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Using machine learning 
to determine the time of exposure 
to infection by a respiratory 
pathogen
Kartikay Sharma 1, Manuchehr Aminian 4, Tomojit Ghosh 1, Xiaoyu Liu 3 & Michael Kirby 1,2*

Given an infected host, estimating the time that has elapsed since initial exposure to the pathogen is 
an important problem in public health. In this paper we use longitudinal gene expression data from 
human challenge studies of viral respiratory illnesses for building predictive models to estimate the 
time elapsed since onset of respiratory infection. We apply sparsity driven machine learning to this 
time-stamped gene expression data to model the time of exposure by a pathogen and subsequent 
infection accompanied by the onset of the host immune response. These predictive models exploit the 
fact that the host gene expression profile evolves in time and its characteristic temporal signature can 
be effectively modeled using a small number of features. Predicting the time of exposure to infection 
to be in first 48 h after exposure produces BSR in the range of 80–90% on sequestered test data. A 
variety of machine learning experiments provide evidence that models developed on one virus can 
be used to predict exposure time for other viruses, e.g., H1N1, H3N2, and HRV. The interferon α/β 
signaling pathway appears to play a central role in keeping time from onset of infection. Successful 
prediction of the time of exposure to a pathogen has potential ramifications for patient treatment and 
contact tracing.

The main objective of this paper is to determine when an infected host was exposed to a respiratory pathogen. 
To accomplish this, we employ machine learning to construct a predictive model that estimates the amount of 
time that has elapsed since the host has been exposed. This data driven approach uses a clinical challenge data set 
comprised of time-stamped gene expression data from 7 experiments across 4 respiratory viruses [two subtypes 
of Influenza A (H1N1, H3N2), Respiratory Syncytial Virus (RSV), and Human Rhinovirus (HRV)]1,2. Individual 
samples have time labels measured from the exact time of exposure to infection, i.e., the recorded time of inocu-
lation with the challenge virus. In addition, each host has subsequent measurements approximately 8 h apart 
with exact intervals being study dependent. The objective of the resulting model is to estimate how long it has 
been since a host was first exposed, i.e., the time of the onset of the immune response, which we refer to as the 
“time of exposure” (ToE) problem. Note that in this study we only consider subjects who tested positive for virus.

Our modeling process begins by determining small sets of time-dependent biomarkers that can be used to 
discriminate between different time points over the course of infection. These biomarker sets discriminate across 
the 36 pairs of nine possible time values (“bins”) at 8 and 24 h of resolution. The resulting gene sets are then used 
to build a family of classifiers that can estimate the ToE. Our results suggest that there is sufficient signal in the 
seven data sets to roughly approximate the time of infection using machine learning algorithms. The relevant 
question of whether this type of analysis may be practical for the treatment of patients requires additional work 
by clinicians and is outside the scope of this investigation.

Common practice for model building requires that the number of datapoints used to build the model should 
be much larger than the number of learnable parameters in the model, otherwise one runs the risk of overfit-
ting. This occurs when a model is built which successfully describes the training data, but fails to make accurate 
predictions on previously unseen data; essentially “memorizing” the training set and failing to have predictive 
power when new data is seen. In the case of image or signal processing, this is not a major issue, since extremely 
large databases of images and audio exist.
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However, when dealing with “omics” data, the analogue of an image is the measurements of all potential 
biomarkers of interest in an individual at a given time pre- or post-infection, and the corresponding “image 
resolution” is the number of biomarkers being measured. In the case of RNA transcriptomics, the number of 
biomarkers is on the order of tens of thousands, while the most focused classification tasks may have tens or 
hundreds of datapoints at most. This poses a fundamental challenge for omics analyses, since experimental 
data is typically expensive to obtain. Hence, much of our work is focused on applying techniques from sparse 
optimization to first learn small collections of discriminatory biomarkers aimed towards analyzing the time of 
exposure to infection, then study the performance of classifiers on test data, where these classifiers now focus 
only on these collections of biomarkers.

Sparsity-promoting machine learning techniques have the potential to identify biomarkers that provide 
insight into the biological processes involved in the host immune response to infection3–5. In particular, one 
may endeavor to identify all of the biomarkers that are discriminatory for a given host immune response using 
Iterative Feature Removal, a repeated application of the sparse removal of top biomarkers until none remain6. This 
approach lends itself well to construction of predictive models, but also provides a potentially comprehensive 
picture that might lead to biological insights, e.g., in Lyme disease7, and influenza8; or more generally, to data 
driven biological pathway analysis9. Of specific interest to us in this investigation is the fact that the discrimina-
tory biomarkers associated with respiratory infections appear to be highly time-dependent8. Further, they are 
potentially capable of predicting severity of symptoms, including host virus shedding, at the earliest stages of 
infection. As we shall show, this infection clock that is inherent in the immune response is effectively captured by 
the biological signal in the gene expression data, and provides a mechanism to determine the time of exposure 
to infection.

Results
The data used in this investigation consist of a collection of seven human challenge studies available via the NCBI 
GEO Accession number GSE73072. In total there are 148 subjects with approximately 20 time points per subject; 
(further details are available in1). Our first goal is to identify time-dependent features (i.e., gene expression via 
microarray probes) predictive of the time of infection to a respiratory virus. Because of variations in the sample 
times in the human challenge studies, the data are binned based on their time labels into one of six 8-h bins in 
the first 48 h post-inoculation, or a 24-h bin between hours 48 through 120 (see Fig. 1).

We approach feature discovery on a per-virus basis, with the guiding question that the host-pathogen dynam-
ics may vary enough between each pathogen to elicit distinct predictive biomarkers. Details of the Experiments 
broken down by training and test sets are shown in Fig. 2. The experiments are arranged in columns, while the 
studies are arranged in rows, ordered by the challenge virus. Each experiment follows a two step process. First, 
we select features using our machine learning techniques on the training data. Second, we evaluate these selected 
features on the test data. Data are included as part of feature selection if marked with stripes and included in 
feature evaluation if marked solid. While feature/biomarker mapping is not an issue because of a common 
microarray platform used throughout, batch effects by study can be seen and are corrected on a per-subject basis.

Experiments 1–5 select features using the four influenza-based studies labeled DEE2-DEE5. Feature testing 
is done using most combinations of the remaining three data sets, which are studies with subjects challenged 
by HRV or RSV. Performance can be seen in the bottom panels of Fig. 2. Two-class performance (Fig. 2, bottom 
left) sees performance on the test data to be between 75 and 95% Balanced Success Rate (BSR). Approaches 

Figure 1.   Time distribution of samples in the data set GSE73072 within the first 5 days after inoculation, 
grouped by study. Categorical labels are assigned as illustrated; either for the nine-class problem (“bin 1” 
through “bin 9”) or the two-class problem (“≤ 48 h’ or “ > 48 h”). For example, bin 1 contains data in the time 
interval (0, 8] h, bin 2 from the interval (8, 16], and so on.
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based on neural networks generally outperform a linear model (Linear SVM) by approximately ten percentage 
points. On the more challenging nine-class problem (Fig. 2, bottom right), to predict the specific label (time 
bin), performance of selected features are 40–75%. Neural network approaches are seen to further outperform a 
multiclass linear model, but all classifiers still greatly outperform a baseline of true random guessing (the baseline 
of 11.1% for a nine-class problem is illustrated).

Experiments 8–14 are similar to Experiments 1–5, but features are selected using HRV data (denoted “Duke” 
and “UVA”), and evaluated using the Influenza studies DEE2-DEE5. In view of the results from Experiments 1–7 
(Experiments 6 and 7 discussed below) we focused on CE for these experiments. Performance for the two-class 
problem is very consistent, with a median BSR of 88%, with the outlier on Experiment 8 (which treats DEE3, 

Figure 2.   Top: Illustration of data involved in each experiment during the feature discovery (striped) and 
feature validation (solid) phases. Experiments 1–5 learn features on influenza data sets. Experiments 6–7 
investigate effects of including RSV data during feature discovery. Experiments 8–14 learn features on HRV data 
sets. Bottom: Summarized classification results for all experiments. Columns are shaded based on experiment 
theme—Influenza features (blue), effect of RSV data (orange), HRV features (green). Results are shown for both 
the nine-class problem (predict the correct time window), and two-class problem (predict time of infection as 
less than or greater than 48 h) in terms of BSR. Neural net classifiers [Centroid-Encoder (CE), Artificial Neural 
Networks (ANN)] generally outperform a multiclass linear classifier Support Vector Machines (SVM), but all 
models have predictive power with the learned features. A baseline BSR for random guessing (red dashed line) is 
shown in each case.
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an H1N1 study, as the test set). Performance for the nine-class problem has a median BSR of 52% across these 
experiments, with the poor outlier performance on Experiment 8 (40%), and positive outlier for Experiment 9 
(74%, test on DEE4). Overall, performance of features was consistent for both influenza or HRV-based features, 
with reduced accuracy for the nine-class problem in applying HRV-based features to other virus test data. See 
Fig. 3 for a visualization of binwise confusion matrices from the classification experiments associated with 
experiments 2–5.

Figure 3.   Visualization of nine-class confusion matrices for experiments 2–5, studying performance of 
influenza features in the time of infection prediction. The height of the bars for each bin corresponds to 
the number of samples classified in that bin, normalized to the total number of samples in that bin for that 
experiment (number of samples in each bin shown on right). A diagonally dominant pattern illustrates most test 
samples were correctly classified, and is synonymous with higher BSR values. Note that misclassifications (off-
diagonals) typically are highest in adjacent time bins; demonstrating continuity in the process.
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Finally, Experiments 6 and 7 investigate how the feature selection process may depend on exclusion or inclu-
sion of the same viral pathogen during the feature selection. Experiment 6 includes all non-RSV studies as part 
of the feature selection, and studies performance with the DEE2 study. Experiment 7 repeats this, but includes 
DEE1, the sole RSV study, as part of the feature selection process, with an understanding that the pathogen 
dynamics with RSV may be somewhat distinct from influenza or HRV. One might expect to see performance 
decrease as a result of the inclusion of this data, but no conclusive trend can be seen from the results. All classifiers 
see a 1 or 2 percentage point increase with the inclusion of DEE1 in the feature selection, but the performance 
for the nine-class problem is mixed.

Analysis of features.  We studied the biological relevance of features by comparing against the GSEA (Gene 
Set Enrichment Analysis) MSigDB (Molecular Signatures database)10,11, which includes canonical pathways 
from KEGG, REACTOME, and BIOCARTA databases (referred to as “C2: curated gene sets”), as well as gene 
sets identified on other gene expression data sets (“C7: immunologic signature gene sets”). While sophisticated 
pathway-based analyses are available via proprietary software which can give deeper insight in to underlying 
biological processes, our purpose here is to simply highlight pathways identified as important by our data driven 
analysis to lend credence to the machine learning algorithms.

Table 1 summarizes recurring gene sets from MSigDB which highly overlap with our feature selection process. 
While the feature selection process itself works at the level of individual biomarkers (microarray probes), the table 
shows the highest scoring pathways (see “Methods” section). Gene sets which are scored highly in more time 
bins in this table have significant overlap with feature-sets that best describe the time evolution of the immune 
system. This is done by time bin for the nine-class problem, so a maximum of 9 is possible for the number of 
time bins. Further details are available in the “Methods” section, and Supplementary Material.

We observe several interferon-associated pathways showing a major presence as the result of the feature 
extraction process. Interferon α/β signaling and interferon γ signaling pathways, as well as the IL6 pathway, 
appear to play a major role throughout. Several gene sets associated with the MSigDB “C7: immunologic signature 
gene sets” are present, corresponding to studies GSE6269—a study of pediatric patients with Influenza A12, and 
GSE34205—a similar study of children hospitalized with acute RSV or influenza infections13. This suggests an 
interesting connection to be explored in future work.

Discussion
Controlling respiratory infections and their spread is clearly a significant global health challenge. The death toll 
resulting from all respiratory including influenza, HRV and pneumonia has been estimated to be approximately 
5 million people per year with such illnesses being identified as the leading cause of death in children14. Models 
have determined that, on average, some 450,000 deaths can be attributed to influenza each year15. These num-
bers reflect the average seasonal threat. The worst case scenarios associated with global pandemics are extreme. 
It has been reported that the 1918 Spanish flu pandemic had over 40 million deaths, or approximately 1 in 50 
people worldwide16. If a modern pandemic had the same mortality rate the end result would be a staggering 
150 million deaths.

Antiviral drugs have emerged as a powerful tool for the early treatment of viral infections, and are particu-
larly effective for respiratory infections such as influenza17,18. Clinical evidence suggests that the administra-
tion of antivirals is most effective during the first 48 h post infection with influenza19–21. While rapid tests 
administered in the clinic to test for influenza have high positive predictive value22 they do not determine the 

Table 1.   Top GSEA gene sets associated with our feature sets. The number of time bins, designated “ # bins” 
represents the frequency that the gene set appeared in the “top ten” gene sets for a given time bin. Gene sets 
present in fewer than 2 time bins are omitted.

Gene set name # bins

REACTOME_INTERFERON_ALPHA_BETA_SIGNALING 9

BIOCARTA_AHSP_PATHWAY​ 7

REACTOME_INTERFERON_GAMMA_SIGNALING 6

GSE6269_HEALTHY_VS_FLU_INF_PBMC_DN 6

GSE6269_FLU_VS_STREP_PNEUMO_INF_PBMC_UP 6

REACTOME_IL_6_SIGNALING 5

GSE34205_HEALTHY_VS_FLU_INF_INFANT_PBMC_DN 4

REACTOME_METABOLISM_OF_PORPHYRINS 4

REACTOME_NFKB_ACTIVATION_THROUGH_FADD_RIP1_PATH. 3

BIOCARTA_NEUROTRANSMITTERS_PATHWAY​ 3

REACTOME_REGULATION_OF_IFNG_SIGNALING 2

BIOCARTA_DNAFRAGMENT_PATHWAY​ 2

REACTOME_EXTRINSIC_PATHWAY_FOR_APOPTOSIS 2

BIOCARTA_TCAPOPTOSIS_PATHWAY​ 2

KEGG_RENIN_ANGIOTENSIN_SYSTEM 2



6

Vol:.(1234567890)

Scientific Reports |         (2023) 13:5340  | https://doi.org/10.1038/s41598-023-30306-7

www.nature.com/scientificreports/

actual time-of-infection to the pathogen. Hence, the effectiveness of the administration of antivirals could be 
enhanced if the ToE could be accurately estimated in the clinic. The results of this paper suggest the possibility 
of a predictive model that can be administered by a clinician to determine the amount of time that has elapsed 
since exposure to the respiratory virus. This could result in considerable savings, and in particular help mitigate 
seasonal shortages in the supply of antivirals.

Our preliminary results here are encouraging with BSR values at 80–90% on sequestered test samples. Cur-
rently, our best results, when predicting to within 8 h, range from 50 to 80% using CE, with the highest perfor-
mance when validating features extracted on influenza data (experiments 1–5; see 2). The results here affirm it 
is possible to chart out the progress of immune markers and map them back to the time elapsed since exposure 
with good success. It is an open research question if these classification rates are limited by actual temporal 
resolution of biological processes, or inherent noise limitations in biological data. These issues may be resolved 
in the future as additional data sets become available.

A dividend of this investigation is the identification of a collection of biomarkers that capture the time evolv-
ing response of the immune system to infectious disease. Further analysis using systems biology approaches 
is essential to elucidate biological processes associated with ToE and the role of the identified biomarkers and 
pathways. This could potentially result in the development of targeted panels that could be deployed for pan-
demic prevention.

In this study we have not explored the subjects who were asymptomatic after inoculation. It will be interest-
ing to do this, and attempt to determine how the host immune response for these individuals provides insight 
into their resistance to infection.

Methodology
In this section we describe the clinical data set, data preprocessing, feature selection process, classifiers used, 
and design for the machine learning experiments.

Experimental setup.  The data we study is a collection of seven clinical studies available via the NCBI Gene 
Expression Omnibus, Series GSE73072. The details of these studies can be found in1, but we briefly summarize 
here and in Fig. 1.

Each of the seven studies enrolled individuals to be infected with one of four viruses associated with a com-
mon respiratory infection. Studies DEE2-DEE5 challenged participants with H1N1 or H3N2. Studies “Duke” 
and “UVA” challenged participants with HRV, while ”DEE1” challenged individuals with RSV.

In all cases, individuals had blood samples taken at regular intervals every 4–12 h both prior to and after 
infection; see Fig. 1 for details. Specific time points are measured as hours since infection and vary by study. In 
total, 148 human subjects were involved with approximately 20 sampled time points per person. Blood samples 
were run through undirected microarray assays. CEL data files available via GEO were read and processed using 
RMA (Robust Multi-array Average) normalization through use of several Bioconductor packages23 producing 
expression values across 22,277 microarray probes.

To address the time of infection question, we separate the training and test samples into 9 bins in time post-
inoculation, each with a categorical label; see Fig. 1. The first six categories correspond to disjoint 8-h intervals 
in the first 2 days after inoculation, and the last three categories are disjoint 24-h intervals from hours 48 to 
120 h. In addition to this 9-class classification problem, we also studied a “relaxed” binary prediction problem 
of whether a subject belongs to the early phase of infection (time of inoculation ≤ 48 h) or later phase (time of 
infection > 48 h). Results for this binary classification are inferred from the 9-class problem, i.e., if a classified 
label is associated to a time in the first 2 days, it is considered correctly labeled.

After the data is processed, we apply the following general pipeline for each of the 14 experiments enumer-
ated in Fig. 2 (top panel): 

1.	 Partition the data into training and testing sets based on the classification experiment.
2.	 Normalize the data to correct for batch effects seen between subjects (e.g., using the linear batch normaliza-

tion routine in the limma package24).
3.	 Identify comprehensive sets of predictive features using the Iterative Feature Removal (IFR) approach6, which 

aims to extract all discriminatory features in high-dimensional data with repeated application of sparse linear 
classifiers such as Sparse Support Vector Machines (SSVM).

4.	 Identify network architectures and other hyperparameters for Artificial Neural Networks (ANN) and Cen-
troid Encoder (CE) by utilizing a five-fold cross-validation experiment on the training data.

5.	 Evaluate the features identified from the step 3 on the test data. This is done by training and evaluating a new 
model using the selected features with a leave-one-subject-out cross validation scheme on the test study. 
The metric used for evaluation is BSR; throughout this study we utilize BSR as a balanced representation of 
performance accounting for imbalanced class sizes while being easy to interpret.

Feature selection.  For each of the training sets illustrated in Fig. 2 (top panel; stripes), features are selected 
using the IFR algorithm, with an SSVM classifier. This is done separately for all pairwise combinations of cat-
egorical labels (time bins); a 9-class experiment leads to 9-choose-2 = 36 pairwise combinations. So, for each of 
these 36 combinations of time bins, features are selected using the following steps.

First, the input data to IFR algorithm is partitioned into training and validation set. Next, sets of features that 
produce high accuracy on the validation set are selected iteratively. In each iteration, features that have previously 
been selected are masked out, so that they’re not used again. The feature selection is halted once the predictive 
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rates on the validation data drops below a specified threshold. This results in one feature-set for a particular 
training-validation set of the input data.

Next, more training-validation partitions are repeatedly sampled, and the feature selection, as described 
above, is repeated for each partition-set; this results in a different feature-set for each new partition-set. Then, 
these different feature-sets are combined by applying a set union operation and the frequency of each individual 
feature is tracked if they are discovered in multiple feature-sets. The feature frequency is used to rank the features; 
the more a particular feature is discovered, the more important it is.

The size of this combined feature-set, although about 5–20% of the original feature-set size, is still often large 
for classification, so a last step we reduce the size of this feature-set. This is done by performing a grid-search 
using a linear SVM (without sparsity penalty) on the training data, taking the top n features, ranked by frequency, 
which maximize the average of true positive rates on every class, or BSR. Once the features have been selected, 
we perform a more detailed leave-one-subject-out classification for the experiments described in the Results 
and visualized in Fig. 2 using the classifiers described in “Methods” section.

Scoring of gene sets.  Feature selection produced 36 distinct feature-sets, coming from all distinct choices 
of two time bins from the nine labels possible. To address the question of commonality or importance of features 
selected on a time bin for a specific pathway, we implemented a heuristic scoring system. For a fixed time bin 
(say, bin1) and a fixed feature-set (say, bin1_vs_bin2; quantities summarized in Table 2) the associated collection 
of features was referenced against the GSEA MSigDB. This database includes both canonical pathways and gene 
sets as the result of data mining—we refer to anything in this collection generically as a “gene set.” A score for 
each MSigDB gene set was assigned for a given feature-set (bin1_vs_bin2) based on the ratio of features in the 
feature-set which appear in the gene set. For instance, a score of 0.5 for hypothetical GENE_SET_A for feature-
set bin1_vs_bin2 represents the fact that 50% of the features in GENE_SET_A are present in bin1_vs_bin2.

A score for pathway on a time bin by itself was defined as the sum of the scores for that pathway on all feature-
sets related to it. Continuing the example, a score for GENE_SET_A on bin1 would be the sum of the scores for 
GENE_SET_A for feature-set bin1_vs_bin2, bin1_vs_bin3, all the way up to bin1_vs_bin9, with equal weighting.

Certainly, there are several subtle statistical and combinatorial questions relating to this procedure. Direct 
comparison of pathways and gene sets is challenging due their overlapping nature (features may belong to 
multiple gene sets). The number of features associated with a gene set can vary anywhere from under 10, to 
over 1000 and may complicate a scoring system based on percentage overlap, such as ours. Attempting to use a 
mathematically or statistically rigorous procedure to account for these, and other potential factors is a worthy 
exercise, but we believe our heuristic is sufficient for an explainable high-level summary of the composition of 
the feature-sets found.

Classification.  In this section we describe the classifiers and how they are applied for the classification task. 
We also describe how the feature-sets are adapted to different classifiers.

After feature selection, we evaluate the features on test sets based on successful classification in the nine time 
bins. For each experiment shown in Fig. 1, we use the feature-sets extracted on its training set and evaluate the 
models using leave-one-subject-out cross validation on the test set. Each experiment is repeated 25 times to 
capture variability. For the binary classifiers—SSVM and linear SVM—we used a multiclass method, with each 
of its 

(9
2

)

 pairwise models using respective feature-sets. On the other hand, we used a single classification model 
for ANN and CE because these models can handle multiple classes. The feature-set for these models are created 
by taking a union of 

(9
2

)

= 36 pairwise feature-sets.

Metrics.  Balanced Success Rate (BSR) Throughout the Results section, we report predictive power in terms 
of BSR. This is a simple average of true positive rates for each of the categories. The BSR serves as a simple, 
interpretable metric especially when working with imbalanced data sets and gives a holistic view of classifica-
tion performance that easily generalizes to multiclass problems. For example, if true positive rates in a 3-class 

Table 2.   Number of features selected for each pair-wise time bin experiment using the six studies.

Bins No. features Bins No. features Bins No. features

Bin1 vs Bin2 65 Bin2 vs Bin7 60 Bin4 vs Bin8 170

Bin1 vs Bin3 190 Bin2 vs Bin8 90 Bin4 vs Bin9 135

Bin1 vs Bin4 200 Bin2 vs Bin9 85 Bin5 vs Bin6 65

Bin1 vs Bin5 40 Bin3 vs Bin4 160 Bin5 vs Bin7 120

Bin1 vs Bin6 170 Bin3 vs Bin5 160 Bin5 vs Bin8 200

Bin1 vs Bin7 30 Bin3 vs Bin6 165 Bin5 vs Bin9 85

Bin1 vs Bin8 75 Bin3 vs Bin7 110 Bin6 vs Bin7 95

Bin1 vs Bin9 55 Bin3 vs Bin8 30 Bin6 vs Bin8 155

Bin2 vs Bin3 130 Bin3 vs Bin9 140 Bin6 vs Bin9 115

Bin2 vs Bin4 120 Bin4 vs Bin5 90 Bin7 vs Bin8 105

Bin2 vs Bin5 150 Bin4 vs Bin6 150 Bin7 vs Bin9 105

Bin2 vs Bin6 195 Bin4 vs Bin7 175 Bin8 vs Bin9 150
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problem were TPR1 = 95% , TPR2 = 50% , and TPR3 = 65% , the BSR for the multiclass problem would be 
(TPR1 + TPR2 + TPR3)/3 = 70%.

Multiclass classification using binary classifiers.  We implement a pairwise model (or “one-vs-one” model) for 
training and classification to extend the binary classifiers described below (ANN and CE do not require these). 
For a data set with c unique classes, c-choose-2 models are built using the relevant subsets of the data. Learned 
model parameters and features selected for each model are stored and later used when discriminatory features 
are needed in the test phase.

After training, classification is done by a simple voting scheme: a new sample is classified by all c-choose-2 
classifiers and assigned the label that had the plurality of the vote. If a tie occurs, the class is decided by an 
unbiased coin flip between the winning labels. In a nine-class problem, this corresponds to 36 classifiers and 
feature-sets being selected.

Linear SVM For a plain linear SVM model, the implementation in the scikit-learn package in Python was 
used25. While scikit-learn also has built-in support to extend this binary classifier to multiclass problems, either 
by one-vs-one or one-vs-all approaches, we only use it for binary classification problems, or for binary sub-
problems of a one-vs-one scheme for a multiclass problem. The optimization problem was introduced by26 and 
requires the solution to

where yi represent class labels assigned to ±1 , xi represent vector samples, w represents the weight vector and 
b represents a bias (a scalar shift). This approach has seen widespread use and success in biological feature 
extraction27,28.

Sparse SVM (SSVM) The SSVM problem replaces the 2-norm in the objective of equation 1 with a 1-norm, 
which is understood to promote sparsity (many zero coefficients) in the coefficient vector w . This allows one to 
ignore those features and is our primary tool for feature selection when coupled with Iterated Feature Removal6. 
Arbitrary p-norm SVM were introduced in29 and ℓ1-norm sparse SVM were further developed for feature selec-
tion in6,30,31.

Multiclass classifiers.  After a standard one-hot encoding scheme, inherently multiclass methods (here: neu-
ral networks) do not need to be adapted to handle a multiclass problem as with linear methods, nor is there 
a straightforward way to encode the use of time-dependent features in passing new data forward through the 
neural network; this would be begging the (time of infection) question. Instead, for these methods, we simply 
take the union of all “pairwise” features built to classify pairs of time bins, then allow the multiclass algorithm to 
“learn” any necessary relationships internally. The specifics of the neural networks are described below.

Artificial Neural Networks (ANN) We apply a standard feed-forward neural network trained to learn the 
labels of the training data. In all the classification tasks, we used two hidden layers with 500 ReLU activation in 
each layer. We used the whole training set to calculate the gradient of the loss function (Cross-entropy) while 
updating the network parameters using Scaled Conjugate Gradient Descent (SCG); see32.

Centroid-Encoder (CE) This is a variation of an autoencoder which can be used for both visualization and 
classification purposes. Consider a data set with N samples and M classes. The classes denoted Cj , j = 1, . . . ,M 
where the indices of the data associated with class Cj are denoted Ij . We define centroid of each class as 
cj =

1
|Cj |

∑

i∈Ij
xi where |Cj| is the cardinality of class Cj . Unlike autoencoder, which maps each point xi to itself, 

CE will map each point xi to its class centroid cj by minimizing the following cost function over the parameter 
set θ:

The mapping f is composed of a dimension reducing mapping g (encoder) followed by a dimension increasing 
reconstruction mapping h (decoder). The output of the encoder is used as a supervised visualization tool33, and 
attaching another layer to map to the one-hot encoded labels and further training by fine-tuning provides a clas-
sifier. For further details, see34. In all of the classification tasks, we used three hidden layers ( 500 → 100 → 500 ) 
with ReLU activation for centroid mapping. After that we attached a classification layer with one-hot-encoding to 
the encoder ( 500 → 100 ) to learn the class label of the samples. The model parameters were updated using SCG.

Data availability
The data used in this investigation consist of a collection of seven human challenge studies available via the NCBI 
GEO Acces​sion numbe​r GSE73​072.
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