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Practical overview of image 
classification with tensor‑network 
quantum circuits
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Juan Miguel Arrazola 1

Circuit design for quantum machine learning remains a formidable challenge. Inspired by the 
applications of tensor networks across different fields and their novel presence in the classical machine 
learning context, one proposed method to design variational circuits is to base the circuit architecture 
on tensor networks. Here, we comprehensively describe tensor-network quantum circuits and how to 
implement them in simulations. This includes leveraging circuit cutting, a technique used to evaluate 
circuits with more qubits than those available on current quantum devices. We then illustrate the 
computational requirements and possible applications by simulating various tensor-network quantum 
circuits with PennyLane, an open-source python library for differential programming of quantum 
computers. Finally, we demonstrate how to apply these circuits to increasingly complex image 
processing tasks, completing this overview of a flexible method to design circuits that can be applied 
to industrially-relevant machine learning tasks.

Tensor networks have been studied for decades across several disciplines, most notably in the context of many-
body quantum systems1,2. In quantum computing, tensor networks have been used for the classical simulation 
of quantum computers3–6 and as a framework to build new machine learning models7–11. Such studies have 
sparked interest in understanding whether tensor networks can be applied to inspire circuit design in the field 
of variational quantum algorithms12–14.

Pioneering work combining tensor-network architectures and variational quantum algorithms was reported 
in Refs.15–18. The main idea is to design quantum circuits replicating tensor network architectures such as tree 
tensor networks and matrix product states2,10,19. We refer to the resulting circuits as tensor-network quantum 
circuits. One advantage of using tensor networks to design quantum circuits is that this technique provides a 
gradual transition from classically solvable tensor networks to ones that require a quantum computer15. Tensor 
network quantum circuits also have qubit-efficient implementations that are highly compatible with circuit cut-
ting techniques, allowing for implementation on few-qubit machines15,20. Finally, any challenges encountered 
with these circuits benefit from the extensive literature available for classical tensor network techniques15.

As quantum computing technologies mature, they must become accessible to a broader community of sci-
entists, engineers, and practitioners. This is fundamental for the development of the field, as accessibility leads 
to more ideas that can be tested and potentially commercialized21. To lower the barrier of entry for practitioners 
interested in studying quantum tensor-network methods, this work comprehensively describes tensor-network 
quantum circuits and how to implement them in practice. In the Variational Tensor-Network Quantum Circuits 
section, we guide the reader through the process of generating quantum circuits from tensor network architec-
tures. This includes an explanation of how to combine quantum circuit cutting techniques20,22–27 with tensor-
network quantum circuits, permitting more efficient classical simulation and providing a path for executing large 
circuits on devices with fewer qubits. We provide explicit formulas for the resource requirements to perform 
these cuts and discuss how the resources depend on the features of the original tensor network. In the Numeri-
cal Demonstrations section, we apply the above framework to perform a variety of numerical experiments. This 
includes benchmarks for a suite of matrix product state (MPS) quantum circuits at various bond dimensions 
and qubit numbers, evaluated using circuit-cutting techniques. Finally, we demonstrate applications of tensor 
network quantum circuits by applying them to two tasks: binary classification of simple synthetic data and defect 
detection in welded-metal images.
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Variational tensor‑network quantum circuits
Tensor networks.  The basic building blocks of tensor networks are tensors: multi-dimensional arrays of 
numbers28. Intuitively, tensors can be interpreted as a generalization of scalars, vectors, and matrices. Consider 
a two-dimensional array or matrix, T. The elements of this array can be indicated by Tij , where the index i indi-
cates the rows and the index j indicates the columns of the matrix. Using the tensor network nomenclature, T 
is a rank two tensor. A tensor’s rank is the number of indices in the tensor—a scalar has rank zero, a vector has 
rank one, and a matrix has rank two. While the number of dimensions of an array is equivalent to the rank of 
the tensor, the length in each dimension is captured by the number of possible values an index can take. This is 
the index dimension.

A key operation in tensor networks is contraction. Two tensors are contracted when they are combined into a 
single tensor by summing the product of their respective entries over a repeated index. For example, the standard 
matrix multiplication formula can be expressed as a tensor contraction

where Cij denotes the entry for the i-th row and j-th column of the product C = AB . Graphically, this operation 
can be represented as depicted in Fig. 1a. For technical and historical reasons, tensors can also be defined using 
indices as superscripts, e.g., the notation Aj

i can also denote a rank-2 tensor.
From tensors, we can create tensor networks. A tensor network is a collection of tensors where a subset of all 

indices is contracted. It is helpful to discuss tensor networks using diagrams similar to Fig. 1. In this language, 
tensors are represented by shapes such as circles or squares, and edges symbolizing the indices. The rule for 
contraction can be displayed in a tensor network diagram by connecting tensors with edges, where two con-
nected tensors are contracted28. Tensor networks can represent complicated operations involving several tensors, 
many indices, and sophisticated contraction patterns. When multiple contractions happen in a tensor network, 
the corresponding summations can be performed in different orders. The sequence in which the contraction 
is carried out is known as the contraction path. This is an important concept, as a suitable contraction path will 
decrease the computational complexity of tensor network contraction.

Tensors of high rank can be difficult to work with since the number of array elements grows exponentially 
with the number of indices in the tensor. A common strategy is to express high-rank tensors as a tensor network 
over tensors of smaller rank. For example, consider a tensor Ai1,i2,i3,i4 of rank four. It can be approximated by a 
tensor network of the form

This tensor network is known as a matrix product state (MPS). It can be interpreted as a factorization of the ten-
sor into a network consisting of tensors of smaller rank2. An MPS factorization can be used to represent tensors 
exactly as long as the dimension of the internal j indices, known as the bond dimension D, is sufficiently large. 
Another option is to approximate tensors with matrix product states by selecting a smaller bond dimension, 
which can lead to simpler computations in exchange for lower accuracy. A graphical representation of an MPS 
is shown in Fig. 2. Please see Refs.2,28 for more detailed introductions to tensor networks.

Tensor‑network quantum circuits.  The connection between quantum computing and tensor networks 
can be seen by observing that quantum circuits can be expressed as tensor networks3,5,22,30,31. Formally, we con-

(1)Cij =
∑

k

AikBkj ,
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Figure 1.   (a) A diagrammatic example illustrating the contraction of two rank-2 tensors (matrices) A and B, 
connected by a repeated index k. Tensors can be contracted by summing over repeated indices. In this case, the 
contraction corresponds to the summation over k, as given in Eq. 1; (b) An example of a tensor Ai1,i2,i3,i4 and 
its factorization into matrix product state form Ai1

j1
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 , as given in Eq. 2. This factorization is done by 
singular value decomposition29; (c) An example of the trace of tensors. The trace is equal to the connection of 
two different legs of the tensor and summing over the corresponding index.
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sider a quantum algorithm consisting of an initial quantum state, represented by a density matrix ρ , a quantum 
circuit implementing a unitary transformation U, and a measurement performed on the output state UρU† of 
the circuit, which is used to compute the expectation value Tr(UρU†O) of an observable O. This expectation 
value can then be expressed by the tensor network

where sums are carried out implicitly over repeated indices, and A(ρ) , A(U), A(U†) and A(O) are tensors rep-
resenting ρ , U, U† and O, respectively, as illustrated in Fig. 3.

Conversely, we can express certain tensor networks as quantum circuits, generating tensor-network quantum 
circuits. A tensor-network quantum circuit instructs a quantum computer to apply a transformation that is related 
to its parent tensor network, inheriting the connectivity between the tensors in the network. Since quantum 
circuits must apply unitary operations, we only consider mapping the tensor network elements exactly when the 
individual tensors are unitary operations. Otherwise, we allow the tensors to become general, undefined unitary 
operations. We refer to these resulting unitary operations as tensor blocks. As for the parent tensor network’s 
bond dimension D, this is captured by the number of bond qubits, nV , shared by each tensor block, namely as 
D = 2nV . As an illustration, Fig. 2 shows a quantum circuit with an MPS architecture, and Fig. 4 depicts a circuit 
following the structure of a tree tensor network (TTN).

(3)A(U)
i1i2...in
j1j2...jn

A(ρ)
j1j2...jn
k1k2...kn

A(U†)
k1k2...kn
l1l2...ln

A(O)l1l2...lni1i2...in
= Tr(OUρU†),

Figure 2.   An example of a matrix product state (MPS) (left) and the corresponding quantum circuit 
architecture (right). Each tensor in the network is obtained by contracting the initial two-qubit state and a two-
qubit gate.

Figure 3.   A quantum circuit and its corresponding tensor network. In the circuit-based picture, some initial 
quantum state |ψ� is evolved with a unitary gate U and followed by a measurement of the observable O on the 
top qubit (left). This corresponds to the contraction of a tensor network and is similar to a trace operation, as 
given in Eq. 3 (right). While other tensor network representations are possible, we choose a tensor network with 
bond dimension two, such that the wires in the circuit correspond to the tensor network legs.

Figure 4.   An example of the tree tensor network (TTN) architecture (left) and the corresponding quantum 
circuit (right). We use the symbol (\\) to clarify that a qubit is not affected by a particular unitary and is traced 
out.
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A tensor-network quantum circuit is based on the shape and connectivity of its parent tensor network, for 
example, an MPS or TTN architecture, and not necessarily on specific tensor element values. Therefore, we can 
view a single tensor network architecture as a template for multiple possible circuits. We can obtain different 
circuits by changing the bond dimension of the parent tensor network or by varying the unitary operations 
corresponding to each tensor. Since each block can be an arbitrary unitary, it is crucial to define blocks that are 
compatible with (i) implementation on quantum hardware, (ii) fast simulation, and (iii) optimization strategies 
for quantum circuits. This is discussed in the following section.

Meta‑ansatzes.  One way to make tensor-network quantum circuits compatible with quantum hardware is 
to replace the unitary blocks with local circuits18. In this sense, just as a circuit ansatz is a strategy for arranging 
parametrized gates, tensor-network quantum circuits can be viewed as strategies for structuring smaller circuit 
ansatzes. They can therefore be interpreted as ansatzes of ansatzes, i.e., as meta-ansatzes. This approach allows 
us to employ the same techniques used to design, implement, and optimize variational quantum circuits. This is 
illustrated in Fig. 5, where we replace each block in a TTN circuit with a simple variational circuit. In summary, 
tensor networks can be used as a template to generate tensor-network meta-ansatzes. By replacing the tensor 
blocks in the meta-ansatz with parameterized circuits, we obtain a final variational quantum circuit. This circuit 
can then be simulated, implemented on hardware, and optimized as any other variational circuit.

Designing tensor‑network quantum circuits.  There are multiple ways to generate quantum circuits 
that relate to parent tensor networks15–18,32–34. We do not aim to rigorously reproduce the tensor network con-
traction with a quantum circuit, and instead endeavor to preserve certain features of the original tensor network: 
the number of tensors or operations, the connectivity between the operations, and the bond dimension of the 
connections. We now describe a procedure to generate tensor-network quantum circuits that maintain these 
features.

Consider a tensor network T = (G,A) consisting of a collection of tensors A = {a(v) : v ∈ V} and an undi-
rected graph G(E, V) defined by a set of edges E and a set of vertices V, that admits open edges22,35. The vertices 
V of G represent tensors, whereas the tensor indices are depicted by the edges E of G. For a tensor network 
T = (G(E,V),A) , we can construct a quantum circuit C = Gc(Ec ,Vc) such that E ⊆ Ec , V = Vc . A valid quantum 
circuit graph must be acyclic and have an equal number of incoming and outgoing open edges, representing the 
wires in the circuit. An index with dimension de in the tensor network is replaced with ⌈log2 de⌉ qubit wires in the 
corresponding circuit. In other words, we can create a directed acyclic graph, as required for quantum circuits, 
while preserving the connections and number of vertices in the original tensor network. Below we outline the 
full procedure in detail. 

1.	 Choose the direction of the open edges in the tensor network. As in Ref.15, this is informed by the desired 
application of the quantum circuit. For example, a generative machine learning task may use the open edges 
as outputs while a discriminative task may use them as inputs15.

2.	 Label the vertices with integers, v, in increasing order such that no two vertices have the same label.
3.	 Set every edge (vi , vj) to point from the lower integer to the higher integer vertex such that vi < vj . This 

ensures the graph is acyclic.
4.	 Add new open edges to the circuit graph Gc : for each vertex where the number of incoming edges, nin , is 

different from the number of outgoing edges, nout , we add new directed edges such that nin = nout . This 
addresses the requirement that circuit operations must have equal numbers of incoming and outgoing wires.

Figure 5.   A tensor-network circuit as a meta-ansatz. We employ the same architecture as in Fig. 4 and replace 
the tensor blocks with variational circuits consisting of single-qubit rotations and CNOT gates.
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The resulting graph represents a quantum circuit where the vertices are unitary operations and the edges are 
qubits.

As an example, Fig. 6 shows how we can obtain a quantum circuit graph from a projected entangled pair 
states (PEPS) tensor network graph. In Fig. 6, the tensor network starts with nine tensors and nine open edges. 
This evolves into a quantum circuit with ten qubits and nine unitary operations. It is important to note that the 
number of qubits connecting two gates corresponds to the dimension of the index between the related tensors. 
While the example assumes a bond dimension of two for the parent tensor network, we can account for an 
increase in bond dimension by duplicating wires in the quantum circuit, such that D = 2nV.

Circuit cutting.  A quantum circuit can be executed on hardware or simulated classically, but hybrid meth-
ods also exist that trade off classical and quantum resources20,22,24. One of these techniques, circuit cutting20,22, 
enables the execution of many-qubit circuits with few-qubit quantum devices, albeit at the expense of additional 
classical computation. The primary strategy in this technique is to divide large circuits into smaller fragments 
which are then evaluated on fewer-qubit devices. By evaluating these fragments over a large number of different 
configurations, we can obtain enough results to classically reconstruct the output of the original circuit.

More generally, recall that a quantum circuit can be described by a directed acyclic graph Gc(Vc ,Ec) , where the 
nodes represent gates in the circuit and the edges represent wires. As we now explain, cutting a circuit is linked to 
partitioning this circuit graph. A partitioning � of a graph is a collection of subsets of vertices V1,V2, . . . ,Vk ⊂ Vc 
such that every vertex in the graph is contained in exactly one subset. We refer to each subset Vi as a graph frag-
ment. The edges connecting different graph fragments correspond to wires that can be cut in the procedure, 
producing circuit fragments that can be executed separately. This is summarized in Fig. 7.

The graph-based framework described above can be used to analyze the resource requirements of circuit 
cutting. Ref.22 shows that the number of circuit executions needed to compute the expectation value of a tensor 
product of local observables of the form O =

⊗n
i=1 Oi with precision ε scales asymptotically as

where k is the number of fragments and dmax is the maximum number of edges between fragments. For the case 
of MPS circuits, this cost may be quadratically reduced following the techniques of Ref.23.

Looking into Eq. (4), we find that tensor-network quantum circuits are naturally suited for circuit cutting 
techniques: these circuits can be cut such that each tensor block results in a fragment and the exponent dmax 
is kept fixed, allowing the circuit to be executed on few qubits while the number of circuits to evaluate scales 
polynomially with respect to the number of tensor blocks. For example, for architectures like MPS and TTN, 

(4)O
(

83dmaxdmax(k
3 log k)/ǫ2

)

,

Figure 6.   (a) An example PEPS tensor network with bond dimension two, (b) tensor-network quantum circuit 
design step 1: adding direction to the open edges in the tensor network diagram, (c) steps 2 and 3: labeling the 
vertices and adding acyclic direction to the internal edges, (d) step 4: adding edges to balance the in- and out-
degree of each vertex.
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the maximum number of edges between fragments dmax is equal to the number of bond qubits, nV , that connect 
two adjacent blocks. Since nV is chosen in the design, it is possible to increase the number of qubits in the circuit 
while keeping nV constant. With a constant nV , k only increases linearly with respect to the total number of qubits. 
This means we can extend tensor-network quantum circuits as in Fig. 7 to more qubits and deeper circuits as 
in Fig. 5, while the number of quantum circuit fragments we have to evaluate only increases polynomially with 
the number of qubits.

More precisely, consider an MPS circuit with bond dimension 2nV , with blocks of 2nV qubits, defined on n 
total qubits and with a single Pauli Z measurement on the bottom qubit. We can cut the circuit into its constituent 
blocks, meaning that we can evaluate the full circuit on a device with only 2nV qubits. In this case, the number 
of different circuits that must be evaluated to reconstruct the measurement on the original circuit is given by:

For a TTN circuit with bond dimension 2nV , with blocks of 2nV qubits, defined on n total qubits and with a single 
Pauli Z measurement on the bottom qubit, this becomes:

Numerical demonstrations
To illustrate possible applications of tensor-network quantum circuits, we perform a series of numerical simula-
tions. We combine circuit cutting techniques with tensor network circuits to classify synthetic data and then 
extend the model to image classification and object detection on industrial data. To carry out these experiments, 
we build on the open-source PennyLane library for quantum differentiable programming36.

Circuit cutting simulation times.  In this section, we start by benchmarking the runtime performance for 
the combination of circuit cutting techniques with tensor-network quantum circuits. We show how simulation 
time increases as we scale various tensor-network parameters.

More specifically, we design an MPS quantum circuit as in Fig. 2, where the unitary blocks are replaced with 
two strongly entangling layers37 like the ones in Fig. 8. An example of a resulting MPS with the unitary blocks 
specified as strongly entangling layers is given in Fig. 9 for four qubits. We then add a Pauli Z measurement on 
the bottom qubit and simulate the resulting circuit. PennyLane’s SPSVERBc1 template can be used to produce 
an MPS circuit with user-defined circuit blocks, number of bond qubits, and total number of qubits. By defining 
a block that includes the strongly entangling layers template, we can define a circuit like in Fig. 9. We then use 
PennyLane’s circuit cutting functionality to separate the circuit into its individual tensor blocks, add the required 
state preparations and observables, evaluate them, and reconstruct the original circuit result. This is done auto-
matically when the SPSVERBc2 decorator is applied to a PennyLane circuit. The simulations are performed for 
various configurations of the bond dimension, block size, and the total number of qubits. For examples of how 
to use PennyLane to simulate circuit cutting, please check the Penny​Lane docum​entat​ion.

(5)cMPS = 3nV +

(

n

nV
− 3

)

4nV 3nV + 4nV .

(6)cTTN =
3nV n

2nV
+ 3nV (42nV )

(

n

2nV
− 2

)

+ 42nV .

Figure 7.   Circuit cutting and reconstruction procedure for a small TTN-shaped quantum circuit. Top: the 
original circuit is partitioned into two fragments, V1 and V2 . One fragment is executed with multiple different 
measurements, 〈Om〉 , while the other fragment is executed with multiple different initial states, |ψm� . Bottom: the 
results of the fragment executions are combined as dictated by Refs.20,22. This summation is performed with a 
classical computer and returns the expectation value of a measurement on the original circuit.

https://docs.pennylane.ai/en/stable/code/api/pennylane.cut_circuit.html
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According to Eqs. 4–6, we find that the simulation time increases polynomially with the total number of 
qubits and exponentially with the number of bond qubits. This is shown in Fig. 10. Overall, applying circuit 
cutting to an MPS quantum circuit enables the simulation of a large number of qubits as long as the number of 
bond qubits is kept low. For the simple structure of these circuits, this performance could also be achieved with 
simulations based on classical tensor network techniques3, but circuit cutting provides a path toward executing 
large circuits using small quantum computers.

Bars and stripes.  Here we demonstrate how to use a tensor-network quantum circuit to perform image 
classification tasks. The problems we study are well-known and can be routinely solved with classical methods. 
Our purpose is not to compete with such techniques, but rather to guide readers on example applications of 
tensor-network quantum circuits.

The bars and stripes data set is an example of synthetic data often used to develop proof-of-principle machine 
learning algorithms. As shown in Fig. 11, a bars and stripes instance is composed of binary black and white 
images of size n× n pixels, where either all pixels in a column have the same color (bars) or all pixels in a row 
have the same color (stripes)38. The classification task is to output the correct label, bars or stripes, for any 
input image from the data set. To perform this task, we implement a quantum circuit consisting of an encoding 

Rot Rot

Rot Rot

Figure 8.   Two strongly entangling layers for two qubits. Each set of two rotation gates and two CNOT gates 
constitutes one strongly entangling layer. These layers can be repeated any number of times and extended to any 
number of qubits37.

Rot Rot

Rot Rot Rot Rot

Rot Rot Rot Rot

Rot Rot

Figure 9.   MPS meta-ansatz with two strongly entangling layers replacing each unitary tensor block.

Figure 10.   Left: The simulation time of an MPS circuit increases exponentially with the number of bond qubits, 
regardless of the total number of qubits. For this data, we used 16-qubit blocks. Note that the total number of 
qubits can vary slightly as the number of bond qubits changes. The MPS shape dictates the variation in qubit 
numbers, e.g., an MPS circuit with 16-qubit blocks and two bond qubits per block can only result in circuits 
with 16+ 14n qubits, where n is a positive integer. Middle: At a constant number of bond qubits and five block 
qubits, the simulation time increases linearly with the total number of qubits. Right: For a constant total circuit 
size of 100 qubits, increasing the size of the tensor blocks initially reduces the simulation time and then increases 
it. This is an artifact of how the tensor blocks are defined. Initially, increasing the number of block qubits reduces 
the total number of circuits to simulate during circuit cutting. However, as the size of the blocks increases, 
the time gained by having larger circuits surpasses the time saved by having fewer circuits. All simulations are 
performed on a personal laptop computer with 16 GB of RAM and a four-core i7-1185G7 processor operating at 
3.00GHz.
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operation to input the image, a parameterized tensor-network quantum circuit to process it, and a measurement 
to obtain the label. Since many design choices are required to implement this framework, we summarize these 
in the following list: 

1.	 We choose the amplitude encoding39 to encode the normalized datapoint x of pixel information into the 
amplitude of an n-qubit quantum state |ψx� =

∑2n

i=1 xi|i� , with xi the i-th element of x and |i� the i-th com-
putational basis state.

2.	 We choose a tree tensor network architecture because its hierarchical structure is suited to perform image 
processing tasks like convolution and pooling15,40,41.

3.	 We use two strongly entangling layers to replace the unitary blocks in the circuit because they are expressive37 
and experimentation showed that two layers can reach 100% classification accuracy for this application.

4.	 We limit the individual blocks to two qubits, to reduce computation time while still reaching 100% training 
accuracy.

5.	 We make a Pauli Z measurement on the bottom qubit to obtain the labels. When an input image results in a 
Pauli Z measurement of positive one, we label that image “bars” and when the Pauli Z measurement is nega-
tive one, we label the image “stripes”. For multiple measurements, we use the expectation value, such that 
when 〈σZ〉 > 0 , we label the image “bars” and when 〈σZ〉 < 0 , we label the image “stripes”. In other words, 
we choose the most-frequently-sampled label.

6.	 We choose 14 training images and 14 test images from the bars and stripes data set.
7.	 We use the loss function 

 where the index i iterates over the images in the data set, and pi is the probability of obtaining the correct 
label when sampling the circuit with image i as input. This loss function favors a good probability of sampling 
correct labels over many images rather than a very high probability over a few images. The parameter pi can 
be calculated from the Pauli Z expectation value as: 

 Where σ z
n is the Pauli Z operator applied to the n-th qubit, |φi� is the final state of the qubits after running the 

circuit for image i, and ℓ = 0, 1 is the correct image label, taking a value of zero for bars and one for stripes.
8.	 We use the Simultaneous Perturbation Stochastic Approximation (SPSA) algorithm to optimize the circuit, 

with hyperparameters α = 0.602 and γ = 0.10142.
9.	 We use PennyLane36 templates to design the tensor-network circuits and Jet43 to simulate the circuits using 

optimized task-based tensor contraction.

An example circuit on four qubits following these design choices is shown in Fig. 12.
Next, we train the tree tensor network circuit on images of size 4× 4 pixels, then extend to 16× 16 pixels, 

and finally reach 256× 256 pixels. Under these design conditions, we can train the circuit to reach 100% clas-
sification accuracy for both the training and test sets. This is most likely due to the simplicity of the task, as we 
will see in the next section. These results are summarized in Fig. 13.

Welding defects.  In this section, we extend the previous image classifier circuit to perform object detec-
tion on weld images toward implementing quality control systems44. Welding is a standard method to fuse two 
portions of metallic material. It consists of partially melting the metal to attach the materials and allowing it to 
solidify. During this process, defects can weaken the connection between the materials. The welding defects 
data set contains cross-sectional X-ray images of the fused portion in different welded structures. The flaws in 

(7)loss =
∑

i

(1+ 10e7pi )−1,

(8)pi = 1−

∣

∣

∣

∣

1− �φi|σ
z
n |φi�

2
− ℓ

∣

∣

∣

∣

,

Figure 11.   Bars and stripes data set for 4× 4 pixel images.
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the images appear as very dark or black cracks and bubbles, as seen in Fig. 14. The goal here is to determine the 
severity and extent of the defects by quantifying the area they occupy using a tree tensor network circuit that 
identifies the size and location of the defect.

This object detection is performed in three steps. We first classify an image as containing defects or not. We 
then use the sliding windows method45 to segment the image into many smaller pictures and classify each seg-
ment with 16× 16 pixel segments to propose defect areas. In the final step, we re-segment the proposed areas 
into 4× 4 pixel images to identify the individual defects in the proposed areas. This strategy requires training 
three image classifiers, one for each step. The overall defects-versus-no-defects classifier is a 16-qubit tree tensor 
network circuit. To train this classifier, we manually select 14 defect and 14 non-defect images and divide them 
into a training set and test set. We crop and resize the images to 256× 256 pixels before inputting them to the 
circuit. This is done both to fit the 16-qubit size requirement and because the defects are typically in the center 
of the images.

For the second classifier, we use an eight-qubit circuit that can process the 16× 16 pixel segments. To train 
this circuit, we segment an image with defects into 16× 16 pixel images and manually select 14 segments with 
defects and 14 without defects. Finally, we repeat the previous procedure with a four-qubit circuit and 4× 4 
pixel images. Due to the smaller size, the four-qubit and eight-qubit circuits are significantly faster to train and 
simulate than the 16-qubit circuit.

In summary, the complete defect detection strategy involves first running a 16-qubit tree tensor circuit to 
classify whether the center 256× 256 pixel portion of the weld image has a flaw, running the sliding window 
algorithm to classify 16× 16 pixel segments of the image to propose sections with flaws, and finally running 
the sliding window algorithm to classify 4× 4 pixel segments of the proposed area. Once the final 4× 4 pixel 

|0〉 Rot Rot

|0〉 Rot Rot Rot Rot

|0〉 Rot Rot

|0〉 Rot Rot Rot Rot

Figure 12.   A tree tensor quantum circuit with nV = 1 and two entangling layers applied to four qubits. Single-
qubit gates apply arbitrary Bloch rotations of user-defined value ω in the Z axis, θ in the Y axis, and φ in the X 
axis. These rotations can be optimized such that the circuit classifies 16× 16 pixel images. The circuit can also be 
extended to more qubits, enabling the classification of larger images.

Figure 13.   Evolution of loss, training accuracy, and test accuracy while training a tree tensor quantum circuit 
on various image sizes. The quantum circuit reaches 100% accuracy for all sizes within 400 training iterations.
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segments are classified, we can classically select the black pixels in those segments and convert them to red to 
highlight the detected defect area. The results of running the entire algorithm on an example image are shown 
in Fig. 14. This figure demonstrates that the procedure indeed detects the defect areas.

Conclusion
In this work, we have provided an overview of how to apply tensor-network architectures to the design of vari-
ational quantum circuits. We implement these variational circuits to address illustrative industry-relevant prob-
lems. The results serve as examples of potential proof-of-principle use cases for existing quantum hardware and 
simulators. Additionally, the results show how combining circuit cutting with tensor-network quantum circuits 
can improve the scale of quantum systems that can be simulated in classical computers. Additionally, the results 
can be leveraged to execute large tensor-network quantum circuits on small quantum devices. Moreover, we find 
that simple image-classification tasks can be performed on quantum computers via this method.

Additional work must be done comparing the performance of tensor network quantum circuits to classical 
alternatives. While we do not anticipate that tensor-network quantum circuits will outperform classical algo-
rithms for the investigated image-processing applications, the tensor-network quantum circuit framework may 
help study the relationships between data structure and the design of quantum algorithms.

Data availability
The datasets generated during and/or analysed during the current study are not publicly available due to cor-
porate privacy policy of BMW Group but are available from the corresponding author on reasonable request. A 
demonstration is provided to explain how to use PennyLane templates to design and implement tensor-network 
quantum circuits discussed in this paper46.
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