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Identifying important nodes 
in complex networks based 
on extended degree and E‑shell 
hierarchy decomposition
Jun Liu 1 & Jiming Zheng 2*

The identification of important nodes is a hot topic in complex networks. Many methods have been 
proposed in different fields for solving this problem. Most previous work emphasized the role of 
a single feature and, as a result, rarely made full use of multiple items. This paper proposes a new 
method that utilizes multiple characteristics of nodes for the evaluation of their importance. First, an 
extended degree is defined to improve the classical degree. And E-shell hierarchy decomposition is put 
forward for determining nodes’ position through the network’s hierarchical structure. Then, based on 
the combination of these two components, a hybrid characteristic centrality and its extended version 
are proposed for evaluating the importance of nodes. Extensive experiments are conducted in six real 
networks, and the susceptible–infected–recovered model and monotonicity criterion are introduced 
to test the performance of the new approach. The comparison results demonstrate that the proposed 
new approach exposes more competitive advantages in both accuracy and resolution compared to the 
other five approaches.

With the rapidly growing scale of networks, topics concerning complex networks are emerging in network 
science1,2. Generally, complex networks are modeled by various systems in the real world, which are disorgan-
ized, self-similar, and small-world3. Massive systems can be remolded by complex networks, for instance, pro-
tein networks in biology4, social networks in sociology5, financial networks in economics6, power networks in 
engineering7, and so on. Complex networks have received extensive attention in theory and practice in recent 
years8–10. The identification of important nodes has become a fundamental problem in complex networks11–13, 
which has not only theoretical value14,15, but likewise practical applications. Some examples can be easily found. 
In social networks, the positive contribution of “celebrities” can effectively reduce the spread of negative social 
opinion. Ad-technology vendors often seek out the most influential users for advertising to maximize revenue 
in marketing networks. More applications can be given in other cases, such as disease control16 and sociology17.

The identification of important nodes in complex networks is an NP-hard problem18. Up to now, many 
schemes with polynomial complexity have been presented. For example, degree centrality19 counts the number 
of node’s nearest neighbors and considers important nodes to have more neighbors. Closeness centrality19 con-
siders the average length of the shortest path from the target node to other nodes in the network. Betweenness 
centrality19 calculates the fraction of the shortest paths that cover the target node. A number of variants and 
approximations have been proposed for speed and accuracy20–22. These schemes, which are called “classical”, 
exploit the topological characteristics of nodes while ignoring community properties. However, it is well known 
that community organization is a main feature of complex networks23.

Consequently, when one considers community organizations, nodes that are not of interest in classical central-
ity may have potential influence. Community centrality considers the heterogeneity between intra-community 
links and inter-community links24–26. The intra-community links quantify the local influence of a node inside a 
community. Conversely, inter-community links account for the global influence of nodes on various communi-
ties. Many ideas of community centrality have been put out in light of the various ways in which the two type 
of links might be coupled27–29. Zhao et al.27 distinguish the weights of inter-community links by community 
size. The community-based mediator targets influential nodes through entropy and normalized degree28. This 
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entropy is generated by the heterogeneity of the links between the inside and outside communities. Modular 
Vitality assesses the centrality of a node by investigating the modular variations caused when one is removed29.

Besides the community, the hierarchical structure of the network has also attracted attention30. Some pre-
vious outcomes have used the hierarchical structure to drive the K-shell decomposition algorithm and its 
improvements31–34. Although the K-shell algorithm has promising applications in various fields35–38, there has 
been a drive to improve its resolution. This is because it ties many nodes to the same shell, even though these 
nodes differ in influence39,40. Zeng et al.41 introduced the exhausted degree and proposed a mixed degree decom-
position (MDD) method to identify important nodes. Bae et al.42 presented an extended version, called neighbor-
hood coreness, using the k-shell index of 1-order neighborhood nodes. Feng et al.43 consider opinion leaders and 
structural hole nodes to have more ability to influence others. Wang et al.44 suggested a integral k-shell algorithm 
(IKS) by accumulating historical k-shell index and second-order degree of neighborhood. Liu et al.45 refined the 
K-shell algorithm utilizing TOPSIS technique.

Many facts indicate that the importance of the node depends on multiple characteristics, such as degree, 
neighbors, position, and so on. Sheikhahmadi et al.46 presented a multi-criteria approach (MCDE) which utilizes 
a combination of node’s degree, k-shell index and information entropy. There is still relatively little work on 
multi-characteristic methods. As a result, a new approach based on multiple characteristics is proposed in this 
paper. The interests of our work are as follows, 

(1)	 An improved version of the classical degree, extended degree, is introduced.
(2)	 A E-shell hierarchy decomposition is put forward for determining nodes’ position information through 

the network’s hierarchical structure.
(3)	 A hybrid characteristic centrality (HCC) is presented, which combines the extended degree and E-shell 

hierarchy decomposition.

Extensive experiments were performed in six real networks and the performance of the proposed approach 
was examined using the monotonicity function42 and the susceptible–infected–recovered (SIR) model47,48. The 
results indicate that the new approach is more competitive than the classical and community centrality in terms 
of accuracy and resolution.

The framework of this paper is organized as follows. The “Preliminaries” section briefly introduces some basic 
preliminaries. The “Methods” section presents the new method and provides a simple example. The “Experi-
ments” section examines the performance of the new method and compares the existing algorithms. The “Dis-
cussion” section summarizes the work.

Preliminaries
Let G = (V ,E) be an unweighted undirected network, where V and E are the set of nodes and edges, respectively. 
Denote n = |V | and m = |E| . The adjacency of network G can be represented by A = (auv)n×n , where auv indicates 
the connection between nodes u and v. auv = 1 , if nodes u and v are directly connected; auv = 0 , other cases.

K‑order neighborhood.  For any two nodes u and v, v is said to be an k-order neighbor of u if there exists 
the smallest positive integer such that Eq. (1) holds,

where vi ∈ G (i = 0, 1, . . . , k) , v0 = u and vk = v . Denote the k-order neighborhood of node u as the set φ(k)(u) , 
which consists of all k-order neighbors of u. If not otherwise specified, note that φ(1)(u) = φ(u) . The number of 
1-order neighbors of node u is called its degree19 and is denoted by k(u), i.e.,

K‑shell hierarchy decomposition.  The main idea of the K-shell hierarchy decomposition: for a given k, 
a subgroup of the network called k-shell is obtained by iteratively deleting nodes with degree less than or equal 
to k. All node within the k-shell have the same index k. If there are no isolated nodes (degree equal to 0) in the 
network, then the nodes with degree equal to 1 have the lowest importance. Therefore, these nodes and their 
connected edges are deleted from the current network. Again, the new nodes with degrees less than or equal to 1 
and their connected edges need to be deleted. Continue the above process until the degree of each node is greater 
than 1 in the current network. The nodes deleted in this round form 1-shell. Based on the above description, the 
procedure of the K-shell algorithm can be summarized as follows:

Step 1 delete nodes with degree k.
Step 2 repeatedly remove the new nodes whose degree is less than or equal to k until the degree of each new 

node is greater than k.
Step 3 all nodes deleted in steps 1 and 2 form the k-shell.
Step 4 let k = K = 1 , and repeat the above steps. In the above program, if the initial and maximum values of 

k are 1 and K respectively, then we can get K shells, i.e., 1-shell, 2-shell, ..., K-shell.

Susceptible–infected–recovered (SIR) model.  The SIR model is a classical model of disease transmis-
sion in which individuals are classified into 3 states: susceptible (S), infected (I), and recovered (R). Initially, a 

(1)
k−1
∏

i=0

avivi+1 = 1

(2)k(u) = |φ(u)|
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single (or multiple) target individual is selected and its state is specified as I. At each step, the infected individuals 
spread the disease to each of its susceptible 1-order neighbors and enters state recovered. Herein, the infection 
rate and recovery rate are α and β , respectively. Then, the spread procedure is continued until there are no indi-
viduals with infected state in the network. The final cumulative count of infected individuals is considered as the 
real spread ability of the initial target individuals.

Methods
Main idea.  Degree centrality and K-shell decomposition are two traditional single-characteristic schemes. 
However, numerous experiments have demonstrated that using a single characteristic to measure the impor-
tance of nodes is unreliable. Accordingly, a new idea is to combine multiple characteristics. Previous works have 
simply combined degree centrality and K-shell decomposition, but this fails to address the underlying problem: 
their low resolution limits the performance of the combination. Based on the above consideration, the interest of 
our work lies in the improvement of the classic degree and the K-shell decomposition, as well as their combina-
tion. As a result, we propose an extended degree and an E-shell hierarchy decomposition, and a combination of 
them called hybrid characteristic centrality.

Extended degree and E‑shell hierarchy decomposition.  The classical degree only counts the num-
ber of neighbors of the node itself. Thus, we define the extended degree to overcome the limitation of classi-
cal degree. Let G be an unweighted undirected network. The degree and 1-order neighbors of node u ∈ G are 
denoted as k(u) and φ(u) , respectively. Then, the extended degree of node u, denoted by kex(u) , is defined by

where δ ∈ [0, 1] is a weight which reflects the dependence of kex(u) on k(u). If δ = 1 , then Eq. (3) degenerates 
to the classical degree (Eq. 2).

Next, we propose a E-shell hierarchy decomposition to determine the position of each node by decomposing 
the network’s hierarchical structure. In this method, the nodes with minimum extended degree are found and 
deleted from the current network in each iteration. Then, these nodes are tagged with a position index, which 
is represented here by the iterations number. The procedures of E-shell hierarchy decomposition are described 
below.

Step 1:Input a network G.
Step 2 Initialize the iteration number p = 1 and G1 = G.
Step 3 Find the set of minimum nodes Sp = argmaxu∈Gp

{kex(u)}.
Step 4 Tag a position index indexp for each node within Sp , where indexp = p.
Step 5 Remove Sp from Gp and then get a new network Gp+1 . If Gp+1 is non-empty, proceed to step 6; otherwise, 

the procedure terminates.
Step 6 Update the extended degree of each node within Gp+1.
Step 7 Update the iteration number p = p+ 1.
Step 8 Return to step 3.

Hybrid characteristic centrality and its extension.  The hybrid characteristic centrality combines the 
extended degree and the E-shell decomposition. Because of this, it gives a better understanding of how impor-
tant a node is. On the one hand, the extended degree measures the local influence using degree about the node 
itself and its neighbors. On the other hand, E-shell decomposition reflects the global influence of a node by its 
position in the network. In brief, a node receives greater importance by having more neighbors and a higher 
position. Let kex(u) be the extended degree of node u. Denote the position index of node u given by E-shell 
decomposition as pos(u). The HCC of node u, written by HCC(u), can be calculated by

where kexmax and posmax signify the maximum extended degree and position index of the nodes, respectively. 
Further, EHCC, an extensive version of HCC, is introduced as follows.

EHCC draws on the idea of the extended degree, but it utilizes more information about a node, which includes 
the degree and position of its neighbors as well as itself. Nodes with higher EHCC values are commonly rewarded 
with a greater importance.

Computational complexity.  The complexity of the EHHC calculation is as follows. 

(1)	 The complexity of calculating the extended degree is O(n).
(2)	 The complexity of the E-shell procedure for determining the position of the node is O(m) (similar to 

K-shell).
(3)	 Therefore, the total complexity is O(n+m).

(3)kex(u) = δ ∗ k(u)+ (1− δ) ∗
∑

v∈φ(u)

k(v)

(4)HCC(u) =
kex(u)

kexmax

+
pos(u)

posmax

(5)EHCC(u) = HCC(u)+
∑

v∈φ(u)

HCC(v)
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Computational process.  To interpret the calculation procedure of the new method, a simple example is 
given. Figure 1 shows a simple network with 10 nodes and 14 edges.

First, the extended degree of each node is calculate by Eqs.  (2) and (3). Take δ = 0.5 in Eq.  (3). 
The computational results are provided in Table  1. In the case of node a, the extended degree is 
kex(a) = 0.5 ∗ k(a)+ 0.5 ∗ (k(b)+ k(e)) = 4.5.

Second, the position index of each node is obtained according to the E-shell decomposition procedure. The 
complete process listed in Table 2. We observe that the position index of node a is 4.

Third, the HCC of each node is computed by Eq. (4). From Tables 1 and 2, the maximum extended degree and 
the maximum position index are 11 and 6, respectively. As a result, HCC of nodes a is HCC(a) = 4.5

11 + 4
6 = 1.08.

At last, the EHCC value of each node is computed using Eq.  (5). The computation of node a is 
EHCC(a) = HCC(a)+HCC(b)+HCC(e) = 4.15 . The results of HCC and EHCC are given by Table 3.

g

d

e

i

f

h

c

j

a

b

Figure 1.   A simple network.

Table 1.   The class degree and extended degree of each node in the simple network.

Node a b c d e f g h i j

Classical egree 2 2 1 4 5 4 5 1 3 1

Extended degree 4.5 4.5 2.5 9.5 11 10.5 11 3 6.5 2

Table 2.   The E-shell decomposition procedure of the simple network.

Iteration number Minimum extended degree Delete node set Position index

1 2 {j} 1

2 2.5 {c} 2

3 3 {h} 3

4 4.5 {a, b} 4

5 5 {i} 5

6 6 {d, e, f , g} 6

Table 3.   The results of EHCC and HCC for the simple network.

Node a b c d e f g h i j

HCC 1.08 1.08 0.56 1.86 2 1.95 2 0.77 1.42 0.35

EHCC 4.15 4.15 2.42 8.38 9.97 9.24 10.01 2.77 5.73 1.77
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Experiments
Experimental setup.  Experimental environment: Windows 10 system with Intel(R) Core i7-12700H 
(2.1 GHz), 16 GB RAM and 512 GB Hard Disk. The methods and experiments were implemented in Python 
3.11.0.

Data sets.  Six types of networks were selected for the experiment. A social network of dolphin popula-
tions (Dolphins)49. A metabolic network of C. elegans (Celegans)50. A social network for exchanging e-mails 
(Email)51, a power network in the western United States (Power)52. A collaborative network of Arxiv paper 
authors (GrQc)53. A relational network of PGP users (PGP)54. These data are available from the https://​netwo​
rkrep​osito​ry.​com/. The topological parameters of these networks are listed in Table 4.

Comparison algorithm.  The proposed method is compared with five well-known methods, as shown in 
Table 5.

Evaluation indicators.  Accuracy.  Accuracy is a criterion to evaluate the algorithm’s performance. In-
spired by previous works41,42,44,46, the accuracy of the algorithm was investigated by the SIR model in this experi-
ment. Here, we conducted 500 simulations for each node and used its average value as the final results. Let σu 
and xu be the ranking of node u provided by the SIR model and algorithm X, respectively. The ranking sequences 
σ and x are sorted in descending order. In order to quantify the accuracy of algorithm X, we take the sequence 
σ as the benchmark and calculates the consistency coefficient between the ranking sequences σ and x. For this 
purpose, a pair of nodes u and v is considered as follows: 

(a)	 if (xu − xv)× (σu − σv) > 0 , then nodes u and v are said to have a positive relationship in x.
(b)	 if (xu − xv)× (σu − σv) < 0 , then nodes u and v are said to have a negative relationship in x.
(c)	 if (xu − xv)× (σu − σv) = 0 , then nodes u and v are said to be independent in x. Based on the above, the 

consistency coefficient of ranking sequence X, denoted by Coe(X), is defined as 

 where n is the number of nodes, na and nb represent the number of node pairs with positive and negative 
relationships in the ranking sequence x, respectively. Obviously, Coe(x) ∈ [0, 1] . Coe(X) = 1 means that 
each node pair has a positive relationship and thus the algorithm X has the best accuracy. The worst case 
is Coe(X) = 0.

Resolution.  There may be multiple nodes with the same ranking in the ranking sequence. For this reason, we 
introduce the cumulative distribution function (CDF) to describe the distribution of nodes. Let x be the ranking 
sequence generated by algorithm X. Let ω ∈ [0, 1] be the identity of the nodes, then the mathematical equation 
of CDF(ω) can be written by

(6)Coe(x) =
2× (na − nb)

n× (n− 1)

Table 4.   Topological parameters of six real networks: node number n, edge number m, maximum degree 
kmax , and spread threshold αth55.

Network Type n m 〈k〉 kmax αth

Dolphins Community 62 159 5.12 12 0.1470

Celegans Metabolic 297 2148 14.46 134 0.0384

Email Social 1133 5451 9.62 71 0.0535

Power Power 4941 6594 2.67 19 0.2583

GrQc Collaboration 5241 14,484 5.52 81 0.0593

PGP Relationship 10,680 24,316 4.55 205 0.0530

Table 5.   The proposed method and five well-known methods.

Method Type Complexity

Degree19 Local O(n)

K-shell22 Global O(n)

WKSDN28 Combined O(n+m)

CHB24 Community O(n2)

MCDE46 Multiple O(n+m)

EHCC (our method) Multiple O(n+m)

https://networkrepository.com/
https://networkrepository.com/
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where nx,ω signifies the number of nodes whose identity is greater than or equal to ω in sequence x. Here, the 
identity a node is the reciprocal of the number of nodes with the same ranking. Obviously, the faster the CDF 
increases, the greater the number of nodes with high identity, and the higher the resolution.

The monotonicity function measures the resolution by calculating the fraction of the number of nodes that 
rank differently42. Let dx be the count of nodes in x that are distinguishable (nodes with different rankings are 
distinguishable). The monotonicity of sequence x is calculated as follows

where ni denotes the number of nodes ranked i in sequence x. Monotonicity(x) = 1 indicates the best mono-
tonicity of the ranking sequence x. Monotonicity(x) = 0 means that the ranking of all nodes is the same and 
monotonicity is the worst in this case.

Experimental results.  Results of accuracy.  Table 6 reports the consistency coefficients (Eq. 6) between 
the different algorithms and the SIR model in the six real networks. Here, the infection rate α = 1.05× αth and 
the recovery rate β = 1 are chosen in the SIR model. The numerical results show that, except for the network 
GrQc, EHCC provides the most accurate results compared to the other five methods. In the network GrQc, 
MCDE performs slightly better than EHCC. It is also noted that EHCCC still outperforms the other four meth-
ods. In the networks Email, Power, and PGP, EHCC has the highest consistency coefficients, followed by MCDE. 
In networks Dolphins and Celegans, EHCC and WKSDN have the best and second best performance respec-
tively. Moreover, we observe that the results of the K-shell method are the worst in all networks.

Results of resolution.  Figure 2 presents the CDF curves (Eq. 7)of different algorithms in six real networks. It 
can be observed that the CCDF of EHCC increases the fastest, which illustrates that the node distribution given 
by EHCC is the best. In network Dolphins, EHCC performs best and WKSDN is second. In networks Celegans 
and Email, the CDF curves of EHCC and WKSDN almost overlap and are followed by that of MCDE. We also 
observe performance of EHCC is the best in network Power. Moreover, EHCC is far superior to other methods 
in networks Power and PGP. Table 7 shows the monotonicity (Eq. 8) of the different methods in the six real 
networks. The monotonicity scores of EHCC in all the networks except network GRQC were higher than 0.99. 
Obviously, the monotonicity of EHCC is the highest and K-shell is the worst, which supports the results in Fig. 2. 
In networks Dolphins, Email, GrQc, and PGP, the best performer is EHCC, followed by WKSDN. In the network 
Celegans, EHCC follows CHB, but still beats the other methods.

Discussion
This paper investigates the identification of important node in complex networks. In previous studies, degree 
centrality and K-shell decomposition were introduced as two benchmark methods for identifying important 
nodes. Degree centrality estimates the influence of a node based on its local characteristics (the number of 
neighbors). Whereas, K-shell evaluates the influence of a node according to its global characteristics (hierarchy 
position). However, a single local or global characteristic fails to effectively estimate the importance of the node. 
As a results, this paper proposes a multi-characteristic approach based on the extended degree and E-shell 
hierarchy decomposition. The extended degree improves the classical degree by introducing the neighbors’ 
degree. E-shell hierarchy decomposition is used to determine nodes’ position through the network’s hierarchical 
structure. Combining these two components (extended degree and position), we define a hybrid characteristic 
centrality (HCC) that can be a comprehensive indicator of the node’s importance. Furthermore, we propose an 
extended version of HCC called EHCC. As the numerical results listed in Tables 6, 7, and Fig. 2, the accuracy 
and resolution of the new approach are superior to those of the five well known approaches within the SIR model 
and the monotonicity function. In addition, it is observed that multi-characteristic methods (EHCC and MCDE) 

(7)CDF(ω) =
nx,ω

n

(8)Monotonocity(x) =

(

1−

∑dx
i=1 ni × (ni − 1)

n× (n− 1)

)2

Table 6.   The consistency coefficients between the node ranking sequences of the different algorithms and the 
ranking sequences of the SIR model in the six real networks, where the infection rate α = 1.05× αth in the 
SIR model. The highest and second-highest values in each network are highlighted in bold and underlined, 
respectively.

Network Degree K-shell WKSDN CHB MCDE EHCC

Dolphins 0.8003 0.7409 0.8145 0.7730 0.7657 0.9037

Celegans 0.8030 0.7621 0.8170 0.7886 0.7664 0.9060

Email 0.7894 0.8131 0.8031 0.7856 0.8246 0.9227

Power 0.5979 0.5575 0.6570 0.7309 0.7485 0.8325

GrQc 0.6835 0.6967 0.7955 0.7590 0.8253 0.8205

PGP 0.6178 0.6545 0.7033 0.7425 0.7657 0.7816
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outperform single-characteristic methods (Degree and K-shell). The work in this paper provides new ideas for 
learning about and analyzing important nodes. However, some challenges still need to be further investigated. 
For example, the relationship between local and global features of nodes has not been well-documented. As a 
result, we will continue to explore new methods in future.

Figure 2.   CDF (The cumulative distribution function) of different algorithms in six real networks. ω is the 
identity of the nodes. (a)–(f) are the networks Dolphins, Celegans, Email, Power, GrQc and PGP respectively.



8

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3197  | https://doi.org/10.1038/s41598-023-30308-5

www.nature.com/scientificreports/

Data availability
All relevant data are available at https://​netwo​rkrep​osito​ry.​com/.

Code availability
The code covering this article can be accessed via Github.
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