request from Y.W., yuewei.w@cug.edu.cn. The 
source codes for the oil leak simulation model, FVCOM, are available through personal requests from Marine 
Ecosystem Dynamics Modeling Lab (http:// fvcom. smast. umassd. edu/). The source codes for parallel oil leak 
source detection are available from authors upon request.
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