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Zebrafish Larvae Position Tracker 
(Z‑LaP Tracker): a high‑throughput 
deep‑learning behavioral approach 
for the identification of calcineurin 
pathway‑modulating drugs using 
zebrafish larvae
Sayali V. Gore 1*, Rohit Kakodkar 2, Thaís Del Rosario Hernández 1, Sara Tucker Edmister 1 & 
Robbert Creton 1

Brain function studies greatly depend on quantification and analysis of behavior. While behavior 
can be imaged efficiently, the quantification of specific aspects of behavior is labor-intensive and 
may introduce individual biases. Recent advances in deep learning and artificial intelligence-based 
tools have made it possible to precisely track individual features of freely moving animals in diverse 
environments without any markers. In the current study, we developed Zebrafish Larvae Position 
Tracker (Z-LaP Tracker), a modification of the markerless position estimation software DeepLabCut, to 
quantify zebrafish larval behavior in a high-throughput 384-well setting. We utilized the high-contrast 
features of our model animal, zebrafish larvae, including the eyes and the yolk for our behavioral 
analysis. Using this experimental setup, we quantified relevant behaviors with similar accuracy to 
the analysis performed by humans. The changes in behavior were organized in behavioral profiles, 
which were examined by K-means and hierarchical cluster analysis. Calcineurin inhibitors exhibited 
a distinct behavioral profile characterized by increased activity, acoustic hyperexcitability, reduced 
visually guided behaviors, and reduced habituation to acoustic stimuli. The developed methodologies 
were used to identify ‘CsA-type’ drugs that might be promising candidates for the prevention and 
treatment of neurological disorders.

Zebrafish larvae are rapidly emerging as an excellent model for performing high-throughput drug screening 
to identify drugs important in normal and/or pathological behaviors1 and model complex brain disorders2–4. 
Zebrafish larvae are small and can be studied in large numbers, making them a suitable model for conducting 
high-throughput screens. Furthermore, a fully characterized genome, availability of genetic mutant lines, and 
ease of molecular manipulations make zebrafish well suited for studying mechanisms underlying neurological 
disorders5. Zebrafish, from very early developmental stages, show a robust range of complex behaviors—from 
foraging to learning6, similar to those behaviors observed in various mammalian species, suggesting evolution-
ary conserved mechanisms underlying these behaviors7. While various molecular and genetic tools are well 
established in zebrafish larvae8–10, the computational tools for quantifying complex behaviors are still limited 
and less applicable to high-throughput behavioral screens11,12.

Studying animal behavior is a crucial element to understand neural function13,14. In particular, accurate 
quantification of behavior is an important factor for understanding complex behaviors. Recent advances in high-
quality video cameras and the presence of commercially available imaging equipment to track an animal’s path of 
movement and measure specific behaviors have greatly improved our understanding of animal behaviors15. Most 
of the commercially available video tracking solutions are expensive, less flexible in incorporating quantification 
of multiple behaviors, and may introduce more variability due to manual post-imaging analysis16. Most of the 
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currently available methods of behavioral analysis rely on the tracking of animals using a marker or background 
subtraction image tracing16. The requirement of markers for tracking animals is often invasive, cumbersome, and 
only applicable to certain animal models while background subtraction image tracking methods are sensitive 
to diverse background settings17. There is a need to develop machine learning-based deep-learning methods to 
define and quantify subtle behaviors that might be missed by the human eye18. Present-day advances in computer 
vision have greatly influenced how animal behavior can be quantified and opened new avenues for developing 
deep-learning approaches to study behavior17.

In the current study, using DeepLabCut modification, we developed a novel deep-learning approach—Z-LaP 
Tracker, to study a range of behaviors in a high-throughput 384-well format. The developed methodologies were 
used for the analysis of two prior datasets with images of zebrafish larval behavior after exposure to the calcineu-
rin inhibitors cyclosporine and tacrolimus19 and after exposure to 190 FDA-approved drugs20.

Calcineurin is a serine/threonine phosphatase known to act in various organ systems, including the nerv-
ous system. In the brain, it is involved in modulating synaptic plasticity, learning, and memory21–23. Increased 
calcineurin signaling in the brain is associated with the onset of neurological disorders and calcineurin inhibi-
tors are considered potential therapeutics for treating these disorders24–28. Particularly in Alzheimer’s disease, it 
is hypothesized that a prolonged increase in calcium levels leads to the activation of calcineurin which in turn 
activates various signaling pathways downstream, resulting in the onset of Alzheimer’s disease29–31. This is the 
reason why calcineurin inhibitors are considered potential drugs for treating Alzheimer’s disease. Supporting 
the role of the calcineurin signaling pathway in Alzheimer’s disease is a human population study of transplant 
patients who were treated chronically with calcineurin inhibitors (like cyclosporin and tacrolimus) showed a 
significantly reduced incidence of AD/dementia in comparison to the general population32. The current study 
utilized the FDA-approved Tocris library to identify compounds showing behavioral profiles like calcineurin 
inhibitors with the final aim of repurposing these drugs for treating Alzheimer’s disease.

Results
Development of an automated analysis pipeline for zebrafish behavior.  In the current analysis 
paper, we developed Z-LaP Tracker to quantify zebrafish larval behaviors. Z-LaP Tracker uses modifications of 
the DeepLabCut framework to monitor zebrafish behavior throughout the experiment phase. DeepLabCut is a 
markerless pose estimation method based on transfer learning with deep neural networks17. It provides a graphi-
cal user interface for researchers with minimal programming experience to label key features in a video frame, 
train a model based on those frames via transfer learning and extract similar features from new experiments. 
The method has previously been used for pose estimation of videos of adult zebrafish, rodent models, and other 
animal models17. In Z-LaP Tracker, we developed and introduced an additional preprocessing layer using tradi-
tional computer vision methods to segregate individual zebrafish on top of the DeepLabCut layer. The necessity 
of a preprocessing layer arises from the need to detect multiple zebrafish in the same frame. While DeepLabCut 
does provide multi-animal pose estimation, given that in our experimental setup the zebrafish do not interact 
with each other it becomes more accurate and reliable to segregate the individual wells before using DeepLabCut 
to predict zebrafish behaviors.

The general workflow is shown in Fig. 1. The first step of our DeepLabCut model training pipeline detects 
and crops individual wells from images. To achieve this, we utilized the Hough circles function using the Hough 
Gradient detection method as implemented in OpenCV. For our behavioral images, we used the minimum dis-
tance between wells to be at least 150 pixels. The minimum radius and maximum radius were used as runtime 
parameters for the detection procedure. This implementation gives the Hough Circle routine sufficient freedom 
to account for any impurities on the plate or any lighting issues when conducting our experiments. Our exact 
implementation can be found in the source code provided on the GitHub repository (https://​github.​com/​brown-​
ccv/​Autom​ated-​Analy​sis-​of-​Zebra​fish). Having detected the wells as a center coordinate and a radius we crop 
the image into individual wells (Fig. 1).

To train a deep learning model using DeepLabCut we first determined the zebrafish features that can be used 
for behavioral analysis. In this regard, there are 2 considerations—(1) the features can be utilized to extrapolate 
various behaviors utilized in this study, and (2) a trained DeepLabCut model is reliably able to detect these 
features on previously unseen images. As such, we chose the eyes (left and right) and the yolk of the zebrafish 
as the features we use for behavioral analysis—we have found that the large contrast between these features and 
the background makes detection much easier compared to other body parts, for example, the tip of the tail. To 
train the model we manually annotate the yolk and 2 eyes, using the DeepLabCut interface, in 100 randomly 
chosen wells and train for ~ 200,000 iterations using the annotated images as training data. Upon completion of 
the first training round, we bootstrap the model with additional 2 rounds of training (with ~ 50,000 iterations 
each) by refining labels from the previous round. The model is then exported to a protobuf format to be used in 
subsequent experimental analysis.

Before we utilized the trained model for behavioral analysis, we validated the model by checking its accuracy 
against a validation dataset. The validation dataset consisted of 436 randomly chosen manually labeled previously 
unseen (a dataset different from the training dataset) images. Figure 2 shows a qualitative and quantitative vali-
dation of the model. The Z-LaP tracker can detect specified features (eyes and yolk) across diverse backgrounds 
(Fig. 2Aa–e). The model accurately predicts the eyes and yolk of zebrafish images with a prediction error of a 
few (approximately 3–4 pixels) pixels (Fig. 2B). The prediction probabilities for detecting eyes and yolks are high 
(Fig. 2C) with Z-LaP Tracker. However, the inaccuracies arise when either the image is a blank (black) image, or 
when the 3 features are not easily distinguishable. Quantitatively this results in a noisy distribution of data. To 
mitigate these errors, we do not use measurements with a prediction probability (left eye, right eye, and yolk) 
of < 0.5 for subsequent calculations of behavior.

https://github.com/brown-ccv/Automated-Analysis-of-Zebrafish
https://github.com/brown-ccv/Automated-Analysis-of-Zebrafish
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Lastly, we utilized this model throughout this study to detect zebrafish locations and extrapolate their behav-
iors. Note that the preprocessing of the experimental images for segregating the wells is identical to the train-
ing and inference process. This gives us the ability to reuse code (modules) within the training and inference 
pipelines. Additionally, model training is done on a single dataset and is sufficiently accurate in subsequent 
experiments as long as the experimental setup is identical as shown by our validation results.

Quantification of various novel behavioral parameters for creating a behavioral profile of vari-
ous drugs.  We used the Z-LaP tracker to examine two prior data sets with images of 5-day-old zebrafish 
larvae. The first data set shows the behavior of zebrafish larvae after exposure to the calcineurin inhibitors cyclo-
sporin (CsA) and tacrolimus19. The second data set shows the behavior of zebrafish larvae after exposure to 190 

Figure 1.   Flowchart for automated behavioral analysis: We implement traditional computer vision methods to 
segregate individual images, which are then fed into DeepLabCut for training (blue box). The model signature is 
stored as a protobuf format, which can be utilized for future inference. This pipeline is implemented as python 
scripts running inside docker containers.
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FDA-approved drugs20. In both studies, zebrafish larvae (5 dpf) were exposed to various drugs and imaged in 
four 96-well plates for quantification and analysis of behavior. Using PowerPoint, larvae were subjected to vari-
ous visual (moving lines) and acoustic stimuli (20 and 1-s interval sound), and images were acquired every 6 s. 
These images were then analyzed using the automated analysis pipeline optimized for obtaining the position of 
each larva during the 3-h trial. We then used Excel templates (provided as a supplement) to quantify activity and 
location. For data processing and extraction of relevant behavioral parameters, we divided 3-h recordings into 
eighteen 10-min segments. We specifically extracted 25 behavioral parameters to create a behavioral profile of 
various drugs in zebrafish larvae (Table 1). Zebrafish larvae serve as a valid model for high-throughput behavioral 
analysis and are known to show a wide range of complex behaviors7,12,19,20,33,34. Using the DeepLabCut pipeline, 
we were able to quantify novel behaviors and subtle changes in them, providing a framework for developing an 
in-depth behavioral profile for zebrafish larvae exposed to various drugs. Compared to our previous study19,20, 
the current work introduced 15 new behavioral variables. These novel behaviors include measurements of swim 
speed, larval location in the outer area or edge of the wells, clockwise orientation, upward orientation, and turn 
angle during various periods of the imaging session (Table 1). The average values of 25 behaviors for all the com-
pounds (calcineurin inhibitors and FDA-approved library) are provided in Supplementary file 1. In comparison 
to the previous reports19,20, the 15 newly added behavioral parameters were specifically helpful to characterize 
the swimming preference, space utilization, orientation, and turning angles of zebrafish larvae across various 
stimuli. Addition of these new behaviors aided significantly in the study of the components of complex behav-
iors observed in larvae exposed to various drugs. For example, one of the newly added behavioral parameters, 
Sc-1 h describes slow/short swimming movements during the first hour and proved to be significantly higher 
for 10 μM CsA in addition to the activity during the first hour. This suggests that 10 μM CsA-exposed larvae, in 
general, show overall increased movement but also exhibit small subtle changes in activity. Similarly, other newly 
added behavioral variables significantly enhance the sensitivity and quality of behavioral profiles, aiding in the 
identification of novel drugs showing complex behaviors like CsA.

Principal components analysis of behavioral parameters.  We performed principal components 
analysis on 25 (described in the previous section) behavioral parameters to extract information about the cor-
relation between multivariate variables (Fig.  3). This allowed us to identify a few key principal components 
(dimensions) explaining most of the variation in the dataset. The principal component analysis of the dataset 
identified 22 principal dimensions explaining 100 percent of the variation in the dataset. The scree plot (Fig. 3A) 
shows 10 principal dimensions accounting for 86.74% of the variance. The correlation plot (Fig. 3B) shows the 
correlation of each variable for the first 5 dimensions of the principal components. To analyze the contribution 
of each variable towards the variation in our dataset, we used principal component 1 (Dim1) which explained 
26.3% variation, and principal component 2 (Dim2) explaining 19% of the variation (Fig. 3C). The variable cor-
relation PCA plot represents the relationship between variables and their contributions to the selected principal 
components. The variables that are away from the origin have a higher impact on the factor map. For example, 
1-h activity and Or-RGB have values near 1 on X- and Y-axes, respectively. The positively correlated variables 
are grouped on the PCA plot. All the activity parameters clump together on the Dim1 axis while the orientation 

Figure 2.   Validation of model: (A) The trained DeepLabCut model can detect the left eye (orange dot), right 
eye (blue dot), and yolk (green dot) across diverse backgrounds such as blank (Aa), red moving lines (Ab), green 
moving lines (Ac), blue moving lines (Ad) and fast red moving lines (Ae). (B) Euclidean distances between 
predicted and manually labeled features are described as histograms. The pixel difference between the predicted 
and manual labeling shifts towards lower pixel difference values after training the model. (C) The detection 
probability of a trained model to accurately detect the left eye (orange bar), right eye (blue bar), and eye (green 
bar) are shown. The model detects each of the features with very high probability values (= 1).
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parameters group together on the Dim2 axis. The negatively correlated variables are grouped in the opposite 
quadrants on the PCA plot. For example, the orientation variables and excitability show a negative correlation. 
The major contributors for Dimension1 (Fig.  3D) were the activity-related variables, mainly, activity during 
the first hour, Burst and scoot activity (during the first hour and vision), Activity during P15, Edge preference, 
and absolute turn angle during the first hour. Dimension 2 was greatly influenced by the orientation variables, 
mainly, the upward orientation of larvae during colored moving lines (Or-R, G, B, FR, RGB combined) and 
optomotor response (R, B, FR).

K‑means clustering and identification of CsA‑type drugs.  We used K-means clustering to identify 
novel drugs that cluster together with calcineurin inhibitors (CsA and FK506). Using the average silhouette 

Table 1.   Description of the 25 behavioral measures used for hierarchical and K-means cluster analysis. The 
table describes in detail each of the behavioral measures that were quantified. In particular, the type of measure 
(for example, absolute value, ratio or percent, and so on) and specific periods of the behavioral test relevant to 
the quantification of the behavioral measure are also listed.

Name of variable Name of behavioral parameter Measure Relevant period

1 h 1-h activity Movement (Percent average movement) of larvae during the first hour, i.e., before being exposed to any 
visual or acoustic stimuli Period 1 to 6

P15 Period 15 activity Movement (Percent average movement) of larvae during period 15, i.e., after being exposed to the visual 
stimuli Period 15

Hab Habituation Change in activity in response to 1-s intervals sound stimuli (first vs. second 5 min of period 17) Period 17

St Startle Change in activity in response to acoustic stimuli at 20 s intervals. The difference in average activity 
between period 16 and period 15 Period 15 and 16

Ex Excitability Change in activity in response to acoustic stimuli at 1 s intervals. The difference in average activity 
between period 17 and period 16 Period 16 and 17

R Red Optomotor response (OMR) using moving red lines. The difference in percent time spent in the upper 
part of the well between period 8 and period 7 Period 7 and 8

G Green Optomotor response (OMR) using moving green lines. The difference in percent time spent in the 
upper part of the well between period 10 and period 9 Period 9 and 10

B Blue Optomotor response (OMR) using moving red lines. The difference in percent time spent in the upper 
part of the well between period 12 and period 11 Period 11 and 12

FR Fast red Optomotor response (OMR) using faster moving red lines. The difference in percent time spent in the 
upper part of the well between period 14 and period 13 Period 13 and 14

RGB Red, green, blue
Combined optomotor response (OMR) using moving lines of any color or speed. The average difference 
in time spent in the upper part of the well between downward-moving line periods and upward-moving 
line periods

Period 7 to 14

Sc-1 h Scoot 1 h Movement (Percent average movement) of larvae in a slow/short swimming (scoot) pattern during the 
first hour, before being exposed to any visual or acoustic stimuli Period 1 to 6

Sc-V Scoot vision Movement (Percent average movement) of larvae in a slow/short swimming (scoot) pattern during the 
presentation of moving lines of any color or speed Period 7 to 14

Bu-1 h Burst 1 h Movement (Percent average movement) of larvae in a quick/long swimming (burst) pattern during the 
first hour, before being exposed to any visual or acoustic stimuli Period 1 to 6

Bu-V Burst 1 vision Movement (Percent average movement) of larvae in a quick/long swimming (burst) pattern during the 
presentation of moving lines of any color or speed Period 7 to 14

Ed-1 h Edge 1 h Percent time that the larvae are located in the edge of the well (i.e. 50% away from the center) during the 
first hour Period 1 to 6

Ed-V Edge vision Percent time that the larvae are located in the edge of the well (i.e. 50% away from the center) during 
periods with moving lines of any color or speed Period 7 to 14

Cw-1 h Clockwise 1 h Percentage of time that the orientation of larvae is clockwise during the first hour Period 1 to 6

Cw-V Clockwise vision Percentage of time that the orientation of larvae is clockwise during periods with moving lines of any 
color or speed Period 7 to 14

Or-R Orientation red
Upward orientation of the larvae while exposed to moving red lines. The difference in percent time fac-
ing up between period 8 and period 7. Upward orientation measures whether the larvae are facing in the 
same direction as the moving lines (positive Orientation value) or not (negative Orientation value)

Period 7 and 8

Or-G Orientation green Upward orientation of the larvae while exposed to moving green lines. The difference in percent time 
facing up between period 10 and period 9 Period 9 and 10

Or-B Orientation blue Upward orientation of the larvae while exposed to moving blue lines. The difference in percent time 
facing up between period 12 and period 11 Period 11 and 12

Or-FR Orientation fast red Upward orientation of the larvae while exposed to faster moving red lines. The difference in percent 
time facing up between period 14 and period 13 Period 13 and 14

Or-RGB Orientation red, green, blue
Combined upward orientation of the larvae while exposed to moving lines of any color or speed. The 
average difference in time spent facing up between downward-moving line periods and upward-moving 
line periods

Period 7 to 14

Turn-1 h Turn angle 1 h Change in the larvae’s position angle during the first hour. Turn angle measures whether the larvae have 
a preference in turn direction Period 1 to 6

Tabs-1 h Absolute turn angle 1 h Absolute change in the larvae’s position angle during the first hour. Absolute turn angle measures how 
much the larvae turn in either direction Period 1 to 6
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width method, we determined that the optimal number of K-means clusters for our dataset was 3 (Fig. 4A). We 
then plotted each of our initial data points on Dim1 (X-axis) and Dim 2 (Y-axis) with the optimal number of 
clusters (Km = 3) for our dataset. K-means clustering showed in three distinct clusters on the PCA axis (Fig. 4B). 
The K-means cluster contains a cluster means for value for each of the 25 variables in this study (Supplementary 
file 2). Cluster 1 comprises 141 compounds including the EW and DMSO controls. The average values for Clus-
ter 1 mean were near 0 for most of the behavioral parameters. Cluster 2 contained CsA and FK506 along with 
26 other novel compounds. The cluster mean of the CsA-type cluster typically showed high values for activity 
parameters and low values for orientation variables; a peculiar behavior profile observed for CsA-type drugs. 
Cluster 3 consisted of 32 compounds including the rescue experimental groups. Cluster 3 means showed values 
opposite to the CsA-cluster, i.e., lower values for activity parameters and higher values for orientation variables.

Hierarchical clustering and identification of CsA‑type drugs.  25 behavioral parameters were used 
to produce a heatmap of various behavioral measures for each drug compound (Fig. 5). The red-blue color spec-
trum represents values ranging from − 10 (red) to 5 (blue). Using the hierarchical clustering on the Euclidean 
distances of each compound, we identified 3 separate clusters depending on the behavioral profile of these drugs. 
Hierarchical clustering analysis uses the magnitude of effect to reveal clusters of compounds with similar effects 
on behavior. Cluster 2 (red) was identified and labeled as a CsA-type cluster containing CsA and FK506 along 
with 17 novel other seemingly unrelated compounds. The CsA-type cluster shows a typical heatmap pattern with 
lower values for orientation parameters and higher activity parameters. The CsA-type cluster also contained a 
tight cluster of rescue (CsA/FK506 + PI) experimental groups suggesting that supplementing ProINDY (PI) with 
CsA/FK506 is not sufficient to rescue behavioral effects produced by calcineurin inhibitors. Cluster 1 (gray) con-
sisted of EW and DMSO controls along with a majority of (132) compounds from the drug library. This cluster 
did not show larger values for any of the orientation or activity parameters. Cluster 3 (blue) consisted of drugs 
ProINDY along with 48 other drug compounds. ProINDY activates NFAT via the inhibition of an inhibitor 
(DYRK1A) and induces behaviors that are nearly opposite to the CsA-induced behaviors. This cluster showed a 
behavioral profile with larger values orientation and lower activity values; a pattern that was the reverse of CsA-
type drugs.

CsA‑type drugs and their role in calcineurin signaling.  The K-means and hierarchical clustering 
identified novel compounds targeting a wide range of molecular targets—from kinase inhibitors to adrenergic 
receptor modulators. The majority (19 out of 32) of these identified compounds were modulators of adrenergic 
receptors, glucocorticoid receptors, angiotensin receptors, dopamine receptors, and 5-HT receptors while the 
remaining drugs targeted various enzymes and other receptors. A detailed list of all the identified compounds 
with their molecular target is described in Table 2. The p values (after Bonferroni adjustment for multiple com-

Figure 3.   Principal components analysis: the principal component analysis of the dataset identified 22 principal 
dimensions explaining 100 percent of the variation in the dataset. The scree plot (A) shows 10 principal 
dimensions accounting for 86.74% of the variance. To analyze the contribution of each variable towards the 
variation in our dataset, we used principal component 1 (Dim1) which explained 26.3% variation, and principal 
component 2 (Dim2) explaining 19% of the variation (B). The correlation plot (C) shows the correlation of each 
variable for the first 5 dimensions of the principal components. The major contributors for Dimension1 (D) 
were the activity-related variables, while Dimension 2 was greatly influenced by the orientation variables (E).
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parisons) of all the identified compounds for the selected 25 behavioral parameters are listed in Supplementary 
file 3. In general, a significant effect was observed across all the behavioral variables except startle, vision in 
green, clockwise movements, and turn angle during the initial hour.

Discussion
Behavioral quantification forms a solid basis for many studies in the field of neuroscience. While zebrafish 
larvae prove to be an excellent model for genetic studies5,8, their use for biobehavioral analysis is limited. With 
the availability of computational approaches, it is possible nowadays to resolve complex behaviors into simpler 
bits, which was not possible in the past16,17. The behavioral quantitative analysis offers a great way to study 
animal behavior in the natural environment and/or in response to various stimuli by breaking down a complex 
set of behaviors into distinct individual elements that can then be interpreted. The current study signifies the 
importance of developing a machine learning-based method, Z-LaP Tracker, for quantifying novel behavioral 
parameters. Using Z-LaP Tracker, we quantified 25 behavioral parameters that were used to build a behavioral 

Figure 4.   K-means clustering: using the average silhouette width method, we determined that the optimal 
number of K-means clusters for our dataset was 3 (A). We then plotted each of our initial data points on Dim1 
(X-axis) and Dim 2 (Y-axis) with the optimal number of clusters (Km = 3) for our dataset. K-means clustering 
showed in three distinct clusters on the PCA axis (B).
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Figure 5.   Hierarchical clustering: 25 behavioral parameters were used to produce a heatmap of various behavioral measures for each 
drug compound. The red-blue color spectrum represents values ranging from − 10 (red) to 5 (blue). Using the hierarchical clustering 
on the Euclidean distances of each compound, we identified 3 separate clusters depending on the behavioral profile of these drugs. 
Hierarchical clustering analysis uses the magnitude of effect to reveal clusters of compounds with similar effects on behavior. Cluster 
2 (red) was identified and labeled as a CsA-type cluster as CsA and FK506 clustered with 17 novel seemingly unrelated compounds. 
The CsA-type cluster shows a typical heatmap pattern with lower values for orientation parameters and higher activity parameters. 
The CsA-type cluster also contained a tight cluster of rescue (CsA/FK506 + PI) experimental groups suggesting that supplementing 
ProINDY (PI) with CsA/FK506 is not sufficient to rescue behavioral effects produced by calcineurin inhibitors. Cluster 1 (grey) 
consisted of EW and DMSO controls along with a majority of (132) compounds from the drug library. This cluster did not show 
larger values for any of the orientation or activity parameters. Cluster 3 (blue) consisted of drugs ProINDY along with 48 other drug 
compounds. ProINDY activates NFAT via the inhibition of an inhibitor (DYRK1A) and induces behaviors that are nearly opposite to 
the CsA-induced behaviors. This cluster showed a behavioral profile with larger values orientation and lower activity values; a pattern 
that was the reverse of CsA-type drugs.
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profile in zebrafish larvae. Furthermore, Z-LaP Tracker can be modified to incorporate various other parameters 
as needed. One of the most important factors involved in building a comprehensive behavioral profile involves 
an accurate description of behavior and precise quantification of these behavioral parameters7. Moreover, a thor-
ough behavioral profile can only be generated when one considers a variety of behaviors relating to neurological 
disorders6. With the Z-LaP tracker, we were able to pick subtle behavioral patterns and quantify them accurately. 
The Z-LaP Tracker has greatly influenced how larval behavior can be quantified in high-throughput settings and 
opened up new avenues for developing deep-learning approaches to study behavior. In our previous studies19,20, 
we used Fiji/Image J macros for detecting zebrafish larvae from the acquired images. An important step in this 
method involved the selection of regions of interest (ROIs) for each well; a process that was done manually. In 
Z-LaP Tracker, everything is done in an automated fashion; meaning there is no manual interference involved 
when detecting larvae. We used the same experimental data and analyzed it using Fiji/ImageJ Vs Z-Lap Tracker, 
and both methods produced similar values for each of the behavioral parameters (data not shown). The find-
ings from our study suggest that the Z-LaP Tracker and other DepLabCut-based approaches offer an amazing 
opportunity of studying behavior.

Table 2.   List of the drugs showing CsA-like behavioral profiles identified using K-means and hierarchical 
clustering. K-means and heatmap analysis identified a range of drugs known to act on various molecular 
targets. The table describes in detail the main target receptor type and subtype the drug acts on and its 
pharmacological mode of action (agonist or antagonist).

Mode of action Type Receptor subtype Compounds
Analysis/clustering 
method

Adrenergic receptors

Agonist

Non-selective adrenergic 
alpha receptors

T1A4—dihydroergotamine 
mesylate K-means, heatmap

Adrenergic beta-2 receptors T2E11—salmeterol xinafoate K-means

Adrenergic beta-2 receptors T2H9—arformoterol tartrate K-means

Antagonist

Non-selective adrenergic beta 
receptors T1F3—Carvedilol Heatmap

Adrenergic alpha-1 receptors T1A7—prazosin hydro-
chloride K-means, heatmap

Adrenergic alpha-1 receptors T1G3—doxazosin mesylate K-means, heatmap

Adrenergic alpha-1 receptors T1G7—tamsulosin hydro-
chloride K-means, heatmap

Adrenergic beta-1 receptors T1H9—nebivolol hydro-
chloride K-means, heatmap

Glucocorticoid receptors

N/A Other T1B10—dexamethasone K-means

Agonist N/A T1D5—fluticasone propionate K-means

N/A Other T3C3—ciclesonide Heatmap

Angiotensin receptors Antagonist
Angiotensin AT1 Receptors T2B3—losartan potassium K-means

Angiotensin AT1 Receptors T2H3—irbesartan K-means

Dopamine Agonist

Non-selective Dopamine T1A3—bromocriptine 
mesylate K-means, heatmap

Non-selective Dopamine T1E9—cabergoline Heatmap

D2 Receptor T2G11—aripiprazole K-means

5-HT (serotonin)
Antagonist

Non-selective 5-HT2 T1D6—mirtazapine K-means

Non-selective 5-HT T2A3—asenapine maleate K-means

Agonist 5-HT1D receptors T1H10—sumatriptan suc-
cinate K-means

Estrogen and related receptors Modulator N/A T1B7—tamoxifen citrate K-means

Vesicular monoamine trans-
porters Inhibitor N/A T1D7—tetrabenazine K-means, heatmap

Kainate receptors Antagonist N/A T2A2—topiramate K-means

Cyclooxygenase Inhibitor N/A T2B2—celecoxib K-means, heatmap

Androgen receptor Antagonist N/A T2C4—flutamide K-means, heatmap

Pregnane Xreceptor Agonist N/A T2D8—meclizine dihydro-
chloride K-means

VEGFR Inhibitor N/A T2G10—XL 184 K-means

Phosphodiesterases Inhibitor N/A T3B9—tadalafil K-means

Histone demethylases Inhibitor N/A T3C4—ciclopirox K-means, heatmap

Raf kinase Inhibitor N/A T3C10—sorafenib K-means, heatmap

Calcium channels Blocker Cav1.x T1D4—isradipine Heatmap

EGFR Inhibitor N/A T1G5—iressa Heatmap

Src kinases Inhibitor N/A T3B4—dasatinib Heatmap
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The K-means and hierarchical cluster analysis were performed on the behavioral profile of an FDA-approved 
drug library to understand the effect of these drugs on the calcineurin-NFAT signaling pathway. The calcineurin-
NFAT pathway has been studied in-depth in the activated T-cell of the immune system35–37 and is also important 
for its diverse role in various organ systems, including the nervous system38–42. A calcineurin-NFAT signaling 
pathway is complex and diverse receptors/modulators can act on different components of this signaling pathway 
to bring out convergent or divergent responses. The K-means cluster analysis identified 29 novel drugs showing 
behavioral profiles similar to the calcineurin signaling pathway inhibitors while hierarchical clustering identified 
17 novel compounds. Using zebrafish Fiji/Image J macros for larvae detection in combination with Hierarchical 
clustering analysis (using Cluster 3.0), our previous study20 had identified 11 compounds that clustered with CsA 
and FK506. The current study identified a total of 32 novel compounds with CsA-like behavioral profiles using 
Z-LaP Tracker for the detection of zebrafish larvae in combination with K-means and hierarchical clustering. 9 
out of the 11 compounds identified in the previous study also showed up in the CsA-like cluster from the cur-
rent study and 4 compounds (Nebivolol hydrochloride, Bromocriptine mesylate, Tetrabenazine, and Sorafenib) 
showed up in the CsA-like cluster using all three clustering methods. In addition to the 9 overlapping compounds, 
the current study identified additional 22 compounds showing CsA-like behaviors. These results reconfirm the 
findings from our previous study while also allowing us to detect new novel compounds due to the addition of 
new behavioral parameters and analysis methods. It is interesting to note that while there was some overlap (11 
compounds) in the CsA-like compounds identified using K-means and hierarchical clustering, each clustering 
method also identified a distinct set of CsA-like drugs that were specific to each clustering method. K-means 
uses PCA axes for clustering the data; meaning that; it specifically takes into consideration the key behavioral 
parameters contributing the most towards the variation of the dataset, while hierarchical clustering assigns the 
same weights for all the behavioral parameters when clustering the data. For example, two of the CsA-like drugs 
identified were Arformoterol tartrate (using only K-means clustering) and Carvedilol (using only hierarchical 
clustering) are known to target adrenergic receptors. These two compounds show very distinct behavioral profiles; 
Arformoterol tartrate clusters with CsA-like compounds mainly because the analysis is based on PCA compo-
nents but does not show up in hierarchical clustering where each behavioral parameter is given equal weightage.

In our study, we find that both clustering methods hold significant merits and are very valuable for identify-
ing CsA-like compounds.

A schematic of the calcineurin-NFAT pathway with major target receptors identified from our study is sum-
marized in Supplementary file 4. Out of all the identified drugs showing a CsA-like behavioral profile, many drugs 
are adrenergic agonists or antagonists. Adrenergic receptors are G-protein coupled receptors (GPCRs) known to 
play roles in both cognitive function and immune function43–45. Studies have shown that one of the earliest sites of 
pathology and degeneration in Alzheimer’s disease is the locus coeruleus (LC), a midbrain region that is known 
to regulate arousal and is important for learning and memory46. The LC is rich in norepinephrine signaling and 
is known for the regulation of anti-inflammatory activity47. The identified adrenergic receptor modulators spe-
cifically were agonists of nonselective ɑ (dihydroergotamine mesylate) and β2 receptors (Salmeterol xinafoate, 
Arformoterol tartrate) and antagonists of nonselective β (Carvedilol), β1 (Nebivolol hydrochloride) and ɑ1 
(Prazosin hydrochloride, Doxazosin mesylate, Tamsulosin hydrochloride) receptors. The results of our behav-
ioral analysis suggest that activation of β2 adrenergic receptors and inhibition of ɑ1 receptors might be crucial 
targets important for developing treatment against neurological disorders like Alzheimer’s disease. Studies in 
humans and Alzheimer’s mice models have shown contradicting results about the effect of β adrenergic blockers 
on cognition and physiology48–53. The diverse downstream pathways activated by the adrenergic system and the 
fine balance between these are crucial. In cases where too little or too much signaling occurs, can result in the 
rapid pathological progression of AD and other neurological diseases54. Changes in the adrenergic system are 
an important early hallmark in the progression of AD55. Considering the role of adrenergic receptor activation 
in inflammation and cognition, the identified adrenergic modulators might help in understanding the crosstalk 
between calcineurin-pathway-mediated inflammatory and cognitive functions in AD. AD progression occurs 
mainly in the aging brain. Aging is also a risk factor for other disorders, including hypertension and cardiovas-
cular diseases. Considering the overlapping timeline for AD and hypertension in the aging population56,57, it 
is likely that elderly patients are treated simultaneously for both conditions, making adrenergic modulators a 
clinically relevant target for repurposing drugs for treating AD.

Other groups of drugs showing CsA-like behavioral profiles were mainly modulators of glucocorticoid 
receptors (Dexamethasone, Fluticasone propionate, Ciclesonide), angiotensin receptors (Losartan potassium, 
Irbesartan), 5-HT receptors (Mirtazapine, Asenapine maleate, Sumatriptan succinate), and dopamine recep-
tors (Bromocriptine mesylate, Cabergoline). Glucocorticoid receptors are the ubiquitous low-affinity receptors 
known to bind to glucocorticoids, a group of steroid hormones that freely cross the blood–brain barrier and 
are known to play an important role in stress responses, learning, and memory. Previous studies have shown 
that long-term exposure to high levels of glucocorticoids may be a key risk factor for AD development and 
progression58. In the 3 × Tg-AD mice, a glucocorticoid receptor non-selective antagonist mifepristone, rescued 
cognitive deficits, reduced Aβ levels and phosphorylation and accumulation of Tau59. Our findings also identi-
fied angiotensin receptor antagonists (Losartan potassium and Irbesartan) as possible therapeutic drugs for 
treating AD. Angiotensin receptor activation can lead to the activation various downstream signaling pathways 
mediated by CaM and PKC leading to transcriptional activation. Our analysis also identified non-selective dopa-
mine agonists (Bromocriptine mesylate and Cabergoline) and serotonin modulators (Mirtazapine, Asenapine 
maleate, Sumatriptan succinate) which showed a CsA-like behavioral profile. Dopamine and serotonin recep-
tors are GPCRs, similar to other targets described previously, known to act on various downstream signaling 
pathways resulting in differential transcription of certain genes54. A variety of other drug targets identified in 
the current study are known to act on various other receptors (estrogen, vesicular monoamine transporters, 
kainate, androgen, Pregnane X, VEGFR, EGFR, Calcium channels) and enzymes (cyclooxygenase, Raf Kinase, 
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Src Kinase, Phosphodiesterases, and Histone demethylases). It is very interesting to observe that such a diverse 
group of targets can produce a relatively similar behavioral profile. Another fascinating finding is that not all 
the drugs targeting the same receptor induce a similar behavioral profile. These findings in combination suggest 
the differential action of various drugs in different organ systems and that many of these drugs might produce 
their effect through unknown mechanisms.

The etiology and disease progression of Alzheimer’s disorder is complex and many of the drugs that focus 
specifically on clearing the amyloid β/hyperphosphorylated Tau have failed in clinical trials. One explanation is 
that the accumulation of amyloid β/hyperphosphorylated Tau does not correlate well with cognitive decline, a 
hallmark of late AD60,61. It is, therefore, possible that finding the drugs that target molecular mechanisms involved 
in early disease progression might prove to be successful in developing therapeutics for treating Alzheimer’s dis-
ease. Considering the complexity of Alzheimer’s disease etiology and elusive molecular targets, drug repurposing 
might be one of the most cost/time-effective strategies for developing a treatment for Alzheimer’s disease. An 
interesting study supporting the role of the calcineurin signaling pathway in Alzheimer’s is from a human popu-
lation study where transplant patients chronically treated with calcineurin inhibitors have a significantly lower 
incidence of AD/dementia as compared to the general population. The current study identified novel drugs show-
ing a CsA-like profile suggesting that these targets might have a novel role in Alzheimer’s disease progression.

Materials and methods
All the materials and methods for conducting behavioral experiments were identical to the methods used in 
our earlier study20 and are described briefly in this section. The current study applied a new method for tracking 
zebrafish larvae and data analysis on an existing behavioral dataset20.

Experimental animals.  All experiments carried out in the current study were following federal regula-
tions and guidelines for the ethical and humane use of animals and have been approved by Brown University’s 
Institutional Animal Care and Use Committee (IACUC). All the experiments were carried out using 5 days post 
fertilization (dpf) larvae obtained from adult wild-type zebrafish (Danio rerio). Adult zebrafish are maintained 
in the Animal Care Facility at Brown University. The existing adult wild-type zebrafish line in the facility is a 
genetically diverse outbred strain with a mixed population of males and females. The zebrafish are maintained 
on a 14-h light, 10-h dark cycle in a Marineland Vertical Aquatic Holding System. The zebrafish adults are fed 
daily with Gemma Micro 300 and frozen brine shrimp during the light cycle. Collection of zebrafish embryos 
and their growth to (5 dpf) larval stages was achieved using previously described methods19,20,33,34. Zebrafish 
embryos from 0 to 5 dpf were maintained at 28.5 °C in 2L culture trays with egg water (60 mg/L sea salt (Instant 
Ocean) and 0.25 mg/L methylene blue in deionized water (pH 7.2). Embryos and larvae in 2L culture trays are 
maintained on a 12 h light/12 h dark cycle. Zebrafish use complex polygenic features for sex determination62. 
Both males and females have juvenile ovaries between 2.5 and 4 weeks of development making it impossible to 
determine the sex of embryos and larvae at early stages62. At 5 dpf, zebrafish larvae (approximately 4 mm in size) 
display various complex behaviors and do not need an external food source as they consume nutrients available 
in the yolk sac63. After the behavioral experiments were done, the 5 dpf zebrafish larvae were euthanized by rapid 
chilling followed by immersing them in the bleach solution (1 part bleach to 5 parts tank water) for 15 min.

Experimental design.  Treatment groups and controls were imaged on the same day and repeat experi-
ments were carried out on different days. Sample size (n = 48 per treatment group) was determined a priori, 
based on analyses of behavior in prior studies19,20,33,34,63,64. For each of the treatment groups, larvae were obtained 
from at least 3 independent clutches. For every imaging experiment, in addition to the treatment groups, egg 
water, and DMSO controls were run. To avoid biases, the placement of plates and loading of 5-dpf zebrafish 
larvae in 384-wells were conducted in random order. Behavioral analysis is sensitive to circadian fluctuations65 
and so, imaging was performed in the 1–5 pm time window. With many treatment groups and using automated 
methods for imaging, image analysis, and data processing; we were able to get robust reliable behavioral meas-
ures. The experimental design, the sample size of zebrafish larvae, and the statistical analysis reported in the cur-
rent study are in accordance with the ARRIVE (Animal Research: Reporting of In Vivo Experiments) guidelines.

Pharmacological treatments.  Using 96-well ProxiPlates (PerkinElmer, 6006290), 5 dpf zebrafish larvae 
were incubated in treatment solutions for 3 h before imaging, and for 3 h during the imaging session. Zebrafish 
larvae were treated with 190 FDA-approved compounds using a Tocris small-molecule library (Tocris Bioscience, 
Cat. No. 7200). The library contained 10 mM stocks dissolved in dimethyl sulfoxide (DMSO), which was diluted 
1000 × in egg water to a 10 µM final concentration. The control groups consisted of untreated larvae in egg water 
and larvae treated with 1 µl/ml DMSO serving as vehicle control. The behavioral effects of FDA-approved drugs 
were compared to previously obtained results20 with 10 µM cyclosporine A (CsA, Enzo Life Sciences), 1 µM 
tacrolimus (FK506, Enzo Life Sciences), 1 µM rapamycin (Santa Cruz Biotechnology), 5 and 10 µM proINDY 
(Tocris Bioscience) and a rescue experimental group typically consisting of calcineurin inhibitor along with 
proINDY. The rescue group for the current study consisted of four combinations—10 µM CsA + 5 μM proINDY, 
10 µM CsA + 10 μM proINDY, 1 µM tacrolimus + 5 μM proINDY and 1 µM tacrolimus + 10 μM proINDY.

Imaging setup.  The imaging system for the automated behavioral analysis holds four 96-well plates for 
384-well high throughput behavioral profiling. The imaging setup consists of a high-resolution camera, trans-
parent stage, projector, and a laptop computer (Fig. 6A). The camera, stage for holding plates, and M5 LED pico 
projector (Aaxa Technologies) with a 900 lumens LED light source are placed in a wooden cabinet maintained 
at 28.5 °C. Wooden cabinet helps to maintain larvae in optimum environmental condition and reduces external 
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artifacts (changes in ambient light and dampens external sound). The high-resolution camera (18-megapixel 
Canon EOS Rebel T6 with an EF-S 55–250 mm f/4.0–5.6 IS zoom lens) is set to take pictures every 6 s for a 
total of 3 h. Based on our prior studies19,20,33,34, acquiring images every 6 s allowed us to capture selected relevant 
behaviors with great detail while also maintaining enough storage/processing for longer periods of experiments 
A transparent stage is used to hold up to four 96-well plates. The inner diameter of a well is 7.15 mm, which 
corresponds to 150 pixels in the image (48 μm per pixel). The camera is connected to a continuous power sup-
ply (Canon ACK-E10 AC Adapter) and controlled by a laptop computer using Canon’s Remote Capture soft-
ware (EOS Utility, version 3 included with the camera). Two small speakers (OfficeTec USB Computer Speakers 
Compact 2.0 System) are used to provide sound stimulus and are connected by USB to the laptop computer and 
set to maximum volume (85 dBA). The projector is used for background illumination and the display of visual 
stimuli using Microsoft PowerPoint. The camera settings used for the current study were: ISO200, Fluorescent, 
F5, and 1/5 exposure. These settings worked the best for obtaining optimal color separation in the automated 
image analysis.

Behavioral assay.  The behavioral assay used in the current study was identical to the previous study19,20,33,34 
conducted in the lab. In short, a 3-h long PowerPoint presentation was used to deliver visual and acoustic stimuli 
to larvae. The exact timeline of each stimulus is shown in Fig. 6B. The initial hour of the trial was considered 
the acclimatization phase during which larvae did not receive any visual/auditory stimuli (blank slide). The 
behaviors recorded during this period were used as a measure of baseline activity without any external stimuli. 
The 1-h blank slide was followed by 80 min of visual stimuli (moving lines of red, green, blue, and fast red in un/
down orientation), a 10-min period without visual or acoustic stimuli, and 30 min with acoustic stimuli (20-s 
interval sound pulse and 1-s interval sound pulse). Earlier studies have shown that zebrafish larvae will show 
an optomotor response or OMR (i.e., they swim in the same direction as moving lines) in response to moving 
lines33,66. The sequence, timing, and details of the PowerPoint slide background (Supplementary file 5) were 
identical to the previous study20. Using automated image analysis and subsequent data processing (described 

Figure 6.   Experimental setup, timeline and description of behavioral variables: (A) experimental setup: the 
imaging setup in the laboratory consists of a projector attached to a laptop using PowerPoint for presenting 
visual/acoustic stimuli, a staging area (which can hold up to four 96-well plates), and a high-resolution overhead 
camera that clicks photos of 96-well plates at a set frequency (10 images per minute). The data is analyzed 
post-imaging using an automated python pipeline based on DeepLabCut. (B) Timeline for the presentation of 
visual and acoustic stimuli: during the first hour, a blank slide was presented, followed by moving lines of red, 
green, blue, and fast green in an up/down direction, followed by acoustic stimuli of 20-s and 1-s intervals. (C) 
25 behavioral parameters were quantified for behavioral profiling: some example behaviors analyzed are shown 
in (Ca) activity during the first hour; (Cb) scoot slow/short swimming; (Cc) burst quick/long swimming; (Cd) 
absolute turn angle; (Ce) optomotor quick/long response—movement in the direction of moving lines; (Cf) 
clockwise; (Cg) counterclockwise swimming; (Ch) startle response—sudden activity in response to an auditory 
stimulus; (Ci) less excitability in response to 1-s interval sound stimulus and (Cj) habituation—decrease in 
activity upon presentation of the repeated sound stimulus.
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in the sections below) we quantified various behaviors (some of them are described in Fig. 6C) from different 
periods of the experiment.

Automated image analysis.  We developed an automated image processing framework Z-LaP Tracker, a 
modification of DeepLabCut (DLC), to detect zebrafish locations and orientations in images. We used a high-
performance computing cluster; OSCAR (Ocean State Center for Advanced Resources) for analyzing zebrafish 
behavior. OSCAR provides large-scale computing resources (GPUs-NVIDIA V100) which greatly elevates the 
extent of computational analysis that can be done in a shorter time compared to other traditional computers. 
OSCAR allows the automated analysis for zebrafish behavior to be completed in 30 min while the same analysis 
takes approximately 3 h using a traditional computer (Processor Intel [R] Xeon [R] CPU E5-2643 v4 @ 3.40 GHz 
RAM 128 GB). All the details about the information, usage and installation of the Z-LaP Tracker can be found on 
the GitHub repository (https://​github.​com/​brown-​ccv/​Autom​ated-​Analy​sis-​of-​Zebra​fish). The imaging analysis 
automatically detects zebrafish eyes and yolk using deep learning models. This image-processing pipeline can 
detect zebrafish larvae in four 96-well plates with multiple treatment groups. The main steps involved in auto-
mated image analysis were preprocessing images, training the model, and predicting new images (in diverse 
backgrounds). The output file of the automated image analysis contains approximately 22.8 million data points, 
i.e. 33 columns with information on the image, well, larval movement, larval location, larval orientation, and 
detection probabilities of each feature (left eye, right eye, and yolk) and 691,200 rows showing this information 
for each well in subsequent images (384 wells × 1800 images). The output file (Supplementary file 6) includes the 
image number, imaging period (18 × 10-min periods), well number, and XY coordinates of the yolk. These XY 
coordinates are used to calculate if a larva moved (> 3 pixels in 6 s) and if a larva is in the upper half of a well (in a 
horizontal plane). These basic measures are similar to measures of behavior obtained by automated image analy-
sis with ImageJ20. Z-LaP Tracker provides additional information, beyond these basic measures. Specifically, it 
provides measures of Speed, Scoot, Burst, Burst-Up, Edge, % Edge, CW, Angle, Upw, Turn, Tabs, XY coordinates 
of the left eye, XY coordinates of the right eye, and the probabilities of correct recognition of the yolk, left eye 
and right eye. The description of behavioral parameters and computation method is described in detail in Sup-
plementary file 6. The output file from the Z-LaP Tracker analysis was then used to quantify relevant zebrafish 
behaviors (described in the section below).

Data processing.  The output files are processed using two MS Excel templates (A and B—included in the 
supplementary information—Supplementary files 7 and 8 respectively). Template A calculates 25 behaviors for 
each larva in the 384-well experiments (Table 1). The definition and description for quantification of each behav-
ior are as follows: (1) move: percentage of time that a larva moves (% move), (2) up: percentage of time that a 
larva is located in the upper half of the well (% up), (3) speed: average speed of each larva, (4) scoot: percentage 
of time that a larva performs smaller movements (between 3 and 20 pixels), (5) burst: percentage of time that a 
larva performs bigger movements (above 20 pixels), (6) B-Up: percentage of time that larva displays burst activ-
ity in the upper half of well, (7) absolute and percent edge: percentage of time that larva spent around the edge of 
the well, (8) clockwise: percentage of time that larva was observed in clockwise orientation, (9) angle: orientation 
of larval body axis in relation to the horizontal axis of the well (− 180° to + 180°), (10) Upw: upward orienta-
tion of larva, (11) turn: change in the orientation between subsequent images, (12) Tabs: absolute turn angle. 
To measure the optomotor response (OMR), larval locations are compared between two 10-min periods when 
visual stimuli move up vs. down. The criteria for the exclusion of certain data points were set a priori in Excel 
template A. Data points in which the detection probability of the left eye, right eye, or yolk is less than 0.5 were 
excluded. In addition, the template automatically excludes zebrafish larvae that move less than 1% of the time in 
a 3-h recording. Also, larvae that move less than 5% of the time in a 10-min period are automatically excluded 
from OMR measurements during that period. In Template A, the primary outcome measures are summarized 
for each experimental group in the ‘Summary’ tab. Template B combines the summary sheets of multiple experi-
ments. This template calculates the average values per treatment group and calculates the differences between 
these groups as compared to the DMSO vehicle controls. These differences are expressed in percentage points 
(% points). The template tests differences between DMSO controls and treated groups for statistical significance 
and displays color-coded behavioral profiles for easier behavioral pattern visualization.

Principal components and cluster analyses.  The changes in 25 behavioral measures (described in ear-
lier sections—Table 1) were compared to the DMSO vehicle controls. The behavioral profiles were created in 
MS Excel (template A—provided as supplementary file 7) and then using MS Excel (template B—provided as 
supplementary file 8), the average values of the treated groups (n = 48 larvae per drug) were calculated. Subse-
quently, the average values of the DMSO vehicle controls (n = 844 larvae) were subtracted from each of the treat-
ment group values to standardize the data set. These values were then used for principal components analysis, 
K-means clustering, and hierarchical clustering analysis using R (R Studio version 4.2.0). For data analysis in R, 
we used the following packages: ‘ggplot2’, ‘dplyr’, ‘tidyr’, ‘FactoMineR’, ‘factoextra’, ‘corrplot’, ‘cluster’, and ‘dendex-
tend’. Each of the 25 behavioral parameters was assigned equal weightage for clustering analyses. Also, we used 
the Euclidian distance similarity metric with Ward’s minimum variance linkage for K-means and hierarchical 
clustering.

Statistical analysis.  All the statistical tests and data visualization were conducted using Microsoft Excel 
2016 and/or R statistical language. The values of our data set were not normally distributed, had unequal sample 
sizes per experimental group, and had unequal between-group variance. Due to these conditions, a non-para-
metric Welch’s unequal variance t-test was used. To correct for multiple comparisons, a Bonferroni correction 

https://github.com/brown-ccv/Automated-Analysis-of-Zebrafish
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was applied. In the Tocris screen, we compared 190 drugs to the DMSO vehicle controls and differences were 
considered significant when p < 2.6 × 10−4 (0.05/190), p < 5.3 × 10−5 (0.01/190), or p < 5.3 × 10−6 (0.001/190). This 
conservative approach was important particularly in high-throughput large datasets to decrease the chance of 
false positives.

Data availability
Data, instructions for installation/usage of the Z-LaP Tracker image analysis pipeline, codes, and the materials 
used in the analysis are available in the supplementary information.
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