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Radiogenomic classification 
for MGMT promoter methylation 
status using multi‑omics fused 
feature space for least invasive 
diagnosis through mpMRI scans
Shahzad Ahmad Qureshi 1*, Lal Hussain 2,3,4*, Usama Ibrar 5, Eatedal Alabdulkreem 6, 
Mohamed K. Nour 7, Mohammed S. Alqahtani 8, Faisal Mohammed Nafie 9, 
Abdullah Mohamed 10, Gouse Pasha Mohammed 11 & Tim Q. Duong 4

Accurate radiogenomic classification of brain tumors is important to improve the standard of 
diagnosis, prognosis, and treatment planning for patients with glioblastoma. In this study, we propose 
a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) system that extracts 
latent features fused with radiomic features predicting the genetic subtype of glioblastoma. A novel 
fine-tuned deep learning architecture, namely Deep Learning Radiomic Feature Extraction (DLRFE) 
module, is proposed for latent feature extraction that fuses the quantitative knowledge to the spatial 
distribution and the size of tumorous structure through radiomic features: (GLCM, HOG, and LBP). 
The application of the novice rejection algorithm has been found significantly effective in selecting 
and isolating the negative training instances out of the original dataset. The fused feature vectors are 
then used for training and testing by k-NN and SVM classifiers. The 2021 RSNA Brain Tumor challenge 
dataset (BraTS-2021) consists of four structural mpMRIs, viz. fluid-attenuated inversion-recovery, 
T1-weighted, T1-weighted contrast enhancement, and T2-weighted. We evaluated the classification 
performance, for the very first time in published form, in terms of measures like accuracy, F1-score, 
and Matthews correlation coefficient. The Jackknife tenfold cross-validation was used for training 
and testing BraTS-2021 dataset validation. The highest classification performance is (96.84 ± 0.09)%, 
(96.08 ± 0.10)%, and (97.44 ± 0.14)% as accuracy, sensitivity, and specificity respectively to detect 
MGMT methylation status for patients suffering from glioblastoma. Deep learning feature extraction 
with radiogenomic features, fusing imaging phenotypes and molecular structure, using rejection 
algorithm has been found to perform outclass capable of detecting MGMT methylation status of 
glioblastoma patients. The approach relates the genomic variation with radiomic features forming a 
bridge between two areas of research that may prove useful for clinical treatment planning leading to 
better outcomes.
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The division of brain cells, in billions, is declared tumorous in case it is uncontrollable forming abnormal regions, 
leading to the cancers’ highest mortality rates worldwide for adults as well as children1. The tumor localization in 
the brain with its growth rate is a highly unpredictable entity and is broadly classified as primary and secondary 
tumors. The former, with its origin inside the brain, is the deadliest one, and malignant most of the time. The 
gliomas cover 80% of the primary brain tumors (in Grades I to IV only Grade I grows slowly, and is benign)2,3. 
The gliomas, Grades II and III grow quickly and frequently require prompt treatment. Grade-IV gliomas, the 
most aggressive type, also known as glioblastoma (GB), are the most challenging for prognosis and better clinical 
outcomes. In adults, GB and diffuse astrocytic glioma, due to extreme intrinsic heterogeneity in shape and micro-
scopic anatomy, are the most dangerous tumors of the central nervous system. It has been observed that the GB 
patients’ prognosis, irrespective of the use of numerous treatment options, has had no substantial improvement 
during the last 20 years4–10. The World Health Organization (WHO) released details about the central nervous 
system tumors classification, and emphasized the integrated diagnostics utility, highlighting the clinical tumor 
diagnosis as integrating molecular-cytogenetic features11. O6-methylguanine-DNA methyltransferase (MGMT) 
is an enzyme for DNA repair that plays a vital role in chemoresistance to alkylating agents and is a promising 
prognostic factor predicting chemotherapy response based on the methylation of the promoter for an early 
diagnosed GB12–14. In this respect, the most common courses of treatment for GB include surgery, radiotherapy, 
and adjuvant chemotherapy15. The effectiveness of chemotherapy is often tied to the promotor methylation sta-
tus of MGMT, an important biomarker, which functions as a repairing mechanism for guanine nucleotides and 
prevents cell death caused by alkylating agents12,16. In an average scenario, the presence of the MGMT enzyme is 
beneficial since it prevents DNA damage. In GB patients, however, the presence of MGMT decreases the effec-
tiveness of chemotherapy by rendering the alkylating chemotherapeutic agents ineffective. This work is related 
to the prediction of the MGMT promoter methylation status ("Preprocessing") causing MGMT gene silencing, 
where its presence leads to favorable results in GB patients being treated with alkylating agent chemotherapy 
by stopping cell division through cross-linking DNA strands. Therefore, predicting the methylation status of 
MGMT promoters in GB can support further decision-making and treatment plan, and it is the sole objective 
of this research endeavor.

Presently, the minor structural details that are challenging to discriminate by computed tomography (CT) are 
detected by another non-invasive technique, namely magnetic resonance imaging (MRI). In the case of compli-
cated GB MRI scans, the manual analysis by expert radiologists and physicians is tedious and time taking17. The 
complex cases need to compare the tumorous region with neighboring regions which leads to improving the 
perceptual information stored in the image for improved classification. This situation is impracticable in the case 
of a large number of images being dealt with using manual techniques. Early GB detection with reliable prediction 
results is important for the health of a subject11. Consequently, novel approaches are always the main source of 
attraction for cohorts working critically for prompt and reliable tumor detection. Machine learning (ML) and 
one of its variants, namely deep learning (DL), is the key enabler of artificial intelligence (AI) for discriminative 
feature extraction turning the images into useful information.

The RSNA ASNR MICCAI Brain Tumor Segmentation BraTS 2021 challenge (BraTS-2021 dataset) is based on 
multi-institutional multi-parametric Magnetic Resonance Imaging (mpMRI) scans18. This article is related to the 
prediction of MGMT promoter methylation status, a genetic characteristic of glioblastoma, using baseline MRI 
scans done before and while preparing for a surgical operation. In our work, we propose a novel classification 
framework distinguishing either MGMT methylated or MGMT unmethylated tumors using a challenging BraTS-
2021 dataset. The former class is designated as (1, or MGMT +) while the latter is categorized as (0, or MGMT−).

The current practice for genetic analysis of cancer tissue samples is to use surgery. Further, the tumor genetic 
characterization requires weeks before a conclusion is reached18. The consequence of the results may lead to 
subsequent surgery. The notion here is to predict the cancer genetics using magnetic resonance imaging, namely 
radiogenomics, that might improve the therapy results along with the reduction of potential surgical treatments. 
The success of radiogenomics would lead to alleviating brain cancer miseries by least invasive measures for the 
respective diagnoses and treatments. This new treatment strategy, before any surgery, seems to have the potential 
to improve the prospects of management and survival of brain cancer patients.

The MGMT gene is regulated by an epigenetic mechanism: the methylation of the CpG island of the MGMT 
promoter. The role of MGMT promoter methylation is to suppress the MGMT genes’ expression thereby decreas-
ing MGMT enzyme function in the cell. Due to the ability of MGMT methylation to increase the effectiveness of 
chemotherapy, the status of MGMT methylation is often taken into consideration when determining the course 
of treatment18–20. The traditional method to determine MGMT methylation status involves the extraction of 
tumor tissue through surgery. After extraction, the determination of the methylation status of the tumor is a time 
(up to weeks) taking process. Further, after determination, additional invasive procedures may be necessary to 
discern the optimal treatment method18,21.

Radiogenomic diagnosis of MGMT methylation testing aids in decreasing the invasiveness of current test-
ing procedures. Radiogenomics aims to predict cellular genomics with the use of a tissue’s phenotypic image 
characteristics22,23. In gliomas, radiomics is commonly used to predict survival, and evaluate the potential of 
chemotherapeutic treatments in treatment24. Several radiogenomic models have been developed to predict 
MGMT methylation status in GB patients25–27. However, radiogenomic models are susceptible to a lack of stand-
ardization because of the variation between methodology, software, and radiologists’ readings23. Recently, Zhang 
et al.28 introduced a data-sharing scheme based on blockchain with fine-grained access control. They separated 
the public and private parts of electronic medical records, which are subsequently encrypted separately by sym-
metric searchable encryption (SSE). The symmetric keys used in SSE technology were encrypted by attribute-
based encryption. This helped patients to share data without any risk. For GB, the radiogenomic approach to 
MGMT methylation testing consists of evaluating magnetic resonance images (MRIs) of the brain29. To expand 
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upon current radiogenomic analysis methods, artificial intelligence can be employed to construct complex 
predictive deep learning radiogenomic models30.

Deep convolutional neural networks are employed for a vast array of tasks, including medical image 
analysis31,32 and image classification14,33. Deep learning architecture has encoding blocks ordered in multiple 
layers. The feature maps in lower layers are forwarded to subsequent layers with increased complexity order. 
A convolutional neural network (CNN)34 massively reduces the number of neurons due to sparse interaction 
in comparison to shallow neural networks. The transfer learning methodology based on CNN is well proven 
for quite some time35–39 and has been extensively used in the analysis of different imaging databases37,38,40,41, 
neuroimaging42, MRI, CT (Computed Tomography)36, and ultrasound images43. Transfer learning using CNN 
based on AlexNet and GoogleNet for the ImageNet dataset is well known deep learning approach44. The CNNs 
are extensively used in vision-related applications including object detection45, spanning classification46, and 
segmentation47. The combination of data pre-processing and augmentation with transfer learning can be helpful 
for improved classification results. In our case, since the dataset is enormous, only pre-processing is seeming of 
great value along with a fine-tuned CNN architecture.

The features used as the source of training essence should have discrimination ability that would be exploited 
to predict the regions across the hyperplane with a maximum confidence level as the target label. In this context, 
there is a gap for efficient and robust automated systems for brain tumor detection using MRI. Hsieh et al.48 
defined brain tumor categories based on region-of-interest (ROI), feature selection, and feature extraction. They 
used local textural features including global histogram moments using 107 images of gliomas (73 low-grade; 
34 high-grade). The work, however, was reported on a limited dataset and lacking features based on other static 
feature extraction methods. Cheng et al.49 used a T1-weighted Contrast-Enhanced brain MRI dataset50 having 
three types of tumors (glioma, pituitary, and meningioma), experimenting with three feature extraction methods, 
namely intensity histogram, bag-of-words (BoW), and gray level co-occurrence matrix (GLCM), finding that 
BoW performs relatively better at a higher computational cost. The accuracy was limited due to the absence of 
preprocessing scenarios that could lead to improved discriminative features. The hybrid of solution spaces for the 
three characteristic feature sets was not explored. Similarly, Sachdeva et al.51 extracted color and textural features 
based on segmented ROIs, using the genetic algorithm for features’ selection with optimum fitness level, and 
reported the accuracy as 94.90% using a genetic algorithm-based artificial neural network (GA-ANN). However, 
for large datasets, the colored images have different color tints necessitating the use of staining procedures as 
an essential step. Further, the dynamic features need to be explored with deep learning algorithms to address 
enhanced discrimination features.

Claro et al.52 used hybrid feature space formed by textural features, like Tamura (coarseness, contrast, direc-
tionality, line-likeness, regularity, and roughness), gray level run length matrix (GLRLM), histogram of ori-
ented gradients (HOG), morphology, local binary patterns (LBP), merging the extracted features using seven 
CNN architectures for glaucoma classification. Their feature space was based on 30,862 dimensions, which was 
squeezed by the gain ratio for arranging the features according to their performance concluding in an optimum 
setting for glaucoma detection. They found the GLCM descriptor with transfer learning-based features to be 
the most effective for their specific problem structure. The work needs to be explored on multi-parametric and 
multi-institutional datasets, for larger and more diverse datasets, with dynamic features using residual feature 
maps concatenated in the successive layers. Garcia et al.53 solved the problem of imbalanced datasets by using 
ensemble classifiers with feature space partitioning. The parameters of the partitioning were optimized by using 
a hybrid metaheuristic method, called GACE which combined a genetic algorithm (GA) with a cross-entropy 
(CE) method. More elaborative work using generative adversarial networks (GAN) can be used to tackle the 
underlying problem of class imbalance. Shaban et al.54 introduced a hybrid feature selection methodology that 
extracts the features with optimum characteristics using COVID-19 CT images. The feature selection is based 
on fast and accurate selection stages. They used an enhanced version of k-NN that is not trapped due to solid 
heuristics in choosing the neighbors of the tested subject. The work can be explored using other ML classifiers, 
along with DL classification techniques to involve the features based on high-level abstraction layers.

In this research, we propose a novel two-stage MGMT Promoter Methylation Prediction (MGMT-PMP) sys-
tem, that precisely quantifies the image structure of GB in patients from the evaluation of FLAIR, T1w, T2, and 
T1Gd mpMRIs. We have selected the popular feature types, viz. GLCM, HOG, and LBP, and fused these features 
with novice deep learning features forming a hybrid feature set (HFS) differing vis-à-vis in three aspects. Firstly, 
it engages a novel Deep Learning Radiomic Feature Extraction (DLRFE) module that extracts dynamic features 
based on the problem structure into the classification process leading to promising results. Secondly, it provides 
different categories of second-order statistics and local textural features exploiting the positive aspects of each 
category of feature extraction modules. Third, the system is based on filtering that uses the rejection algorithm 
for removing redundant and irrelevant features from the RSNA dataset thereby improving the discrimination 
or variance and leading to its quick convergence. A comparison with recent techniques is also presented for 
performance analysis.

The key contributions of this research work are summarized as follows:

•	 This work is related to the MGMT promotor methylation status affecting the efficiency of chemotherapy in 
GB patients where ‘MGMT+’ status increases the effectiveness of chemotherapy.

•	 A novel two-stage prediction system for MGMT promoter methylation status, that precisely quantifies the 
image structure of glioblastoma in patients using FLAIR, T1w, T2, and T1Gd mpMRIs.

•	 A novel deep learning-based feature extraction module that extracts dynamic features based on the problem 
structure.
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•	 The hybrid feature set formation by fusing deep features with static features of the origin GLCM, HOG, and 
LBP.

•	 RSNA ASNR MICCAI Brain Tumor Segmentation BraTS 2021 challenge was used for radiogenomic clas-
sification with 348,642 mpMRI scans for the very first time in published form (using performance measures, 
viz. accuracy, F1-score, and Matthews correlation coefficient).

•	 The rejection algorithm is introduced for removing redundant and irrelevant features from the dataset.
•	 A detailed complexity analysis of the individual and combinatorial hybrids formed by the fusion of dynamic 

and static feature sets.
•	 A comparison of the proposed work with other state-of-the-art techniques.

The paper organization follows; "Importance in the Clinical management and the survival of GB patients" 
briefly details the impact of the study on the survival of GB patients with clinical management, "Material and 
methods" is dedicated to materials and methods, "Results and discussion" details the results and discussion, 
followed by Conclusions in section "Conclusions". The abbreviations used throughout this article are illustrated 
in Table 1.

Importance in the clinical management and the survival of GB patients
Gliomas with varying levels of heinous symptoms have been declared a serious threat to the central nervous 
system. The BraTS-2021 focuses on the molecular representation and structure of the underlying tumor in intra-
operative neurosurgery and serves preoperative ground using mpMRI data18,40. Its objective has been the locali-
zation of the brain tumor sub-regions that are microscopically distinct in structure. The identification of tumor 
boundaries in MRI is of importance in surgical treatment planning, intraoperative brain incision to monitor the 
tumor growth, and planning the radiotherapy and chemotherapy maps (RCM) following the surgical treatments. 

Table 1.   Abbreviations with acronyms used in the text.

Acronym Abbreviations

BraTS RSNA ASNR MICCAI brain tumor segmentation

BS Block size for HOG feature extraction

CaPTk Cancer imaging phenomics toolkit

CS Cell size for HOG feature extraction

CEL Cross entropy loss

CTP Clinical trials processor

DLFET Deep learning feature extraction time

DICOM Digital imaging and communications in medicine

FeTS Federated tumor segmentation

GA-ANN Genetic algorithm-artificial neural network

GB Glioblastoma tumor

GLCM Grey level co-occurrence matrix

HOG Histogram of oriented gradients

HFS Hybrid feature set

k-NN k-nearest neighbors

LBP Local binary patterns

MCC Mathews correlation coefficient

mpMRI Multi-parametric magnetic resonance imaging

MGMT O6-methylguanine-DNA methyltransferase

MLTrgT Machine learning training time

MLTstT Machine learning testing time

NIfTI Neuroimaging informatics technology initiative

PHI Protected health information

PMP Promoter methylation prediction

RA Rejection algorithm

RBF Radial basal function

RCM Radiotherapy and chemotherapy map

RSNA Radiological society of North America

SNE Stochastic neighborhood embedding

SVM Support vector machine

T1w T1 weighted

T1wCE T1 weighted contrast enhanced

T2W T2 weighted
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Irrespective of the poor prognosis of GB patients, the tumor’s MGMT promoter methylation status, which can 
be found by radiogenomic classification of mpMRI scans, is extremely important to indicate the chemotherapy 
response prediction. Further, due to the proposed fine-tuned framework, using low-cost GPU-based portable 
machines would greatly help medical practitioners assist consumers along with the support system to manage 
post-surgical treatment more effectively.

Some recent cohorts have focused on the information freshness notion. Yang et al.55 offset the COVID-19 
effects by controlling the diffusion of the epidemic by introducing Age of Information (AoI), a measure for the 
quantification of information freshness, an optimization scheme using artificial intelligence-based diagnostic 
bots. Initially, they formed a health state monitoring system where the diagnostic biosensing data was transmitted 
through bots using edge servers. It was followed by the derivation of AoI problem in a closed form. They also 
proposed algorithms for bot placement and channel selection using stochastic learning.

Material and methods
The proposed framework (Fig. 1), namely MGMT Promoter Methylation Prediction (MGMT-PMP) System, 
forms a highly discriminative feature set, HFS, in two stages. In stage one, the notion is to extract features using 
the DLRFE module where the features from the last flattened layers of the convolutional neural network are 

Figure 1.   The proposed MGMT promoter methylation prediction (MGMT-PMP) system based on DLRFE 
forming a two-stage HFS.
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acquired, whereas, in stage two the second-order statistics and local textural features are extracted. The features 
from these stages are merged to form HFS. The feature fusion is further used for radiogenomic classification by 
a strong ML classifier, like SVM or k-NN algorithms. The dataset details, preprocessing, and feature extraction 
finally follow the prediction model in this section.

Dataset.  The proposed framework was analyzed on a publicly available RSNA-MICCAI Brain Tumor 
Radiogenomic Classification dataset (BRATS-2021)56, for a featured code competition that was introduced for 
the treatment of brain cancer to predict the state of the genetic biomarker. The BraTS-2021 is going to be a 
common benchmark for GB segmentation algorithms using multi-institutional and multi-parametric Magnetic 
Resonance Imaging (mpMRI) images of 2000 patients suffering from glioma. The preoperative MRI images were 
divided into training, validation, and testing cohorts. For the classification task, the target labels, based on the 
MGMT promoter methylation status, are provided for 585 subjects. The testing cohort is not accessible currently 
and the validation data for 87 subjects are provided without labels. We have used the training data provided 
with labels and further partitioned it for testing by cross-validating the results ten folds. The available modalities 
are T1 weighted (T1w), T1 weighted contrast enhancement (T1wCE), T2 weighted (T2w), and fluid-attenuated 
inversion-recovery (FLAIR). The two tasks that BraTS-2021 focuses on are: first, segmentation of tumor sub-
regions, and second, radiogenomic classification of the MGMT promoter methylation status18. Some rescaled 
mpMRI images from the BraTS-2021 dataset, as illustrated in Fig. 2, showing from top to bottom: sagittal, axial, 
and coronal views, and the variation in columns represents the intra-class variance of the dataset. The specifica-
tions for training and testing instances in BRATS-2021, from the given “train” directory, have been illustrated in 
Table 2. Similar information files leading to redundant data are removed using the rejection algorithm (RA). The 
RA trimming effect on instances has been illustrated in the lower part of Table 2 where the specifications of the 
reduced dataset have been shown ("Preprocessing").

In the absence of a testing cohort, the BraTS-2021 dataset is constituted of 348,642 training instances. The 
sharing of this dataset can be useful provided that its security-related issues are addressed The large amount of 
data generated by heterogeneous Internet of Medical Things (IoMT) may be dispatched to the cloud servers for 

Figure 2.   BraTS-2021 mpMRI scans from top to bottom: sagittal, axial and coronal view: first, second and third 
columns show (a,e,i) T1w, (b,f,j) T1wCE, (c,g,k) FLAIR, and (d,h,l) T2w images respectively.
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pathological analysis and diagnosis. This direct mode is convenient for both patients and clinicians, however, the 
open communication channel has numerous security and privacy issues. In this context, recently Wang et al.57 
perceived the physical-layer security and over-centralized server problem in wireless medical sensor networks, 
and proposed a reliable authentication protocol using cuttingedge blockchain technology and physically unclon-
able functions. Further, the biometric information was dealt with a fuzzy extractor scheme.

Preprocessing.  Standardized preprocessing procedures have been adopted for all the mpMRI scans 
included in the BraTS-2021 dataset. The pre-processing included NIfTI file format conversion58, co-registration 
to the template of normal adult human brain anatomy for an MRI-based atlas SRI2459, resampling to 1mm3 iso-
tropic resolution, followed by skull stripping, isolating cortex and cerebellum from the skull and nonbrain area, 
as illustrated in Fig. 3. All the preprocessing phases are handled using publicly available support such as Cancer 
Imaging Phenomics Toolkit (CaPTk) including Federated Tumor Segmentation (FeTS) tool18,60–62.

The preprocessing channel commenced with the conversion of the DICOM file format to NIfTI files18,58. The 
files for radiogenomic classification, one of the two tasks of the BraTS-2021 dataset, are not co-registered while 
for segmentation, the second task, the dataset undergoes registration to a standard template provided as NIfTI 
files. The NIfTI format removes the associated metadata including all the Protected Health Information (PHI) 
from the DICOM files. In addition, since the skull-stripping lessens the extent of facial reconstruction, which 
may be used for face recognition of the patient subsequently, it is based on a representation learning-based 
methodology that describes the brain shape prior and is independent of the MRI input63–65.

For radiogenomic classification, the entire mpMRI images are preprocessed as illustrated in Fig. 3, to gener-
ate the skull-stripped volumes, and finally converted from NIfTI to DICOM format consisting of skull-stripped 
images. Finally, a two-step process for data deidentification, comprising of RSNA CTP (Clinical Trials Processor) 

Table 2.   Statistics of RSNA-MICCAI Brain Tumor Radiogenomic Classification dataset (with and without 
RA). *Total Training Instances (Original dataset): 278,914. Total Training Instances (Improved dataset): 
203,113. **Total Testing Instances (Original dataset): 69,728. Total Testing Instances (Improved dataset): 
50,778.

Dataset Instances Classes
Total instances (class 
wise)

Rejected instances 
(class wise)

Training* instances 
(80%)

Testing** instances 
(20%)

Significance 
(MGMT promoter 
methylation)

BRATS-2021 dataset 
(original)18 348,642

0 (MGMT−) 152,852  ×  122,282 30,570 Not present

1 (MGMT +) 195,790  ×  156,632 39,158 Present

Improved BRATS-2021 
dataset (with RA) 253,891

0 (MGMT−) 111,960 40,892 89,568 22,392 Not present

1 (MGMT +) 141,931 53,859 113,545 28,386 Present

Figure 3.   Efficient preprocessing steps for BraTS-2021 for mpMRI scans to MGMT methylation prediction 
stage.
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anonymizer18, and whitelisting of these outcome DICOM files, is carried out. This removes all unnecessary tags, 
ensuring the removal of all PHI entries, from the DICOM headers.

For radiogenomic classification, the entire images are segregated into two classes, namely “0” and “1” based 
on the presence of MGMT promotor methylation status, with T1W, T1WCE, FLAIR, and T2W combined in 
either of the classes depending on the annotation allocated by the expert radiologists and pathologists. These 
images are further converted from DICOM (12 bits) to jpg (8 bits) format and resized from 512 × 512 to 64 × 64 
to speed up the training process, which is unavoidable for an enormous dataset, and takes care of memory issues 
encountered when using an average-price GPU based portable system.

Pseudocode for rejection algorithm.  The rejection algorithm, illustrated in Fig. 4, has been run for each 
class. The sole objective is to remove the instances that do not add discrimination to the radiogenomic classifica-
tion process. The “datapath” of either of the binary classes is followed by exclusive loading of the entire image 
set for either of the classes, MGMT− (Class “0”) or MGMT+ (Class “1”). The number of images is fetched to act 
as the stopping criterion for the algorithm. The rejection algorithm checks the redundant/irrelevant images and 
removes them one by one from the specific class by using the threshold of the sum of pixel values (Th). After 
thorough investigation, Th has been empirically found equal to zero for the optimum results. Once all the images 
have gone through RA, the output consists of the details for each of the rejected files, with the revised datapath 
loading producing the improved class details. The difference in the initial instance count of a class should match 
the rejected files count plus the final class size (after RA). The RA resulted in 26.75% and 27.51% reduction in 
the number of instances for classes “0” and “1” respectively.

Deep learning‑based latent shape features.  We propose a DLRFE module for radiomic character-
istics using deep learning by feature bleeding through the fully connected layers. The parametric tuning of the 
module is carried out for the least memory requirements and computational overhead culminating in maximum 
efficiency using average-price GPU-based computer systems. It is composed of 3 convolution blocks as illus-
trated in Fig. 5. The weights and biases have been maintained at smaller values using L2-regularization and a 
dropout layer after the third block paving an improved generalization policy.

Figure 4.   Pseudocode for the file rejection algorithm (RA).
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The DLRFE module is constituted of two networks; an encoder, to infer latent variables given input image, 
and a fully connected network to infer the prediction of the deep learning architecture. The input to the encoder 
network is an image sized: (64 × 64), and the output is a classification prediction. The encoder network consists 
of 3 convolutional network blocks (Block-1, Block-2, and Block-3) followed by three fully connected layers. Each 
block consists of convolutional, ReLU, and max-pooling layers with batch normalization after Block-2, and a 
dropout layer after Block-3.

The fully connected layer, after converting feature maps to a 1D vector, connects neurons to other layers, 
causing dynamic extraction of latent features. Three fully-connected layers in the DLRFE module are FC1, FC2, 
and FC3 with 512, 64, and 2 neurons respectively. The activation function is carried out by the SoftMax layer for 
the non-normalized output of FC3 using two neurons with a probability distribution in the range [0, 1] to a 
binary basis. The kth class probability as the cross-entropy loss (CEL) is determined using a normalized expo-
nential function: Pk = eOk

∑

M

m=1 e
Om

 where Ok is the activation of the kth class. The CEL has two label sets: the target 
and expected labels are represented as t(x) and p(x) respectively. The loss is defined as: 
L
(

t, p
)

= −
∑

∀x t(x)log
(

p(x)
)

 . The updating of weights during backpropagation is carried out by minimization 
of the cost function given by: − 1

J

∑J
j=1 ln

(

p
(

tj|xj
))

 , where J is the size of the training set, xj represents the train-
ing sample with the target label tj and p(tj|xj) is the classification probability. The stochastic gradient descent 
approach is used epoch-wise, with each epoch divided in the form of mini-batches, for the minimization of the 
cost function. The updated weight for the i + 1th iteration in layer l,Wi+1

l  is given by: Wi+1
l = Wi

l +�Wi+1
l  , 

where �Wi+1
l  is the corresponding weight update. The network training takes place in a circular way, feed-

forward, and feed-backward iteratively.

Radiomic and radiogenomic features.  Radiogenomics is based on quantitative data collected from 
medical images having individual genomic phenotypes, and the notion is to design a prediction framework to 
categorize patients for clinical outcomes. The genomic fractional variation in the tumor DNA can be obtained 
by multiple radiomic features during radiogenomic analysis using mpMRI scans18,66,67. The BraTS-2021 dataset 
for radiogenomic classification task is based on mpMRI scans and MGMT promoter methylation status. Many 
cohorts are employing this dataset leading to machine learning-based solutions for the prediction of MGMT 
promoter methylation status using radiomic features based on gray leveled imaging. Numerous radiomic feature 
extraction methods have been introduced and exploited depending on the nature of the problem structure and 
the corresponding solution domain. We have selected second-order statistics and textural features to build HFS 
in addition to the latent shape features ("Deep Learning-based Latent Shape Features"). We have used the three 
most effective feature extraction modules (FEMs) for radiogenomic classification tasks corresponding to indi-
vidual feature extraction strategies, namely GLCM, HOG, and LBP. Each of the modules extracts diverse features 
independently from each of the mpMRI scans.

Figure 5.   Latent feature extraction xlatent using DLRFE-module via feature-bleeding through fully connected 
layers.
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GLCM features.  Many researchers have employed textural features successfully and solved classification-linked 
problems68,69, including the categorization of brain tumors40,70. We used GLCM-based FEM which is based on 
the spatial relationship of pixels in an image. These highly discriminative features describe the texture based on 
the repeatability of pixel groups with specific values that exist in a two-dimensional relationship in an image71,72. 
The GLCM is a square matrix (size: N × N), where N represents a different number of gray levels in an image. If 
the matrix is denoted by M(i, j) where each element (i, j) of GLCM represents the frequency of occurrence of a 
particular relationship between two intensities of pixels in the input image, where “i” represents the gray level of 
the pixel at location (x, y), and “j” represents the gray level of a contiguous pixel positioned at a relative distance 
“d” from the pixel at an orientation “θ”’. The relationship between the ith and jth intensities is based on these two 
parameters, d and θ, in four directions (0°, 45°, 90°, 135°) with an increment of 45° without symmetry repetition. 
We selected 13 Haralick features in our work as illustrated in Table 3 showing mathematical formulae for their 
calculation and comprehensive definitions73. These features are computed to form M, whereas pij is (i, j)th entity 
of M divided by its size, the expressions mi and mj, and σi and σj represent the mean and standard deviations 
of ith row and jth column of M. The directions averaged features are values are fused to form the GLCM-based 
feature vector xGLCM = [F1F2F3 . . . F13]t.

A schematic diagram for GLCM calculation has been shown in Fig. 6. In the GLCM illustration, Fig. 6b, the 
top row and left column, cyan cells, are pixels presented in the input matrix. The GLCM, Fig. 6b, calculation using 
the input matrix, Fig. 6a, illustrates the calculation of the matrix at 0° and d = 1 for neighboring intensity pairs 
(3,0). In Fig. 6a, a pixel with intensity ‘3’ is present with pixel ‘0’ in a pair (3,0) four times as shown with a yellow 
circle in Fig. 6b. Similarly, the entire GLCM is calculated for single orientation and adjacent pixel intensities pairs.

HOG features.  HOG features efficiently perform classification tasks due to highly discriminative characteris-
tics associated with their extraction procedure74,75. The HOG module extracts the direction and gradient-based 
information from the input image that helps in describing the structure of the problem. The HOG feature extrac-
tion process is illustrated in Fig. 7a–e. Figure 7a shows an original mpMRI scan (BraTS-2021 dataset), while 
Fig. 7b represents the schematic of cells and a block superimposed on the original input image. Figure 7c shows 
the HOG descriptors with a schematic of a block and a cell, both depicted separately in Fig. 7d, while the magni-
fied view of a single cell is shown in Fig. 7e. The feature extraction strategy consists of three activities:

i.	 The computation of gradients by calculating the direction or magnitude of each pixel. The Sobel kernel func-
tion is used to obtain gradient in Ex and Ey directions to calculate gradient and angle at every pixel using the 

mathematical formulation: MHOG|g(i,j)| =
√

Ex(i, j)
2 + Ey(i, j)

2  , and MHOGθg(i,j) = tan−1
(

Ey(i,j)

Ex(i,j)

)

 , where, 
∣

∣g(.)
∣

∣ denotes magnitude, θg (.) denotes the direction of the gradient, i and j denote rows and columns respec-
tively.

ii.	 The small cells of size (r × s) are derived from the input image as shown schematically in Fig. 7b,d.

Table 3.   Textural features used in the formation of HFS.

Features Equation Definition

Angular second moment F1 =
∑

i

∑

j

{

p(i, j)
}2 A measure of uniformity of distribution of grey levels in the image

Contrast F2 =
Ng−1
�

n=0
n2























Ng
�

i = 1
�

�i − j
�

� = 1

Ng
�

j=1
p(i, j)























A measure of the local variations present in an image

Correlation F3 =
∑

i

∑

j (ij)p(i,j)−µxµy

σxσy

A measure of image linearity. It will be high if an image contains a considerable amount 
of linear structure

Variance F4 =
∑

i

∑

j(i − µ2)p(i, j)
The variance is a measure of the dispersion of the gray-level differences at a certain 
distance

Inverse difference moment F5 =
∑

i

∑

j
1

1+(i−j)
2 p(i, j) The measure of closeness of the distribution of GLCM elements to the GLCM diagonal

Sum Average F6 =
∑2Ng

i=2 ipx+y(i)
The average sum of gray levels

Sum Variance F7 =
∑2Ng

i=2 (i − F8)
2px+y(i) The variance of a sum of gray levels

Sum entropy F8 = −
∑2Ng

i−2 px+y(i)log
{

px+y(i)
} The uniform distribution of a sum of gray levels has maximum entropy

Entropy F9 = −
∑

i

∑

j p(i, j)log(p(i, j)) A measure of information content

Difference variance F10 = variance of px−y The variance of a difference in gray levels

Difference entropy F11 = −
∑Ng−1

i=0 px−y(i)log
{

px−y(i)
} The uniform distribution of a difference in gray levels has maximum entropy

Information measures of correlation 1 F12 = HXY−HXY1
max{HX,HY} Normalized mutual information

Information measures of correlation 2

F13 = (1− exp[−2.0(HXY2− HXY)])1/2

HXY = −
∑

i

∑

j p(i, j)log(p(i, j))

HXY1 = −
∑

i

∑

j p(i, j)log
{

px(i)py(j)
}

HXY2 = −
∑

i

∑

j px(i)py(j)log
{

px(i)py(j)
}

The difference between joint entropy and joint entropy assuming independence
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Figure 6.   A simple diagram for GLCM computation; (a) input matrix, (b) GLCM computed from (a) using 
d = 1 at 0° orientation, and (c) set of orientation, θ.

Figure 7.   Schematic diagram of FEM for HOG features; (a) a rescaled mpMRI scan for radiogenomic 
dataset, (b) schematic HOG cells and blocks superimposed on (a), (c) HOG descriptors, (d) cell and block 
representation, and (e) the magnified view of a single cell.
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iii.	 Finally, the cells are combined into overlapping blocks, each of size (p × q), and in each block, a histogram 
of oriented gradients falling into each bin is computed which is further subjected to the normalization pro-
cess (L2-norm) to overcome illumination variation. The normalized vector for each block of the histogram 
is given by: MHOGTN

i
= Ti√

T2
2+∈2

 , where ∈ is any constant that can’t be divided by zero, and T indicates the 
non-normalized vector.

The features so collected from all the normalized blocks are fused to form a feature descriptor, xHOG, for the 
entire image.

LBP features.  Local binary patterns (LBP) descriptor is another efficient feature extraction operator generating 
high-level characteristics that are used to assign a label to each pixel of an image by thresholding its neighbor-
hood and translating the result as a binary number76. LBP has the advantages of rotation invariance along with 
gray level invariance77. This feature module encodes the relationship between the pixel and its neighbors in a 
circular manner by describing the local spatial structure of an image. The binary output using the LBP opera-
tor is obtained using the difference (Gp- Gc ) on a per-pixel basis and checking it through the central pixel (Gc) 
along with the surrounding pixels Gp, where p is limited in the range1,8 around 3 × 3 receptive areas30. The work-
ing principle of the LBP operator on a pixel is illustrated in Fig. 8. The LBP values are computed by binariza-
tion based on the difference between the contiguous pixels, where two groups are formed and each element is 
assigned to either of the group, with the help of a step function. The central pixel value LBPp,r(Gc) is given by:

The threshold function, H(x), treats values that are greater than zero or equal to zero. In the above equation, 
r represents the central pixel distance from the neighboring pixels (radius), and p represents the total number 
of pixels minus the central pixel included in the process78,79. In Fig. 8, r = 1 and p = 1,8, have been employed with 
a receptive area of 3 × 3 sized mini-image. The last stage is carried out by converting the binary codes of zeros 
and ones to decimal numbers to form an LBP image80.

Jackknife cross‑validation.  The Jackknife cross-validation with tenfold engaged in this work for para-
metric optimization including the training and test data formulation. It is a commonly used approach for the 
verification of robustness and confidence of the system performance (Fig. 1) for model selection on potential 
algorithms81. In this technique, the data is divided into 10 folds ( Fi; i = 1, 2, . . . 10) or partitions. The test por-
tion, based on a single fold, is crossed and the training portion consisting of (K-1) folds is partitioned into train-
ing and validation sets82. The diagonal folds, shown as crossed rectangles ( FiAi; i = 1, 2, . . . , 10 ), represent the 
test partitions and the off-diagonal folds, non-cross folds, represent training partitions, shown as plain rectangles 
( FiAj; i = 1, 2, . . . , 10; j = 1, 2, . . . , 10AND i �= j ), which are divided into training and validation sets. The best 
parameters-based model is used with the test data to evaluate the performance. We have used the stratified 
cross-validation scheme due to the imbalanced class distribution in the dataset to give a close approximation of 
the generalization accuracy ( Ai; i = 1, 2, . . . , 10 ). This ensures an equal number of instances of each class dis-
tributed across the training and test partitions83. The performance (Ac) estimated by cross-validation using each 
test fold accuracy Ai  ∈  ℜ i = 1, 2, 3,…, K, folds is given by:

(1)LBPp,r(Gc) =
p−1
∑

p=0

H
(

Gp − Gc

)

2p,H(x) =
{

1 x ≥ 0
0 otherwise

Figure 8.   Schematic diagram of LBP operation to find the discriminative features.
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The average performance A is given by:

Classification model.  The individual features including their combinatorial hybrids and HFS have been 
employed in the classification system using SVM and k-NN algorithms as the potential ML tools to find a reliable 
classification solution. The SVM was optimized using linear, RBF, and polynomial kernels. A brief overview of 
the classifiers being selected for this article is given by:

k‑Nearest neighbors (k‑NN) classification.  The k-NN, a proximity-based classifier, is based on the notion that 
the test instance q would have the maximum number of nearest neighbors for the prospective class. In this clas-
sification technique, distance d is measured from query q to k-nearest neighbors, xt that lie in class yt. The q is 
assigned the class yu having the maximum number of neighbors among the k-nearest neighbors84,85. In the case 
of k = 1 , the test instance is simply assigned the class of the single nearest neighbor. The formula for Minkowski 
distance dmk , a generalized distance metric is given by:

where the larger value of r gives more influence to the distance on which q differs the most. Some of the distance 
metrics are Euclidean (L1-norm), Mahalanobis (L2-norm), and Chi-square distances as given in Table 4. Another 
variant mostly used is distance weighted-voting where the q receives vote V from each of the nearest neighbors 
weighted inversely to their distance from q85:

where 1
(

yu, yt
)

 is unity when both labels match, zero otherwise, and z determines the type of distance measure 
being adopted during classification.

Support vector machine classification.  The SVM maps the supervised-learning tth instance pair (xt, yt), xt being 
the sample with label yt, from a data set X in the sample space S separated by a hyperplane with a maximized 
margin on either of its sides86. The class label-based least-confident points near the hyperplane are the support 
vectors. The better generalization of the model depends on maintaining the margin as much as possible. The 
outlier (noise) does not influence the decision boundaries significantly as it would simply ignore its effect in 
the training phase87. On the other hand, the SoftMax layer in CNN will be influenced by such a point due to its 
probability-based working principle. In other words, the SVM is favored as a strong classifier with a reduced 
error rate. The hyperplane function, defined for the linearly-separable classes, is given for the ith class by:

where x is the input training vector and wT
i  is weight vector that is orthogonal to the hyperplane for i th class, 

and b is the bias of the decision plane. The distance on both sides of the hyperplane defines a margin that is 
maximized when the weight vector ‖w‖ is minimum. To find the optimal separating hyperplane, SVM aims to 
maximize the margin as given by:

(2)Ac = A±

√

∑K
i=1

(

Ai − A
)2

K − 1

(3)A =
1

K

K
∑

i=1

Ai

(4)dmk

(

q, xt
)

=

(

k
∑

t=1

∣

∣q− xt
∣

∣

r

)

1
r

,

(5)V
(

yu
)

=
k

∑

t=1

1

d
(

q, xt
)z 1

(

yu, yt
)

,

(6)gi(x) = w

T
i x + bw ∈ S, b ∈ R,

Table 4.   Distance functions for k-NN classifier.
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∣
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Performance measures.  The evaluation of the model is established on performance measures like confu-
sion matrix, accuracy, sensitivity, specificity, precision, negative predictive value, receiver operator characteristic 
curve curves, F1-score, and Matthews correlation coefficient. “TP” is the number of images detected with a spe-
cific promoter methylation status and actually, they are of the same status. “FN”, also known as Type II error, is 
the number of images detected not found with a specific promoter methylation status but truly they are having 
that specific status and “FP”, also known as Type I error, is the number of images detected with a specific pro-
moter methylation status but they are not truly having that status. “TN” is the number of images that neither are 
having a specific promoter methylation status nor are labeled as having a specific status by the classifier.

Accuracy, A, defines the effectiveness of a classification model as a quantitative measure. It can be calculated 
by using the following relationship: A = (TP + TN)/(TP + FP + FN + TN)× 100.

Sensitivity, Sn, defines the usefulness of a model to know instances of MGMT+ class. It can be computed 
by: Sn = TP/(TP + FN) . This measure of performance is also known as Recall (Rc) or true positive rate (TPR).

Specificity, Sp, defines the usefulness of a classifier to know instances of MGMT− class. It can be computed 
by: Sp = TN/(TN + FP) . The specificity is also known as true negative rate (TNR).

Precision, Pr, defines the proportion of all cases testing positives that truly belong to MGMT+ class. It can be 
calculated by: Pr = TP/(TP + FP) . The precision is also known as positive predictive value (PPV).

Negative predictive value, NPV, defines the proportion of all cases testing negatives that truly belong to 
MGMT− class. It can be calculated by: NPV = TN/(TN + FN).

F1-score, measured in the range [0, 1], is the harmonic mean of Pr and Rc, and it can be mathematically 
expressed as: F1 − score = (2× Pr × Rc)/(Pr + Rc) . This measure is significant in case the class imbalance is 
present in the dataset.

Mathews correlation coefficient (MCC) is considered important as a performance measure in 
the case of binary classification problems. It varies in the range [− 1, + 1], where the value + 1 indi-
cates the right predictive decision in agreement with the label, − 1 indicates the misclassified prediction, 
and 0 indicates the random prediction with 50% accuracy. Mathematically, MCC can be calculated by: 
MCC = (TP × TN − FP × FN)/

√
(TP + FN)(TN + FN)(TP + FP)(TN + FP).

Receiver operating characteristic (ROC) curve defines the classifier’s overall performance over the entire 
operating range depicting the classification efficiency. TPR represents Sn, whereas FPR is defined as the count of 
MGMT− events expected as MGMT+ events divided by the total sum of MGMT− events88. The mathematical 
formulation of FPR is given by: FPR = FP/(TN + FP).

Ethical approval.  All the procedures were performed in accordance with the relevant guidelines and regu-
lations.

Results and discussion
We analyzed the proposed framework to categorize mpMRI scans into either MGMT+ or MGMT− instances. 
After preprocessing, GB images are used for latent and radiomic features extraction, feature fusion is investi-
gated and HFS so formed is forwarded to a strong classification algorithm. All of the experiments have been 
conducted using open source libraries, and the standard programming tools used to tune the proposed system 
using Dell G7 Laptop (Intel® Core™ i7 8th Generation CPU), 32 GB RAM, and 6 GB GPU (NVIDIA GTX-1060 
and 1280 CUDA cores).

Experimental setup.  The setup was initiated by selecting appropriate parametric values to extract the 
latent and radiomic features. The experimentation has been carried out by employing the tenfold Jack-knife 
cross-validation on the BraTS-2021 dataset. The optimal heuristics selection has been discussed in "Selection 
of optimal parameters". The contrast normalization was carried out in the range [0–1] before the classification 
stage. The classification results ("Dataset") have been generated on unseen test samples, with hidden labels used 
only for performance measurement, of the test folds. Sections "Performance analysis of DL-based latent fea-
ture extraction", "Analysis of parameters for Deep learning and radiomic feature methods", and "Performance 
analysis of individual FEMs" analyze the classification performance of the latent-, individual- and hybrid-fea-
tures respectively. Section "Performance analysis of HFS" illustrates the time involved in feature extraction (two 
stages), and finally classification during the training and testing phases. Section "Performance comparison" 
describes a comprehensive comparison of the proposed technique with existing schemes in terms of classifica-
tion performance followed by the shortcomings and the future recommendations for cohorts working in the 
areas of common interest.

Selection of optimal parameters.  The classification performance of our framework, the MGMT-PMP 
system, is dependent on the tuning of numerous parameters for classification using ML classifiers. Subsequently, 
the analysis of optimal values of the DLRFE module, latent feature extraction, radiomic feature modules, and the 
strong machine learning models have been presented in detail. Only k-NN and SVM classifiers have been used, 

(7)

min
1

2
�w�2,

subject to:

wxt + b

{

≥ 1 for yt = 1,
otherwise yt = −1,

∀txt ∈ R
m, yt ∈ {+1,−1}.
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and the parameterization has been achieved based on classification performance accuracy. We have used these 
optimal values in the forthcoming sections.

k‑NN model.  The proposed model has been experimented with four variants of the k-NN classifier 
( k = 1, 3, 5, 7 ) to categorize HFS into MGMT+ and MGMT− classes. In our case, the results for the k-NN clas-
sifier have been found to outclass relatively at k = 1 as illustrated in Table 5 for the BraTS-2021 dataset without 
RA. The performance of the k-NN model has been shown in Table 6 with RA.

The confusion matrices for varying numbers of epochs have been illustrated in Fig. 9 for radiogenomic 
classification of the BraTS-2021 dataset with k-NN classifier with RA. The correlation between the features for 
the same class, resulted in the reduction of false events for test instances after the RA is applied to the original 
dataset. If we compare the classification results using Table 5, it is inferred that the application of RA resulted in 
improving the discriminative features (Fig. 6) thereby alleviating the characteristics that are based on similar or 
overlapping features. The confusion matrices in Fig. 6 show that excellent results have been found from higher 
to lower epoch counts as the deep learning module has been used alone for dynamic feature extraction, and the 
k-NN is engaged for training and test purpose using these features.

The improvement in classification performance using RA has been found remarkable as shown in Fig. 10 
which is a visual representation of quantitative analysis illustrated in Tables 5 and 6. Figure 10a explains the trends 
followed by a variation of training epochs employed by the DLRFE module with and without RA. Initially, the 
classification accuracy exhibits transitory behavior indicating a converging trend followed by a uniform behavior 
till the termination of 50 epochs. Figure 10b shows the ML-based classification accuracy using a k-NN model 
and latent features with and without RA. The plot represents epochs on the x-axis that have been used before the 
DL features were bled from the main architecture through the last fully connected layers ("Deep learning-based 
latent shape features"). It has been found that the classification accuracy is insensitive to the varying epochs so 
that the lesser epochs are sufficient to exploit the discriminative features derived for the proposed framework. 
F1-score measures reliable performance in case of imbalanced datasets, i.e. BraTS-2021. Figure 10c illustrates 
trends followed by the F1-score for original and RA-based datasets with the variation of training epochs for 
representation-learning-based discriminative features. It has been found that RA modified dataset resulted in 
outclass performance at its fifth epoch-based latent features. The low epoch features relate to the underfitting of 
the model due to high bias. These features resulted in good generalization during machine learning according 
to Occam’s razor principle, stating the simplest solution is the best. The higher number of epochs corresponds 
to training even on noise distribution causing overfitting, and sacrificing generalization, so that the resulting 

Table 5.   Proposed system results (tenfold-cross validated) with epochs variation depicting analysis-based 
performance using k-NN classifier with k = 1 for BraTS-2021 dataset (without RA). Significant values are given 
in bold.

Epoch Sp (%) Rc (or Sn) (%) Pr (or PPV) (%) NPV (%) AUC (ROC) F1-score MCC A (%)

1 70.24 ± 0.01 96.57 ± 0.14 71.70 ± 0.03 96.33 ± 0.15 0.83 ± 0.00 0.82 ± 0.00 0.67 ± 0.00 81.78 ± 0.06

5 70.48 ± 0.00 96.96 ± 0.00 71.94 ± 0.00 96.74 ± 0.00 0.84 ± 0.00 0.83 ± 0.00 0.68 ± 0.00 82.09 ± 0.00

10 70.16 ± 0.00 96.50 ± 0.00 71.63 ± 0.00 96.25 ± 0.00 0.83 ± 0.00 0.82 ± 0.00 0.67 ± 0.00 81.71 ± 0.00

15 69.36 ± 0.15 95.41 ± 0.15 70.85 ± 0.13 95.09 ± 0.00 0.82 ± 0.00 0.81 ± 0.00 0.65 ± 0.00 80.78 ± 0.15

20 68.88 ± 0.65 94.81 ± 0.38 70.40 ± 0.35 94.44 ± 0.34 0.82 ± 0.00 0.81 ± 0.00 0.64 ± 0.00 80.25 ± 0.20

25 68.86 ± 0.26 94.67 ± 0.36 70.36 ± 0.10 94.31 ± 0.00 0.82 ± 0.00 0.81 ± 0.00 0.64 ± 0.00 80.18 ± 0.01

30 68.78 ± 0.32 94.24 ± 0.70 70.21 ± 0.06 93.86 ± 0.67 0.82 ± 0.00 0.80 ± 0.00 0.64 ± 0.00 79.94 ± 0.13

40 68.58 ± 0.27 93.89 ± 0.30 70.00 ± 0.12 93.50 ± 0.27 0.81 ± 0.00 0.80 ± 0.00 0.63 ± 0.00 79.68 ± 0.02

50 68.50 ± 0.05 93.98 ± 0.18 69.96 ± 0.00 93.58 ± 0.17 0.81 ± 0.00 0.80 ± 0.00 0.63 ± 0.00 79.67 ± 0.05

Table 6.   Proposed system results (tenfold-cross validated) with epochs variation depicting analysis based on 
performance using k-NN classifier with k = 1 for BraTS-2021 dataset (with RA). Significant values are given in 
bold.

Epoch Sp (%) Rc (or Sn) (%) Pr (or PPV) (%) NPV (%) AUC (ROC) F1-score MCC A (%)

1 96.51 ± 0.16 95.26 ± 0.18 95.56 ± 0.20 96.29 ± 0.23 0.96 ± 0.00 0.95 ± 0.00 0.92 ± 0.00 95.96 ± 0.16

5 97.08 ± 0.10 95.86 ± 0.14 96.29 ± 0.13 96.80 ± 0.13 0.96 ± 0.00 0.96 ± 0.00 0.93 ± 0.00 96.54 ± 0.10

10 96.83 ± 0.00 95.02 ± 0.00 95.94 ± 0.00 96.10 ± 0.00 0.96 ± 0.00 0.95 ± 0.00 0.92 ± 0.00 96.03 ± 0.00

15 95.71 ± 0.31 93.94 ± 0.15 94.53 ± 0.37 95.17 ± 0.11 0.95 ± 0.00 0.94 ± 0.00 0.90 ± 0.00 94.93 ± 0.15

20 95.18 ± 0.01 93.12 ± 0.52 93.85 ± 0.04 94.48 ± 0.44 0.94 ± 0.00 0.93 ± 0.00 0.88 ± 0.00 94.27 ± 0.23

25 94.77 ± 0.22 92.98 ± 0.20 93.34 ± 0.26 94.48 ± 0.14 0.94 ± 0.00 0.93 ± 0.00 0.88 ± 0.00 93.89 ± 0.12

30 94.53 ± 0.15 92.97 ± 0.06 93.06 ± 0.17 94.46 ± 0.04 0.94 ± 0.00 0.93 ± 0.00 0.88 ± 0.00 93.84 ± 0.06

40 94.40 ± 0.49 92.24 ± 0.31 92.85 ± 0.55 93.91 ± 0.20 0.93 ± 0.00 0.93 ± 0.00 0.87 ± 0.00 93.45 ± 0.14

50 94.19 ± 0.53 92.49 ± 0.58 92.63 ± 0.58 94.08 ± 0.40 0.93 ± 0.00 0.93 ± 0.00 0.87 ± 0.00 93.44 ± 0.04
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model with high variance exhibits compromised performance on unknown instances. Figure 10d shows a similar 
trend for MCC indicating the performance improvement using RA for the original dataset. Figure 10e shows 
the AUC (ROC) plot showing the marked improvement with RA. Figure 10f follows the Pr trend indicating the 
performance rise due to RA. Figure 10g shows a similar trend of Rc with and without RA. A careful look at Table 5 
indicates that the prediction discrimination threshold between positive and negative sides appears to increase 
Sn, by moving towards the latter, reducing FNs as illustrated in Table 7 showing the cross-validated (tenfold) 
distribution of confusion matrix components for different epochs runs for latent features extraction. At the same 
time, Sp decreases due to increased FPs following the same logic. A similar trend is encountered between Pr and 
Rc as that of Sp and Sn respectively. There is a slight decrease in Rc with RA due to a slight increase in FN but at 
the same time has the effect of raising Sp from (70.48 ± 0.00)% to (97.08 ± 0.10)% using Tables 5 and 6 respectively 
at epochs = 5 with k-NN for k = 1. The overall effect of RA is a balanced increase in Sp and Sn, i.e. (97.08 ± 0.10)% 
and (95.86 ± 0.14)% respectively as illustrated in Table 6 (k-NN with k = 1, epochs = 5). It can be inferred that 
high Sn (↓FNs) is accompanied by positive results and high Sp (↓FPs) leads to healthy subjects. Figure 10h shows 
the comparison of higher to lower NPV trends. This can be explained based on previous findings. Figure 10i plot 
has been based upon NPVs with and without RA. The latter has shifted the predictive threshold boundary to 
the negative side so that FNs are reduced. In the case of RA based NPV plot, the predictive threshold boundary 
between positive and negative subjects is balanced in such a way that so that the false events are almost equally 
divided across it, as illustrated in Table 7. This results in balanced PPV and NPV values. At relatively higher epoch 
values, for getting deep learning features, the NPV is higher in comparison to the NPV without RA because of 
a relatively lower number of FNs (Table 7).

SVM model.  Three important variants of SVM classifier using linear, polynomial kernels of order ∈ (2,3,4) and 
radial basis function (RBF) have been experimented with to classify HFS into MGMT+ and MGMT− classes 
using latent features. The polynomials of higher-order (> 4) were not able to generate significant results. The 
results using SVM for binary classification of BraTS-2021 with RA using latent features extracted at the fifth 

Figure 9.   Confusion Matrices (based on the best of ten) for the k-NN classifier (k = 1) using proposed DLRFE 
module for backbone learning using BraTS-2021 dataset with RA to improve the discrimination of the features 
using epochs as: (a) 1, (b) 5, (c) 10, (d) 25, (e) 30, and (f) 50.
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Figure 10.   Performance analysis of RA for BraTS-2021 dataset based on: (a) accuracy variation with DL with 
softmax used as the classifier, (b) accuracy variation using k-NN model ML with x-axis showing the epochs 
used to retrieve the xlatent (c) F1-score plot, (d) MCC plot, (e) AUC (ROC) variation with epochs, (f) precision 
variation with epochs, (g) recall variation with epochs, (h) PPV and NPV plots for varying epochs without RA, 
(i) NPV with and without RA plots.

Table 7.   Proposed system using original and modified datasets (with RA) (tenfold-cross validated) with 
epochs variations used for bleeding deep learning features depicting TP, TN, FP and FN counts k-NN classifier 
with k = 1 for BraTS-2021 dataset (with RA) based on deep learning features.

Epoch

Original dataset Modified dataset with RA

TP FN TN FP TP FN TN FP

1 29,521 ± 44 1049 ± 44 27,504 ± 3 11,654 ± 3 21,331 ± 41 1061 ± 41 27,396 ± 45 990 ± 45

5 29,640 ± 12 930 ± 3 27,597 ± 3 11,561 ± 5 21,465 ± 31 927 ± 31 27,558 ± 29 828 ± 29

10 29,499 ± 17 1071 ± 8 27,474 ± 7 11,684 ± 8 21,276 ± 00 1116 ± 00 27,485 ± 00 901 ± 00

15 29,166 ± 31 1403 ± 31 27,158 ± 60 11,999 ± 60 21,035 ± 33 1357 ± 33 27,168 ± 89 1218 ± 89

20 28,982 ± 117 1588 ± 117 26,973 ± 255 12,185 ± 255 20,852 ± 117 1540 ± 117 27,019 ± 02 1367 ± 02

25 28,942 ± 109 1628 ± 109 26,964 ± 102 12,194 ± 102 20,820 ± 45 1571 ± 45 26,901 ± 63 1485 ± 63

30 28,808 ± 213 1762 ± 213 26,934 ± 126 12,224 ± 126 20,817 ± 14 1574 ± 14 26,834 ± 42 1552 ± 42

40 28,702 ± 91 1867 ± 91 26,854 ± 106 12,303 ± 106 20,655 ± 69 1737 ± 69 26,795 ± 137 1590 ± 137

50 28,730 ± 54 1839 ± 54 26,823 ± 20 12,334 ± 20 20,709 ± 129 1682 ± 129 26,737 ± 150 1649 ± 150
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epoch have been illustrated in Table 8. It can be observed that SVM RBF has achieved outclass performance 
among other variants for the proposed model.

Another study has been carried out by changing the number of folds in the range [10, 20,…,50] during cross-
validation for both k-NN and SVM classifiers for accuracy and F1-score. The performance variation between 
different folds has been found insignificant and negligible. However, the time for classification rises with an 
increase in the number of folds. The optimum number of folds was found ten and used throughout the article.

Performance analysis of DL‑based latent feature extraction.  The DLRFE module extracts the 
dynamic features from fully connected layers using the mpMRI scans. The convolution process is based on 
local operators, in case the kernel size is small, that can be thought of as a subset of fully connected layers, and 
the same is true for pooling, whereas the fully connected layers have a global concept so that each neuron is 
connected with every neuron in the next layer causing information to pass through each input to each output 
class. The final decision is based on the whole image89. The features in the first two fully connected layers, FC1 
and FC2, are bled from the tuned architecture in the forward direction for the training and test partitions. The 
features are blended to form the latent features xlatent . The weight distribution in two fully connected layers is 
used to decide for either of the classes. The variation of the number of unknowns with a varying number of DL 
layers for the deep learning architecture is illustrated in Table 9 The parametric set finalized after empirical tun-
ing is given in Table 10.

Analysis of parameters for deep learning and radiomic feature methods.  The deep learning 
(latent) and radiomic feature extraction, constituting stages 1 and 2 of the proposed methodology, involves 

Table 8.   Proposed system results (tenfold-cross validated) with five epochs depicting analysis based on 
performance using SVM for BraTS-2021 dataset (with RA). Significant values are given in bold.

Classifier Sp (%) Rc (or Sn) (%) Pr (or PPV) (%) NPV(%) AUC (ROC) F1-score MCC A (%)

SVM Linear 79.43 ± 0.03 41.70 ± 0.04 61.53 ± 0.01 63.33 ± 0.05 0.61 ± 0.03 0.49 ± 0.03 0.23 ± 0.03 62.79 ± 0.02

SVM RBF 92.88 ± 0.03 82.84 ± 0.04 90.18 ± 0.04 87.12 ± 0.02 0.87 ± 0.02 0.86 ± 0.03 0.76 ± 0.02 88.46 ± 0.03

SVM Poly 2 85.89 ± 0.02 89.83 ± 0.04 83.39 ± 0.03 91.46 ± 0.02 0.87 ± 0.01 0.86 ± 0.03 0.75 ± 0.03 87.63 ± 0.03

SVM Poly 3 85.38 ± 0.01 81.27 ± 0.03 81.43 ± 0.01 85.25 ± 0.03 0.83 ± 0.03 0.81 ± 0.01 0.66 ± 0.02 83.57 ± 0.01

SVM Poly 4 55.96 ± 0.02 84.99 ± 0.05 60.35 ± 0.03 82.05 ± 0.03 0.70 ± 0.01 0.70 ± 0.03 0.42 ± 0.01 68.76 ± 0.02

Table 9.   Detail of learnable parameters with DL architecture layers.

Layer no Name Type Activations Learnables

1 ImageInputLayer
64 × 64x1 images with ’zerocenter’ normalization Image input 64 × 64 × 1 0

2,3 Conv-1 64 3 × 3 convolutions with stride [1 1] and padding 
’same’ + ReLU-1 Convolution, ReLU 64 × 64 × 64

Weights 3 × 3 × 1 × 64

Bias 1 × 1 × 64

4 MaxPool_1 2 × 2 max pooling with stride [2 2] and pad-
ding [0 0 0 0] Max pooling 32 × 32 × 64 0

5,6 Conv-2 128 3 × 3 convolutions with stride [1 1] and pad-
ding ’same’ + ReLU-2 Convolution, ReLU 32 × 32 × 128

Weights 3 × 3 × 64 × 128

Bias 1 × 1 × 128

7 MaxPool_2 2 × 2 max pooling with stride [2 2] and pad-
ding [0 0 0 0] Max pooling 16 × 16 × 128 0

8 BN-2 Batch normalization 16 × 16 × 128
Offset 1 × 1 × 128

Scale 1 × 1 × 128

9,10 Conv-3 256 3 × 3 convolutions with stride [1 1] and pad-
ding ’same’ + ReLU-3 Convolution, ReLU 14 × 14 × 256

Weights 3 × 3 × 128 × 256

Bias 512 × 1 × 256

11 MaxPool_3 2 × 2 max pooling with stride [2 2] and pad-
ding [0 0 0 0] Max pooling 7 × 7 × 256 0

12 Drop-1 20% dropout Dropout 7 × 7 × 256 0

13 FC1 (512 neurons fully connected layer) Fully connected 1 × 1 × 512
Weights 512 × 12,544

Bias 512 × 1

14 FC2 (64 neurons fully connected layer) Fully connected 1 × 1 × 64
Weights 64 × 512

Bias 64 × 1

15 FC3 (2 neurons fully connected layer) Fully connected 1 × 1 × 2
Weights 2 × 64

Bias 2 × 1

17 SM Softmax 1 × 1 × 2 0

18 Class Classification output 1 × 1 × 2 0
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several parameters that need to be addressed by selecting their optimum values before the formation of HFS. We 
address the selection of appropriate values of parameters by an experimental process for each of the categories of 
feature extraction in a sequential manner.

Feature space visualization of deep learning‑based FC1 and FC2.  The t-SNE plots, a variant of Stochastic Neigh-
borhood Embedding (SNE), for radiogenomic classification for the test cases using deep learning-based fea-

Table 10.   Deep learning parameters used for latent features extraction using DLRFE module.

DL parameters Optimal values

Solver name SGDM

Momentum (sgdm) 0.99

Initial learning rate Single: 0.0001

Epochs (maximum) 50

Mini batch (size) 16

Pairs of Conv. layers and filter stacks 3

Kernel depth (size of each filter stack) 64, 128, 256

Kernel size 3 × 3

ReLU layers 3

Pooling type MaxPool (2 × 2)

Fully connected layers for latent features 2

Number of filter stacks 3

L2-regularization 0.0001

Input image size 64 × 64

Loss function Cross entropy

Number of dropout layers 1

Dropout rate (%) 20

Figure 11.   The scatter plot for latent features mapped to ℜ2 using the t-SNE technique illustrating Stage 1 for 
classification of mpMRI scans into MGMT+ (“1”) and MGMT− (“0”) classes for the original dataset: (a) FC1 
features xFC1 , (b) FC2 features xFC2 , and (c) latent features xlatent . The results depicting visual classification with 
the rejection algorithm are: (d) x′

FC1
 (e) x′

FC2
 , and (f) x′

latent
.
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tures, namely xFC1 , xFC2 , and xlatent , are illustrated in Fig. 11a–c, d–f using the 1-NN classifier ( k = 1) , "Perfor-
mance analysis of DL-based latent feature extraction", with original dataset and reduced dataset with RA applied 
respectively. For each of the high-dimensional feature vectors, the mapping is carried out in a non-linear manner 
to a lower (two) dimensional plan. The improvement in visualization is attributed solely to the alleviation of 
the tendency of points-crowding in the central region. Although there are marked inclinations of false events 
in FC1 and FC2 without RA due to overlapping regions, Fig. 11a–c, the fused DL features improved the results. 
Similarly, as illustrated in Fig. 11d–f using RA, the features represented the discrimination of vectors lying in 
either of the classes. Further improvement, by the exploitation of features, is carried out by our proposed system 
with the notion to find the complex hyperplane causing discrimination between MGMT+ and MGMT− classes.

GLCM feature extraction process.  We experimented with five distance values in the range1,5, each correspond-
ing to a GLCM with four directions of θ, and each value of GLCM corresponds to its directional average corre-
sponding to a specific value of d. The independent values of θ, without averaging, resulted in four GLCMs, each 
corresponding to a specific direction. So, a total of 20 GLCMs were generated without direction averaging. Fur-
ther, several combinations of GLCMs and the hybrids of features thereof, based on cross-averaging of GLCMs 
using different combinations of θ, were also investigated for the classification of mpMRI scans to MGMT+ and 
MGMT− classes. The performance of GLCM features varies with the value of d. The array of offset matrices used 
for this experimentation to try different combinations of d and θ has been shown in Fig. 12a. The perception of 
the relationship between d and accuracy is illustrated in Fig. 12b. Further, the best results for our problem were 
found at ( d = 3 ) with direction averaging of four angles incremented by 45° without the repeated symmetric 
view. Initially, the classification accuracy shows a rising trend, and finally, accuracy falls off with a local rising 
surge. But the peak value of accuracy has been found at d = 3 , therefore, this value of the relative distance from 
the neighboring pixels has been used for the feature extraction process.

HOG feature extraction process.  The investigation was carried out to tune the parameters of the feature descrip-
tor for our specific problem of radiogenomic classification. Further, we tried individual HOG parameters, based 
on classification accuracy, between the number of bins, block- and cell-sizes as illustrated in Fig.  13. Here, 
Fig. 13a shows the trend for the effects of varying the number of bins. Initially, the classification accuracy shows 
a rising trend, and finally, accuracy falls off. But the peak value of accuracy has been found at the uphill of the 
initial part. There is a sort of compromise found between the number of features and generalization. The higher 

Figure 12.   The variation of classification performance accuracy using GLCM feature descriptor for different 
values of d with variation in θ as 0°, 45°, 90°, and 135°, (a) Offset matrix, and (b) accuracy versus d plot.

Figure 13.   Sensitivity analysis of HOG parameters for radiogenomic classification: (a) number of bins, (b) 
block size, and (c) cell size.
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number of features, due to the higher number of bins, resulted in dropped performance due to the curse of 
dimensionality. Figure 13b shows the effect of block size on possible options depending on the input image size. 
The higher block size resulted in outclass performance with the number of bins selected as 9 and block size as 
32 × 32. Figure 13c shows the plot for cell size variation with classification accuracy. Higher cell size, before the 
maximum possible value, resulted in increased classification performance.

The features exploiting the large-scale spatial characteristics are based on a large HOG cell size. Consequently, 
the small-scale related features are lost with large cell sizes. Therefore, a compromise exists between the cell size 
and the details required depending on the inherent structure of the problem being experimented with. Similarly, 
local illumination changes are explored at a smaller HOG block size as the important information is lost when 
averaging the pixel intensities in a large block (with a relatively larger number of pixels). Consequently, the 
significant changes in the local pixels can be explored by reducing the block size. The parameters that play a key 
role in attaining its best individual performance were determined using the k-NN classifier, and the optimum 
selected values are illustrated in Table 11 out of the under-trial options. The optimum results for our problem 
structure were found using cell size: 32 × 32, and block size: 2 × 2 based on 9 bins resulting in xHOG = 36.

LBP features.  We investigated different parameters of the LBP feature extraction module that significantly 
affected its performance. The trials were based on the number of neighbors p, radius r, and the receptive area 
to get an insight into the relationship between these parameters and the model performance for radiogenomic 
classification. Figure 14 shows the effect of individual LBP parameters on radiogenomic classification. Figure 14a 
shows the trend of classification accuracy with p so that increasing the latter encodes more details corresponding 
to the surroundings of each pixel. The optimum classification accuracy is 70.44% associated with a minimum 
number of features as 59 and r = 1 . Similarly, Fig. 14b illustrates how varying r, the pointing boundary for the 
circular pattern through which neighbors are selected, influences the performance in terms of classification 
accuracy. The accuracy is 92.11% using the optimum value of p for r = 5 . The optimal parameters for the LBP 
feature extraction module are illustrated in Table 12. The experimentation for the LBP parametric analysis was 
carried out using 1-NN classifier with RA that significantly influenced the performance of the framework.

Table 11.   Optimal parameters of HOG feature extraction module.

Parameter Options (valid under trial) Number of features Optimum selection

Number of bins 5, 6, 7, 8, 9, 10, 15, 20, 25, 30, 40, 50 20, 24, 28, 32, 36, 40, 60, 80, 100, 120, 160, 200 9

Block size 1 × 1, 2 × 2 36 (each option) 2 × 2

Cell size 22 × 22, 24 × 24, 26 × 26, 28 × 28, 30 × 30, 32 × 32 36 (each option) 32 × 32

Figure 14.   The sensitivity analysis of LBP parameters: (a) the number of neighbors, and (b) the radius.

Table 12.   Optimal parameters of LBP feature extraction module with cell size as 64 × 64.

Parameter Options (valid under trial) Number of features Optimum selection

Number of neighbors 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 45, 59, 75, 93, 113, 135 8 (59)

Radius 1–5 59 (each option) 5
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Performance analysis of individual FEMs.  The various k-values for k-NN along with important SVM 
variants have been tried but 1-NN has been found outclass. The various performance measures have been illus-
trated in Table 13 illustrating the corresponding results using BraTS-2021 with and without RA. Each of the 
extraction modules has been found to accompany reasonable performance measuring indices. However, a close 
analysis of the results reveals that the proposed latent features with RA perform relatively better comparing all 
the performance metrics. Similarly, HOG features, based on the structure of the problem with RA, have also 
accompanied adequate classification results. Figure 15 shows a comparison of various feature sets for their size 
and classification performance accuracy. The FC2, using the proposed deep learning architecture, is claimed to 

Table 13.   RA effect on Radiogenomic classification results for individual feature extraction modules using a 
1-NN classifier and BraTS-2021 dataset.

Features RA Sp (%) Rc (or Sn) (%)
Pr (or PPV) 
(%) NPV (%) AUC (ROC) F1-score MCC A (%)

FC1

√

96.98 ± 0.03 96.13 ± 0.02 96.17 ± 0.04 96.95 ± 0.05 0.97 ± 0.03 0.96 ± 0.02 0.93 ± 0.01 96.61 ± 0.03

FC2 95.23 ± 0.04 93.65 ± 0.02 93.94 ± 0.01 95.01 ± 0.04 0.94 ± 0.04 0.94 ± 0.03 0.89 ± 0.02 94.54 ± 0.04

GLCM 70.89 ± 0.18 62.16 ± 0.07 62.75 ± 0.12 70.37 ± 0.04 0.67 ± 0.01 0.62 ± 0.08 0.33 ± 0.02 67.04 ± 0.08

HOG 91.57 ± 0.03 88.53 ± 0.05 89.23 ± 0.05 91.01 ± 0.04 0.90 ± 0.01 0.89 ± 0.05 0.80 ± 0.01 90.23 ± 0.04

LBP 87.70 ± 0.16 83.52 ± 0.13 84.27 ± 0.11 87.09 ± 0.10 0.86 ± 0.02 0.84 ± 0.12 0.71 ± 0.01 85.56 ± 0.01

FC1

 × 

70.57 ± 0.04 97.01 ± 0.02 72.02 ± 0.08 97.12 ± 0.05 0.84 ± 0.02 0.83 ± 0.03 0.68 ± 0.02 82.16 ± 0.03

FC2 69.26 ± 0.02 95.42 ± 0.03 70.79 ± 0.04 95.32 ± 0.06 0.82 ± 0.04 0.81 ± 0.02 0.65 ± 0.01 80.73 ± 0.04

GLCM 79.15 ± 0.15 45.58 ± 0.08 63.06 ± 0.11 65.88 ± 0.03 0.62 ± 0.02 0.52 ± 0.09 0.26 ± 0.03 64.43 ± 0.08

HOG 66.16 ± 0.04 91.19 ± 0.05 67.78 ± 0.04 91.90 ± 0.04 0.78 ± 0.02 0.77 ± 0.04 0.57 ± 0.02 77.13 ± 0.05

LBP 63.06 ± 0.10 86.96 ± 0.11 64.76 ± 0.09 86.36 ± 0.08 0.75 ± 0.03 0.74 ± 0.10 0.50 ± 0.02 73.54 ± 0.02

Figure 15.   Comparison of feature extraction techniques for their feature set size and the resulting classification 
accuracy with RA using a 1-NN classifier.

Table 14.   Features forming HFS for radiogenomic classification using the BraTS-2021 dataset.

Definition (features) Source Share (%) Count (features)

xFC1 DL module, fully connected layer 1(512 neurons) 74.85 512

xFC2 DL module, fully connected layer 2(64 neurons) 9.35 64

xlatent Entire DL feature contribution 84.21 576

xGLCM GLCM based direction-averaged features 1.90 13

xHOG HOG based 5.26 36

xLBP LBP based 8.62 59

xradiomic Radiomic feature contribution 15.79 108

xHFS Hybrid features set 100.00 684
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have a marked effect in comparison to its share (9.35%) in the HFS. The next optimum in this respect is the HOG 
set, with optimized parameters for our problem structure, with a 5.26% share in the HFS resulting in remarkable 
individual accuracy.

Performance analysis of HFS.  This set of experiments is based on a combinatorial strategy using indi-
vidual features from both stages, i.e. latent features from Stage 1 and radiomic features from Stage 2. The dis-
tribution of features in HFS into various categories and their proportionate share is illustrated in Table 14. The 
2-Stage HFS formation for the proposed radiogenomic classification framework is illustrated in Fig. 16. The 
feature extraction modules are fused in this trial by manifold combinations, each consisting of two, three, four, 
and five feature types. Each of the experiments is evaluated using BraTS-2021 with RA using various perfor-

Figure 16.   Schematic diagram of multi-omics HFS formation for the proposed classification framework.

Table 15.   Sensitivity analysis manifold combinations of two features using a 1-NN classifier and BraTS-2021 
dataset with RA. Significant values are given in bold.

Features Sp (%) Rc (or Sn) (%)
Pr (or PPV) 
(%) NPV (%) AUC (ROC ) F1-Score MCC A (%)

FC1-FC2 97.08 ± 0.10 95.86 ± 0.14 96.29 ± 0.13 96.80 ± 0.13 0.96 ± 0.05 0.96 ± 0.13 0.93 ± 0.03 96.54 ± 0.10

FC1-GLCM 97.02 ± 0.04 96.01 ± 0.05 96.21 ± 0.02 96.82 ± 0.02 0.96 ± 0.02 0.96 ± 0.04 0.93 ± 0.01 96.57 ± 0.04

FC1-HOG 97.24 ± 0.03 96.44 ± 0.05 96.50 ± 0.03 97.23 ± 0.01 0.96 ± 0.03 0.96 ± 0.04 0.93 ± 0.01 96.88 ± 0.03

FC1-LBP 97.10 ± 0.02 96.23 ± 0.04 96.32 ± 0.03 97.02 ± 0.01 0.97 ± 0.01 0.96 ± 0.03 0.93 ± 0.01 96.71 ± 0.02

FC2-GLCM 95.32 ± 0.01 93.51 ± 0.02 94.03 ± 0.03 94.91 ± 0.02 0.94 ± 0.02 0.93 ± 0.01 0.89 ± 0.02 94.52 ± 0.01

FC2-HOG 96.19 ± 0.02 94.84 ± 0.03 95.16 ± 0.01 95.94 ± 0.02 0.95 ± 0.03 0.95 ± 0.02 0.91 ± 0.02 95.59 ± 0.02

FC2-LBP 95.55 ± 0.01 93.94 ± 0.01 94.34 ± 0.02 95.24 ± 0.03 0.94 ± 0.01 0.94 ± 0.01 0.89 ± 0.02 94.84 ± 0.01

GLCM-HOG 93.69 ± 0.14 91.00 ± 0.30 91.92 ± 0.17 92.96 ± 0.22 0.92 ± 0.00 0.91 ± 0.00 0.85 ± 0.02 92.51 ± 0.16

GLCM-LBP 88.43 ± 0.11 83.98 ± 0.34 85.13 ± 0.14 87.50 ± 0.24 0.86 ± 0.01 0.85 ± 0.01 0.73 ± 0.00 86.47 ± 0.17

HOG-LBP 91.74 ± 0.14 88.88 ± 0.16 89.46 ± 0.17 91.27 ± 0.12 0.90 ± 0.01 0.89 ± 0.00 0.81 ± 0.01 90.48 ± 0.14



24

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3291  | https://doi.org/10.1038/s41598-023-30309-4

www.nature.com/scientificreports/

mance measuring techniques as illustrated in Tables 15, 16 and 17. FC1, FC2, and HOG features resulted in an 
adequate level of performance after the application of RA on the dataset no matter whether they are utilized on 
an individual basis or in cross-breed mode. Results in Tables 13 and 15 concluded that individual features, FC1, 
FC2, and HOG, yielded maximum accuracy of 96.61%, 94.54%, and 90.23% respectively whereas the accuracy 
was further boosted with an increase up to 96.88% in the case of hybrid of more than two features. In Tables 16 
and 17, combinations of three (10 sets), four (5 sets), and five features (1 set) were hybridized to form HFS using 
a k-NN classifier with RA to yield a maximum accuracy of 96.94%. However, a slight fractional enhancement in 
performance resulted in complex hybrids carrying more than two feature subsets, leading to the accuracy up to 
96.90%, 96.92%, and 96.94% for FC1-GLCM-HOG, FC1-GLCM-HOG-LBP, and FC1-FC2-GLCM-HOG-LBP 
(HFS) respectively. The outclass results are mainly due to the reduction of similar features in the original dataset 

Table 16.   Sensitivity analysis manifold combinations of three features using a 1-NN classifier and BraTS-2021 
dataset with RA. Significant values are given in bold.

Features Sp (%) Rc (or Sn) (%)
Pr (or PPV) 
(%) NPV (%) AUC (ROC) F1-score MCC A (%)

FC1-FC2-
GLCM 97.01 ± 0.01 95.86 ± 0.02 96.19 ± 0.02 96.74 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.92 ± 0.01 96.50 ± 0.02

FC1-FC2-
HOG 97.22 ± 0.02 96.27 ± 0.01 96.47 ± 0.01 97.07 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 96.80 ± 0.01

FC1-FC2-LBP 97.05 ± 0.03 96.16 ± 0.01 96.26 ± 0.02 96.97 ± 0.02 0.96 ± 0.02 0.96 ± 0.01 0.93 ± 0.02 96.66 ± 0.02

FC2-GLCM-
HOG 96.58 ± 0.02 95.05 ± 0.01 95.64 ± 0.03 96.11 ± 0.02 0.95 ± 0.01 0.95 ± 0.01 0.91 ± 0.02 95.91 ± 0.01

FC2-GLCM-
LBP 95.50 ± 0.03 93.73 ± 0.02 94.26 ± 0.01 95.07 ± 0.03 0.94 ± 0.02 0.94 ± 0.02 0.89 ± 0.03 94.72 ± 0.04

FC2-HOG-
LBP 96.09 ± 0.01 94.87 ± 0.02 95.03 ± 0.01 96.06 ± 0.01 0.95 ± 0.04 0.95 ± 0.01 0.91 ± 0.02 95.55 ± 0.03

FC1-GLCM-
HOG 97.32 ± 0.01 96.27 ± 0.01 96.60 ± 0.02 97.06 ± 0.02 0.96 ± 0.03 0.96 ± 0.01 0.93 ± 0.01 96.90 ± 0.01

FC1-GLCM-
LBP 97.09 ± 0.02 96.13 ± 0.02 96.31 ± 0.01 96.95 ± 0.02 0.96 ± 0.02 0.96 ± 0.02 0.93 ± 0.02 96.67 ± 0.04

FC1-HOG-
LBP 63.92 ± 0.04 40.15 ± 0.05 46.75 ± 0.03 57.52 ± 0.02 0.52 ± 0.01 0.43 ± 0.04 0.041 ± 0.04 53.44 ± 0.04

GLCM-HOG-
LBP 92.52 ± 0.01 89.17 ± 0.02 90.39 ± 0.01 91.54 ± 0.02 0.90 ± 0.03 0.89 ± 0.04 0.81 ± 0.03 91.04 ± 0.01

Table 17.   Sensitivity analysis manifold combinations of four and five features using a 1-NN classifier and 
BraTS-2021 dataset with RA. Significant values are given in bold.

Features Sp (%) Rc (or Sn) (%)
Pr (or PPV) 
(%) NPV (%) AUC (ROC) F1-score MCC A(ML) (%)

FC1-FC2-
GLCM-HOG 97.25 ± 0.02 96.16 ± 0.01 96.51 ± 0.01 97.01 ± 0.01 0.96 ± 0.01 0.96 ± 0.01 0.93 ± 0.01 96.77 ± 0.01

FC1-FC2-
HOG-LBP 97.30 ± 0.02 96.40 ± 0.02 96.57 ± 0.02 97.10 ± 0.02 0.96 ± 0.01 0.96 ± 0.02 0.93 ± 0.02 96.90 ± 0.02

FC1-FC2-
GLCM-LBP 97.05 ± 0.01 96.07 ± 0.02 96.26 ± 0.02 96.90 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.93 ± 0.02 96.62 ± 0.01

FC2-GLCM-
HOG-LBP 96.21 ± 0.03 94.83 ± 0.04 95.18 ± 0.01 95.94 ± 0.01 0.95 ± 0.02 0.95 ± 0.03 0.91 ± 0.01 95.60 ± 0.01

FC1-GLCM-
HOG-LBP 97.42 ± 0.01 96.29 ± 0.01 96.71 ± 0.01 97.09 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.93 ± 0.02 96.92 ± 0.02

HFS 97.44 ± 0.01 96.31 ± 0.03 96.60 ± 0.01 97.10 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 96.94 ± 0.01

Table 18.   Proposed MGMT-PMP system results cross-validated 10-folds with epochs variation for dynamic 
feature extraction depicting analysis based on performance with RA, using 1-NN classifier for BraTS-2021 
dataset. Significant values are given in bold.

Epoch Sp (%) Rc (or Sn) (%) Pr (or PPV) (%) NPV (%) AUC (ROC) F1-score MCC A (%)

1 97.14 ± 0.07 95.78 ± 0.16 96.36 ± 0.09 96.69 ± 0.12 0.96 ± 0.00 0.96 ± 0.00 0.93 ± 0.00 96.54 ± 0.09

5 97.43 ± 0.01 96.31 ± 0.03 96.60 ± 0.01 97.10 ± 0.02 0.96 ± 0.01 0.96 ± 0.01 0.94 ± 0.02 96.93 ± 0.01

10 97.20 ± 0.24 96.06 ± 0.24 96.44 ± 0.29 96.90 ± 0.18 0.97 ± 0.00 0.96 ± 0.00 0.93 ± 0.00 96.70 ± 0.14

15 96.83 ± 0.18 95.17 ± 0.28 95.95 ± 0.23 96.21 ± 0.22 0.96 ± 0.00 0.96 ± 0.00 0.92 ± 0.00 96.10 ± 0.23
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by the application of RA so that the diversity in HFS is combined by exploiting five distinct feature extraction 
modules. Each of the extraction modules, having its possible solution domain, extracts the most favorable and 
discriminative characteristics from the mpMRI scans. When the features originated from the RA-based reduced 
BraTS-2021 dataset fused, they collectively generated better results, and an overall accuracy increase of 17.59% 
and 17.99% was observed for individual features’ performance and hybrid strategies respectively when com-
pared with results without RA.

From another perspective of sensitivity analysis of epochs on proposed deep learning features extraction, 
and consequently on ML-based classification has been illustrated in Table 18 on the radiongenomic classifica-
tion dataset with RA. The epochs when larger than five marginally influence, 0.8% increase, the performance 
measuring standards with radiomic as static feature extraction techniques.

Computational time analysis of the framework.  It is worthwhile to analyze the proposed framework 
for its space and time complexity in terms of CPU time requirements. To check the performance of the frame-
work, the CPU time involvement has been considered for various feature extraction modules on an individual as 
well as group basis, using ML/ DL classifiers after applying RA, and training/ testing time on a per-image basis. 
The hybrid feature extraction time is the mere sum of the time taken by the individual FEMs.

The time requirements (with epochs) for deep learning feature extraction in minutes, machine learning 
training time (MLTrgT) in minutes, and machine learning testing time (MLTstT) in ms/ image are illustrated 
in Fig. 17a–c as DLFET, MLTrgT and MLTstT respectively. Figure 17a shows that the latent feature extraction 
time rises with epochs, and five epochs have been found optimum ("Selection of optimal parameters") so that 
the HFS culminates in high classification performance accuracy. Further, RA application resulted in a reduction 
of feature extraction time, so there is a time gap observed between the two trends.

In Fig. 17b, the training time for machine learning remained almost uniform. The variation on the x-axis rep-
resents the epochs used at which the latent features were extracted. Further, the training features are obtained by 
finding activations through deep learning architecture in the forward direction. The latent features are then used 
by a 1-NN classifier for model training. The curve related to the RA application used lesser time in comparison 
to the original dataset having a larger number of training instances. A similar trend has been shown in Fig. 17c 

Figure 17.   Effect of RA on time required for (a) deep learning feature extraction time (minutes), (b) ML 
training time and (c) ML testing time for radiogenomic classification using BraTS-2021 dataset and 1-NN 
classifier (DLFET stands for deep learning feature extraction time and MLTrgT stands for Machine Learning 
Training Time).

Figure 18.   Comparison of (a) feature extraction times for potential feature extraction techniques with (b) 
individual feature set size used in the proposed framework, and (c) classification time without preprocessing and 
feature extraction with RA using BraTS-2021 dataset and 1-NN classifier.
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in milliseconds for testing on a per-image basis using a 1-NN classifier. The testing time on a per-image curve 
is always accompanied by quick convergence in the case of RA.

The trend of feature extraction time/image has been demonstrated in Fig. 18a. Although a relatively higher 
extraction cost for FET is observed for LBP, attributed to its large radius that was found optimum considering 
its contribution on an individual basis ("LBP features"), the proposed system is tractable computationally, only 
8.67 ms for the HFS extraction, due to time involvement per feature extraction module. However, the preprocess-
ing times, the training time for deep features extraction, and the RA times are not included in these computa-
tions as they are to be involved once, and from thereon never to be repeated, until and unless new test data is 
involved which has to follow the same norms as defined earlier. Further, the higher time cost of LBP is justifiable 
by performance rise compared to other FEMs. Figure 18b illustrates the feature vector size for individual and 
hybrid features, where the latter is just the summation of the former. Figure 18c shows the classification time for 
individual FEMs and their hybrid. The classification time varies with the length of the feature vector, and the 
classification time of HFS is high compared to the individual FEMs.

Performance comparison.  The classification performance of our proposed framework has been related 
to existing solutions for brain tumor classification using well-known radiomic features through the CE-MRI 
dataset. The BraTS-2021 dataset, based on radiogenomic data, has no published work so far to the best of our 
knowledge. In this context, we have implemented four techniques17,40,79,90 from the contemporary literature with 
optimal parameters for our comparison with the BraTS-2021 dataset. We used accuracy as the comparative 
performance measure. The tabular comparison has been illustrated in Table 19, which shows relatively better 
performance of the proposed framework over others in terms of performance. The radiomic features are texture 
oriented while latent features are problem structure oriented. The proposed system, however, uses discriminative 
HFS feature vectors wherein each module acquires knowledge associated with the problem structure. The mani-
fold combinatorial fusion of different modules reinforces the multi-solution domain culminating in relatively 
superior performance measures.

The effect of RA on radiogenomic classification accuracy is being reported with an improvement of 16.57% 
in the case using the reduced dataset exploited by RA. The outclass performance of the proposed MGMT-PMP 
system with RA is based on three key facts: firstly, simpler model, thereby reducing the complexity of the algo-
rithm due to more focused/ highly discriminative features from the dataset using two-stage HFS, secondly, the 
computational cost is reduced due to the rejection of 27.18% instances, and thirdly, resulting in an improved 
generalization on testing instances with more discriminative feature vectors.

Future challenges and recommendations.  The main challenge to the proposed system is that it needs a 
clinical trial for resolving the expert opinion corresponding to the patient’s data with a second opinion. Another 
challenge is to define a systematic clinical step-up culminating in patient management with GB. Moreover, a 
study is required using the proposed technique for evaluation of its impact on the survival rate of GB patients 
with an associated clinical management system.

The deep learning-based prediction strategies, working as a source of latent feature extractor, are complex as 
well as opaque where performance metrics, viz. accuracy, F1-score, sensitivity, and specificity, are dependent on 
enormous parametric space using deep learning algorithms. In this context, the XAI91,92 proposed that the deep 
learning architectures should be examined using a white box that is transparent for multi-modal data fusion.

Conclusions
In this research activity, we proposed a novel classification system MGMT-PMP, bridging imaging and genomics, 
for predicting radiogenomics classes using genetic variation associated with response to radiations. In this con-
text, a novel fine-tuned CNN architecture, namely the DLRFE module is proposed for latent feature extraction to 
capture the features that dynamically bleed the quantitative knowledge related to the spatial distribution and the 
size of tumorous structure using the brain paraphernalia by mpMRI scans. It finally results in the development 
of a dynamic feature vector that is used in the radiogenomic classification. Further, in the proposed scheme, 
several radiomic features, namely GLCM, HOG, and LBP are extracted from mpMRI scans using the BraTS-2021 
challenge dataset. The application of the novice rejection algorithm has been found very effective in selecting and 
delineating the instances out of the main dataset. The fusion of latent features with radiomic features, forming a 
hybrid feature collection as HFS, is then used in a different number of neighbors using k-NN classification. Work-
ing with mpMRI scans, using k-NN ( k = 1) resulted in 97.28% training and 96.94% test classification accuracy. 

Table 19.   Comparison of the proposed framework with other studies for brain tumors using the BraTS-2021 
challenge dataset using 80:20 partition for training: testing instances. Significant values are given in bold.

References RA Epochs Technique F1-score A (%)

Qureshi40  ×  20 UL-DLA + GLCM + SVM 0.74 75.24

Sultan17  ×  20 CNN 0.67 68.42

Kaplan79  ×  20 nLBP + k-NN 0.73 71.55

Badza90  ×  20 CNN 0.71 73.55

Proposed framework (without RA)  ×  5 MGMT-PMP system 0.83 83.16

Proposed framework √ 5 MGMT-PMP system + RA 0.96 96.94
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We have compared the proposed technique with numerous existing brain tumor classification techniques with 
the BraTS-2021 dataset and observed a significant increase in radiogenomic classification performance using 
RA. It has been established through results that dynamic- and static-feature fusion, using HFS, culminated in 
classification performance improvement as compared to individual features. This research study can have many 
implications extendable to multiple directions. First, this study links the genomic variation with radiomic-based 
data characterization algorithms paving the bridge between the two independent areas of research. The second 
possibility is its comprehensive use in real-time brain tumor surgery for the removal of leftover tumor cells by 
chemotherapeutic treatment as an alternative in tie to radiotherapy. Third, the proposed system can be used 
as an alternative without any dedicated machine as a portable low-cost solution for brain surgery. Further, this 
study can be of great impact on the clinical management and survival of GB patients.

Data availability
The use of all data mentioned in this article is publicly available at: https://​www.​kaggle.​com/​compe​titio​ns/​rsna-​
miccai-​brain-​tumor-​radio​genom​ic-​class​ifica​tion/​data.
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