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Neural network based formation 
of cognitive maps of semantic 
spaces and the putative emergence 
of abstract concepts
Paul Stoewer 1,2, Achim Schilling 1,3, Andreas Maier 2 & Patrick Krauss 1,2,3,4*

How do we make sense of the input from our sensory organs, and put the perceived information 
into context of our past experiences? The hippocampal-entorhinal complex plays a major role in 
the organization of memory and thought. The formation of and navigation in cognitive maps of 
arbitrary mental spaces via place and grid cells can serve as a representation of memories and 
experiences and their relations to each other. The multi-scale successor representation is proposed 
to be the mathematical principle underlying place and grid cell computations. Here, we present 
a neural network, which learns a cognitive map of a semantic space based on 32 different animal 
species encoded as feature vectors. The neural network successfully learns the similarities between 
different animal species, and constructs a cognitive map of ‘animal space’ based on the principle of 
successor representations with an accuracy of around 30% which is near to the theoretical maximum 
regarding the fact that all animal species have more than one possible successor, i.e. nearest neighbor 
in feature space. Furthermore, a hierarchical structure, i.e. different scales of cognitive maps, can 
be modeled based on multi-scale successor representations. We find that, in fine-grained cognitive 
maps, the animal vectors are evenly distributed in feature space. In contrast, in coarse-grained maps, 
animal vectors are highly clustered according to their biological class, i.e. amphibians, mammals 
and insects. This could be a putative mechanism enabling the emergence of new, abstract semantic 
concepts. Finally, even completely new or incomplete input can be represented by interpolation of the 
representations from the cognitive map with remarkable high accuracy of up to 95%. We conclude that 
the successor representation can serve as a weighted pointer to past memories and experiences, and 
may therefore be a crucial building block to include prior knowledge, and to derive context knowledge 
from novel input. Thus, our model provides a new tool to complement contemporary deep learning 
approaches on the road towards artificial general intelligence.

The hippocampal-entorhinal complex supports spatial navigation and forms cognitive maps of the environment1. 
However, recent research suggests that formation of and navigation on cognitive maps are not limited to physical 
space, but extend to more abstract conceptual, visual or even social spaces2–4. A simplified processing framework 
for the complex can be described as following: highly processed information from our sensory organs are fed 
into the hippocampal complex where the perceived information is put into context, i.e. associated with past 
experiences5. Grid6 and place7 cells enable map like codes, and research suggests that they form cognitive maps89, 
thereby contributing to process memories, emotions and navigation10(cf. Fig. 1).

Furthermore, it is known that the hippocampus plays a crucial role for episodic and declarative memory11,12. 
However, whether memories are directly stored in the hippocampus, and how they are retrieved through the 
hippocampus, is depending on different theories still under discussion. Therefore, the exact role of the hip-
pocampus in the domain of memory is still not fully understood13. According to the multiple trace theory14, 
memories are not directly stored in the hippocampus. Instead, memory content is stored in the cerebral cortex, 
and the hippocampus forms representations of memory traces which can serve as pointers to retrieve memory 
content from the cerebral cortex.
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Furthermore, memory can be represented at different scales along the hippocampal longitude axis, like e.g. 
varying spatial resolutions15. In the context of spatial navigation the different scales serve to navigate with dif-
ferent horizons16. In the context of abstract conceptual spaces, different scales might correspond to different 
degrees of abstraction17. In general, multi-scale cognitive maps enable flexible planning, generalization and 
detailed representation of information18.

Various different computational models try to explain the versatility of the hippocampal-entorhinal com-
plex. One of these candidate models successfully reproduces the firing patterns of place and grid cells in a large 
number of different experimental scenarios, indicating that the hippocampus works like a predictive map based 
on multi-scale successor representations (SR)19–21.

In a previous study, we introduced a neural network based implementation of this frame-work, and demon-
strated its applicability to several spatial navigation and non-spatial linguistic tasks22. Here, we further extended 
our model as shown in Fig. 1. In particular, we build a neural network which learns the SR for a non-spatial 
navigation task based on input feature vectors representing different animal species. To the best of our knowl-
edge, our approach combines, for the first time, the memory trace theory with the cognitive map theory within 
a neural network framework.

Methods
Successor representation.  The developed cognitive map is based on the principle of the successor repre-
sentation (SR). As proposed by Stachenfeld and coworkers the SR can model the firing patterns of the place cells 
in the hippocampus20. The SR was originally designed to build a representation of all possible future rewards V(s) 
that may be achieved from each state s within the state space over time23. The future reward matrix V(s) can be 
calculated for every state in the environment, whereas the parameter t indicates the number of time steps in the 
future that are taken into account, and R(st) is the reward for state s at time t. The discount factor γ [0, 1] reduces 
the relevance of states st that are further in the future relative to the respective initial state s0 (cf. Eq. 1).

Here, E[ ] denotes the expectation value.
The future reward matrix V(s) can be re-factorized using the SR matrix M, which can be computed from the 

state transition probability matrix T of successive states (cf. Eq. 2). In case of supervised learning, the environ-
ments used for our model operate without specific rewards for each state. For the calculation of these SR we set 
R(st) = 1 for every state.

Animal data set.  The construction of the cognitive map is based on a data set which quantifies seven differ-
ent semantic features of 32 animal species (Table 1). The corresponding test data set is shown in Table 2.

The data matrix represents the memory matrix M(m), which our cognitive map is based on. Therefore every 
animal represents a past memory, and reflects a state in our model. To use the matrix for our supervised learning 
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Figure 1.   Simplified sketch model of the hippocampal-entorhinal complex. Highly processed information is 
fed into the system and becomes associated with existing memories and past experiences. Place and grid cells 
enable the formation of map-like codes, and finally cognitive maps. The hippocampal-entorhinal complex also 
supports navigation, emotions, the formation of concepts, inclusion of prior knowledge, and the organization of 
hierarchical representations.
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Table 1.   Training data set used to create the cognitive room. It consists of 32 different animal species, which 
belong to three different taxonomic classes: mammals, insects and amphibians. Each animal is characterized by 
seven semantic features: Height, weight, number of legs, its danger level, the reproduction system, if it has fur 
and if it has lungs.

Name Height (cm) Weight (kg) Number legs
Danger 
(subjective)

Reproduction 
(2 = Birth, 1= 
Eggs)

Fur (2 = No, 1 
= Yes)

Lungs (2 = No, 
1 = Yes)

Elephant 350 6000 4 60 2 2 1

Tiger 100 100 4 100 2 1 1

Lion 120 175 4 100 2 1 1

Dog 70 30 4 20 2 1 1

Rabbit 40 2 4 0 2 1 1

Bear 200 500 4 60 2 1 1

Cow 120 500 4 20 2 1 1

Deer 70 20 4 0 2 1 1

Cat 30 4 4 5 2 1 1

Beaver 60 25 4 5 2 1 1

Giraffe 500 1200 4 40 2 1 1

Ape 70 40 4 30 2 1 1

Horse 120 250 4 10 2 1 1

Camel 125 400 4 10 2 1 1

Goat 70 60 4 5 2 1 1

Sheep 60 20 4 5 2 1 1

Pig 60 200 4 5 2 2 1

Hamster 5 0.2 4 0 2 1 1

Dolphine 200 60 0 10 2 2 1

Raccoon 50 15 4 5 2 1 1

Red Pander 30 5 4 5 2 1 1

Ant 0.1 0.00001 6 1 1 2 2

Bee 1 0.0001 6 5 1 2 2

Cockroach 5 0.005 6 0 1 2 2

Goliathus 8 5 6 0 1 2 2

Giant weta 10 0.035 6 0 1 2 2

Heteropteryx 15 0.05 6 0 1 2 2

Cane toad 15 1 4 0 1 2 1

Fire Salamander 17 0.035 4 0 1 2 1

Frog 4 0.01 4 0 1 2 1

Olm 20 0.02 4 0 1 2 1

Tree Frog 4 0.005 4 0 1 2 1

Table 2.   Test data used to evaluate the interpolation capabilities of the trained neural network. It consists of 6 
different animal species, which belong to three different taxonomic classes: mammals, insects and amphibians. 
Again, each animal is characterized by seven semantic features: Height, weight, number of legs, its danger level, 
the reproduction system, if it has fur and if it has lungs.

Name Height (cm) Weight (kg) Number legs
Danger 
(subjective)

Reproduction 
(2 = Birth, 1 = 
Eggs)

Fur (2 = No, 1 
= Yes)

Lungs (2 = No, 
1 = Yes)

Jaguar 70 70 4 90 2 1 1

Donkey 100 200 4 10 2 1 1

Wild boar 70 180 4 20 2 1 1

Melontha 2.5 0.001 6 0 1 2 2

Dragonfly 6 0.0003 6 0 1 2 2

Wasp 1.5 0.00008 6 20 1 2 2
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approach, we need to sample successor labels for every state, which reflect the similarity between animal species. 
We choose to use the Euclidean distance to calculated the transition probabilities for our state space. Therefore 
animal species sharing similar semantic features have a higher state transition probability.

For the generation of the training and test data set, a random starting state is chosen and also a random probabil-
ity ranging from 0 to 1 is sampled. The input feature vector for the chosen input state is altered by a random range 
of 0–15% to make the training more robust to novel inputs. Based on the sampled probability and the cumulative 
density function of the defined successor representation matrix, a valid successor state is randomly drawn as 
label. 10 % of the generated samples are not used for training, but are instead preserved as validation data set.

Note that, our data set represents no typical classification data set with a single ground truth label for each 
input pattern. Instead, our data set represents a simplified version of an animal taxonomy, where each animal is 
represented as a feature vector and the outputs to be learned by the neural network are the most similar animal 
species to the input animal species. These correspond to the nearest neighbors in the feature vector space. Since 
there are on average three nearest neighbors, the theoretical maximum of the accuracy is approximately 0.3 
instead of 1.0.

Neural network architectures and training parameters.  We set up a three-layered feed forward neu-
ral network. The network consists of 7 input neurons and has 7 neurons in the hidden layer. Both use a ReLU 
activation function. The output layer consists of 32 neurons with a softmax activation function (cf. Fig. 2). The 
networks learns the transition probabilities of the environment, i.e. in our case the memory space. Smaller num-
ber of neurons in the hidden layer did not influence the results in previous experiments22. We trained three 
networks for different discount factors of the successor representation, with γ = (0.3, 0.7, 1.0) and t = 10 . Note 
that, larger discount factors correspond to a larger time horizon, i.e. taking into account more future steps. The 
networks were trained for 500 epochs, with a batch size of 50, 50,000 training samples, using the Adam optimizer 
with a learning rate of 0.001 and categorical cross-entropy as loss function.

Transition probability and successor representation matrix.  After the training process, the networks can predict 
all probabilities for the successor states for any given input feature vector. Concatenating the predictions of all 
known animal states leads to the successor representation matrix of the cognitive room. The output of the net-
work is a vector shaped like a row of the respective environment’s SR matrix and can therefore directly be used 
to fill the SR matrix, respectively.

Interpolating unknown features.  We propose that the successor representation can be used as a pointer to stored 
memories. In our case we have the saved memories of 32 animal species in the memory trace matrix which we 
use for training the network. If incomplete information is fed into the network (unknown values set to −1 in the 
input feature vector), it still outputs predictions for the possible transition probabilities.

Thus, we can use the prediction from the network, and perform a matrix multiplication with our known memory 
matrix in order to derive an interpolated feature vector for the incomplete or unknown input (cf. Fig. 4).

Multi‑dimensional scaling.  A frequently used method to generate low-dimensional embeddings of high-
dimensional data is t-distributed stochastic neighbor embedding (t-SNE)24. However, in t-SNE the resulting 
low-dimensional projections can be highly dependent on the detailed parameter settings25, sensitive to noise, 
and may not preserve, but rather often scramble the global structure in data26,27. In contrast to that, multi-
Dimensional-Scaling (MDS)28–31 is an efficient embedding technique to visualize high-dimensional point clouds 
by projecting them onto a 2-dimensional plane. Furthermore, MDS has the decisive advantage that it is param-
eter-free and all mutual distances of the points are preserved, thereby conserving both the global and local 
structure of the underlying data.

(3)T(s, s′) =
1

||ms −ms′ ||

(4)minterpolated = SRprediction ∗M(ms)

Figure 2.   Architecture of the trained neural network. The network receives a memory trace of animal features 
as input. The size of the input and hidden layer is equal to the number of features in the input. The output layer 
is a softmax layer with 32 neurons, matching the number of memory traces in the training memory matrix. The 
output of the network is the probability of the similarity of the input to the entries of the memory matrix used 
during training.
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When interpreting patterns as points in high-dimensional space and dissimilarities between patterns as 
distances between corresponding points, MDS is an elegant method to visualize high-dimensional data. By 
color-coding each projected data point of a data set according to its label, the representation of the data can be 
visualized as a set of point clusters. For instance, MDS has already been applied to visualize for instance word 
class distributions of different linguistic corpora32, hidden layer representations (embeddings) of artificial neural 
networks33,34, structure and dynamics of recurrent neural networks35–38, or brain activity patterns assessed during 
e.g. pure tone or speech perception32,39, or even during sleep40,41. In all these cases the apparent compactness and 
mutual overlap of the point clusters permits a qualitative assessment of how well the different classes separate.

Code implementation.  The models were coded in Python 3.10. The neural networks were design using 
the Keras42 library with TensorFlow43. Mathematical operations were performed with numpy44 and scikit-learn45 
libraries. Visualizations were realised with matplotlib46.

Results
Learning structures by observing states and their successors.  The models were trained to learn 
the underlying structure of the data set. In particular, we trained three different neural networks using different 
discount factors ( γ = (0.3, 0.7, 1.0) , t = 10 ). The resulting successor representation matrices for each parameter 
setting are very similar to the ground truth (Fig. 3), and the corresponding root-mean-squared errors (RMSE) 
are extremely low: 0.02034 for γ = 0.3 (Fig. 3A), 0.01496 for γ /0.7 (Fig. 3B), and 0.00854 for γ = 1.0 (Fig. 3C).

The accuracy for the model with the discount factor γ = 0.3 increased quickly during the first 100 epochs, 
and then slowly continued to increase until the end of training at epoch 500 where the highest accuracy of 60% 
was achieved (Fig. 4A).

In contrast, the training procedure quickly reached a saturation of the accuracy for the two models with dis-
count factors γ = 0.7 and γ = 1.0 after around 200 epochs, with maximum training and validation accuracies 
of approximately 30% or 35% respectively (Fig. 4B,C).

Scaling of cognitive maps depends on discount factor of successor representation.  The dis-
count factor of the SR is proposed to enable scaling of the cognitive maps, and thus to represent hierarchical 
structures, similar to the different mesh sizes of grid cells along the longitudinal axis of the hippocampus and 
the entorhinal cortex20. Actually, memory representations, such as the internal representation of space, system-
atically vary in scale along the hippocampal long axis15. This scaling has been suggested to be used for targeted 
navigation with different horizons16 or even for encoding information from smaller episodes or single objects to 
more complex concepts17.

In order to visualize the learned SR underlying the cognitive maps, we calculate MDS pojections from the 
SR matrices (Fig. 5). Furthermore, as an estimate for the map scaling, we calculate the general discrimination 
value (GDV, cf. “Methods”) for each map.

We find that the resulting scaling of the cognitive maps depends on the discount factor of the underlying SR 
matrix, and that the GDV correlates with the discount factor. A small discount factor of γ = 0.3 results in a fine-
grained and detailed cognitive map where each object is clearly separated from the others, and similar objects, 
i.e. animal species, are closer together (Fig. 5A). With a GDV of −0.322 , the clustering is relatively low compared 
to the other maps. This cognitive map resembles so called self-organizing maps introduced by Kohonen47, and 
might correspond to word fields proposed in linguistics48.

A discount factor γ = 0.7 results in an intermediate scale cognitive map with a GDV of −0.355 (Fig. 5B).
Finally, a discount factor of γ = 1.0 results in the most course-grained cognitive map. Here, individual animal 

species are no longer clearly separated from each other, but are forming instead representational clusters that 
correspond to taxonomic animal classes, i.e. mammals, insects and amphibians (Fig. 5c). Consequently, these 
map has the lowest GDV of −0.403 , indicating the best clustering. This type of representation generalizing from 
individual objects might correspond to the emergence of cognitive categories, as suggested e.g. in prototype 
semantics49.

Feature inference for incomplete feature vectors.  The neural network which learned the structure 
of the input data successfully can now be used to interact with unseen data. The prediction of the trained neural 
network can be used as weighted pointer to the memorized objects (animal species) in the training data set. The 
vector of a previous unseen animal, the jaguar, is fed into the network for prediction (Fig. 6). Three features 
(danger, fur, lungs) are missing, i.e. are set to −1 . The binary features are predicted well independent from the 
discount factor. The ‘danger’ feature is inferred best for the smallest discount factor γ = 0.3 . Note that, also the 
not missing parameters are changed by the prediction. In general, larger discount factors better infer more gen-
eral features, whereas smaller discount factors better infer more specific features.

We further evaluated the model with our interpolation test data set (cf. Fig. 2). We trained ten models with 
the parameters γ = 1.0 and t = 10 . In Fig. 7 the distances of the predictions of different features in comparison 
to the ground truth is summarized. The percentage is based on the maximum distance of the according feature. 
The evaluation is plotted for the feature vectors, with up to 6 missing entries for every prediction. The distance 
of the prediction to ground truth with no missing entries is in general low ranging from around 5–25% (cor-
responding to 95–75% accuracy), indicating high similarity. However, dissimilarity increases to 40% in case of 
6 missing features. The distance is however different for each feature. While the semantic feature ‘number of 
legs’ is predicted well, the height of the animal is predicted with less accuracy. Furthermore, the variance differs 
for different models. Especially the badly predicted predicted features like ‘height’ and ‘weight’ the variance is 
quite large.
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Figure 3.   Learned successor representation (SR) matrices and corresponding ground truths. Learned SR 
matrices (left column) are very similar to their corresponding ground truth SR matrices (right column). (A) For 
a discount factor of γ = 0.3 , the root-mean-squared error (RMSE) between learned and ground truth SR matrix 
is 0.02034. (B) For γ = 0.7 , the RSME is 0.01496. (C) For γ = 1.0 , the RMSE is 0.00854. Note that, x-axes 
denote index of starting state, y-axes denote index of successor state.
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Discussion
In this study we have demonstrated that arbitrary feature spaces can be learned efficiently on the basis of suc-
cessor representations with neural networks. In particular, the networks learn a representation of the semantic 
feature space of animal species as a cognitive map. The network achieves an accuracy of around 30% which is 
near to the theoretical maximum regarding the fact that all animal species have more than one possible succes-
sor, i.e. nearest neighbor in feature space. Our approach therefore combines the concepts of feature space and 

Figure 4.   Accuracies and loss for different models. Training accuracies (blue) and validation accuracies 
(orange) during training are shown in the left column. The corresponding loss is shown in the right column. 
(A) For a discount factor of γ = 0.3 , the highest accuracy of 60% was achieved. (B) For γ = 0.7 , the accuracy 
saturates after 200 epochs at 30% . (C) For γ = 1.0 , the accuracy saturates after 200 epochs at 35%.
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state space. The emerging representations therefore resemble the proposed general and abstract cognitive maps 
described by Bellmund et al.50.

Our model extends our past work, where we reproduced place cell fire patterns in a spatial navigation and a 
non-spatial linguistic task based on the successor representation22. The innovation of our here presented approach 
is, that we can use the successor representation with arbitrary new input as a weighted pointer to already stored 
input data, i.e. memories, thereby combining the two hallmarks of hippocampal processing: declarative memory 

Figure 5.   Different scalings of cognitive maps. Shown are MDS projections of SR matrices with different 
discount factors γ . (A) For a low discount factor γ = 0.3 , the resulting map is most fine-grained and detailed 
with little clustering (GDV: −0.322 ). (B) A medium discount factor of γ = 0.7 results in an intermediate scale 
with more clustering (GDV: −0.355 ) compared to (A). (C) The largest discount factor γ = 1.0 results in the 
most coarse-grained map. Here, individual animal species are no longer distinguishable, but instead form 
separated, dense clusters possibly enabling the emergence of more abstract concepts in subsequent processing 
stages, i.e. the taxonomic animal classes mammals (blue, purple), insects (orange), and amphibians (yellow) 
(GDV: −0.403 ). Note that, a GDV of −1.0 indicates perfect clustering, whereas a GDV of 0.0 indicates no 
clustering at all. Note that, the axes in the MDS plots are in arbitrary units and have no particular meaning other 
than illustrating the relative positions, i.e. similarities, of all objects.

Figure 6.   Interpolation of the test data set feature vector ‘Jaguar’. Three semantic features (dangerous, having 
a fur and having lungs) are missing, i.e. are replaced by the value −1 . The three networks trained with different 
discount factors γ = (0.3, 0.7, 1.0) infer the missing features. Binary semantic features are inferred well in all 
cases. The ‘dangerous’ feature is badly predicted for large discount factors γ = (0.7, 1.0) . In contrast, in case of 
the lower discount factor γ = 0.3 , it is predicted well.
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and navigation. The successor representation might therefore be a tool which can be used to navigate through 
arbitrary cognitive maps, and find similarities in novel inputs as well as past memories.

We note that, the concept of ‘fuzzy cognitive maps’51 can be seen as a simplified version of our cognitive maps 
based on successor representations. Whereas fuzzy cognitive maps are signed directed graphs, our cognitive maps 
are weighted directed graphs, yet without a sign, as the weights represent probabilities. The potential benefit of 
a combination of both concepts, i.e. introducing negative weights into cognitive maps, could be addressed in a 
future follow-up study.

We note that, obviously, our neural network based model is still a simplification of the actual neural and men-
tal processes underlying memory and cognitive map formation. For instance, whereas we applied the Euclidean 
distance as a proxy for the dis-similarity between different objects, existing behavioral data suggest that similar-
ity in psychological space is best represented by a weighted, nonlinear (exponential) decrease as the number of 
stimulus dimensions increases. This principle was proposed by Shepard52, and has been demonstrated in several 
studies on human generalization behavior53. Thus, including an exponentially decaying distance function in 
our model would make it more realistic. However, we do not expect that this would change our overall results, 
including the successor representations and the cognitive maps that emerge at different scales. Nonetheless, this 
issue should be considered in future modeling studies of cognitive maps.

We found that, the discount factor γ of the successor representation can be used to model cognitive maps 
with different scales, which range in our example from separated dense clusters of taxonomic animal classes to 
individual animal species. The varying grid cell scaling along the long axis of the entorhinal cortex is known to 
be associated with hierarchical memory content15. The discount factor can be used to model this hierarchical 
structure. In our experiment the hierarchical scale could be used to interpolate novel feature data in different 
ways. For example, if we want to retrieve general information, a large discount factor resulting in dense clusters, 
to derive averaged information about the whole cluster, can be used. In contrast, for more detailed information 
regarding a specific state of the cognitive map, a smaller discount factor is useful.

This ability of our model to represent individual exemplars at different scales, and in particular at a coarse-
grained level with high clustering, might enable compression and reduction of complexity for subsequent process-
ing stages. Based on experience, humans learn which features of a given stimuli are more relevant to recognize 
and identify a certain category membership. Thus, these features are likely to have a disproportionate influence 
on any conceptual representation. Thus, instead of memorizing individual exemplars, an extension of our model 
might also account for abstraction, generalization and concept emergence. Actually, ‘Generalized Invariance 
Structure Theory’ and ‘Generalized Representational Information Theory’54 suggest that concepts are formed 
via the detection of relational information between category exemplars encountered in the environment55–60. 
We note that, the presented model does not account for the mentioned features. However, we will address these 
extensions in a future follow-up study.

Since our approach works with a direct feature vector as input, it still requires highly pre-processed data. A 
future outlook for this model could be to include a deep neural network for feature extraction as pre-processing. 
For instance, image analysis is already a well established field for deep neural networks. Our model could be used 
to replace the last output layer of such networks, which usually performs a classification task, and use the feature 
space embeddings61 as input for a subsequent cognitive map. This extended model could enhance learning from 
simple classification to understanding which features are present in which image. This could potential lead to 
more context awareness in neural networks.

Figure 7.   Dissimilarities between interpolated features and ground truth. 10 networks with γ = 1.0 have been 
trained. Dissimilarity is low in case of a no or a single missing feature, and increases with number of missing 
features up to 40% for six missing features. In general, binary semantic features are inferred with better accuracy 
than non-binary semantic features. The variance of the different networks for the features ‘height’ and ‘weight’ 
are highest.



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3644  | https://doi.org/10.1038/s41598-023-30307-6

www.nature.com/scientificreports/

Analogously, one could also use speech62 or word vectors63, or even sentence embeddings [?] as input for our 
model. By that, our neural network based cognitive maps could serve as a putative extension of contemporary 
large language models like, e.g. ChatGPT64,65, or intelligent speech interfaces66.

As recently suggested, the neuroscience of spatial navigation might be of particular importance for artificial 
intelligence research67. A neural network implementation of hippocampal successor representations, especially, 
promises advances in both fields. Following the research agenda of Cognitive Computational Neuroscience pro-
posed by Kriegeskorte et al.68, neuroscience and cognitive science benefit from such models by gaining deeper 
understanding of brain computations34,69,70. Conversely, for artificial intelligence and machine learning, neural 
network-based multi-scale successor representations to learn and process structural knowledge as an example 
of neuroscience-inspired artificial intelligence71–74, might be a further step to overcome the limitations of con-
temporary deep learning73–78 and towards human-level artificial general intelligence.

Data availability
The datasets used and/or analysed during the current study are available on github: https://​github.​com/​Pa-​Sto/​
Cogni​tiveR​oom.
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