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Automated in‑depth cerebral 
arterial labelling using 
cerebrovascular vasculature 
reframing and deep neural 
networks
Suk‑Woo Hong 1,2, Ha‑Na Song 1, Jong‑Un Choi 1,3, Hwan‑Ho Cho 4, In‑Young Baek 1, 
Ji‑Eun Lee 1, Yoon‑Chul Kim 7, Darda Chung 1, Jong‑Won Chung 1, Oh‑Young Bang 1, 
Gyeong‑Moon Kim 1, Hyun‑Jin Park 5,6, David S. Liebeskind 8 & Woo‑Keun Seo 1,3*

Identifying the cerebral arterial branches is essential for undertaking a computational approach to 
cerebrovascular imaging. However, the complexity and inter-individual differences involved in this 
process have not been thoroughly studied. We used machine learning to examine the anatomical 
profile of the cerebral arterial tree. The method is less sensitive to inter-subject and cohort-wise 
anatomical variations and exhibits robust performance with an unprecedented in-depth vessel range. 
We applied machine learning algorithms to disease-free healthy control subjects (n = 42), patients 
with stroke with intracranial atherosclerosis (ICAS) (n = 46), and patients with stroke mixed with the 
existing controls (n = 69). We trained and tested 70% and 30% of each study cohort, respectively, 
incorporating spatial coordinates and geometric vessel feature vectors. Cerebral arterial images were 
analyzed based on the ‘segmentation-stacking’ method using magnetic resonance angiography. 
We precisely classified the cerebral arteries across the exhaustive scope of vessel components using 
advanced geometric characterization, redefinition of vessel unit conception, and post-processing 
algorithms. We verified that the neural network ensemble, with multiple joint models as the combined 
predictor, classified all vessel component types independent of inter-subject variations in cerebral 
arterial anatomy. The validity of the categorization performance of the model was tested, considering 
the control, ICAS, and control-blended stroke cohorts, using the area under the receiver operating 
characteristic (ROC) curve and precision-recall curve. The classification accuracy rarely fell outside each 
image’s 90–99% scope, independent of cohort-dependent cerebrovascular structural variations. The 
classification ensemble was calibrated with high overall area rates under the ROC curve of 0.99–1.00 
[0.97–1.00] in the test set across various study cohorts. Identifying an all-inclusive range of vessel 
components across controls, ICAS, and stroke patients, the accuracy rates of the prediction were: 
internal carotid arteries, 91–100%; middle cerebral arteries, 82–98%; anterior cerebral arteries, 
88–100%; posterior cerebral arteries, 87–100%; and collections of superior, anterior inferior, and 
posterior inferior cerebellar arteries, 90–99% in the chunk-level classification. Using a voting algorithm 
on the queued classified vessel factors and anatomically post-processing the automatically classified 
results intensified quantitative prediction performance. We employed stochastic clustering and deep 
neural network ensembles. Ma-chine intelligence-assisted prediction of vessel structure allowed us 
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to personalize quantitative predictions of various types of cerebral arterial structures, contributing to 
precise and efficient decisions regarding the cerebrovascular disease.

Abbreviations
ICA	� Internal carotid arteries
OA	� Ophthalmic arteries
ACHA	� Anterior choroidal arteries
VA	� Ver-tebral arteries
PICA	� Posterior inferior cerebellar arteries
AICA	� Anterior inferior cerebellar arter-ies
IAA	� Internal auditory arteries
SCA	� Superior cerebellar arteries
PCOA	� Posterior communi-cating arteries
PCA	� Posterior cerebral arteries
P1	� Pre-communicating PCA
P2	� Post-communicating PCA
P1P2	� Merging of P1 and P2
P3P4	� Mixture of quadrigeminal and calcarine PCA
PO	� Parieto-occipital arteries
PCALC	� Calcarine arteries
PPA	� Direct peduncular perforating arteries
HA	� Hippocampal arteries
PCAAT​	� Anterior temporal PCA
PCAPT	� Posterior temporal PCA
PCALP	� Lateral posterior choroidal arteries
M1	� Sphenoidal middle cerebral artery
MCA	� Middle cerebral arteries
MCAS	� Superior division of MCA
MCAI	� Inferior division of MCA
MCALO	� Lateral orbitofrontal arteries
MCAPR	� Pre-Rolandic MCA
MCAR​	� Rolandic MCA
MCAAP	� Anterior parietal MCA
MCAPP	� Posterior parietal MCA
MCAA​	� Angular MCA
MCAPT	� Posterior temporal MCA
MCAMT	� Middle temporal MCA
MCAAT​	� Anterior temporal MCA
MCAPF	� Pre-frontal MCA
ACA​	� Anterior cerebral arteries
A1	� Horizontal pre-communicating ACA​
A2	� Vertical post-communicating pre-callosal ACA​
A1A2	� Combination of A1 and A2
ACAMO	� Medial orbitofrontal ACA​
A2F	� Frontopolar vertical post-communicating pre-callosal ACA​
ACAC​	� Callosomarginal ACA​
ACAP	� Pericallosal ACA​
BA	� Basilar artery
ACOA	� Anterior communicating artery

Defining the morphological nature of cerebral circulation and providing quantified information, so-called dig-
itisation, are the indispensable hallmark of identifying pathogenic mechanisms, diagnosing disease, and deter-
mining the clinical relevance of cerebrovascular dysfunctions. Automated labelling of the major cerebral arterial 
branch is the first step for quantitatively analysing cerebral arterial morphology from cerebrovascular images. 
Characterising the considerable variations in complex intracranial vascular structures, half of which are usually 
located outside the Circle of Willis, has been challenging but is a crucial step in quantifying structural information 
of the cerebrovasculature1. Previous progressions include atlas-based artery identification and post-processing 
improvement using iterative region-growing territorial expansion and have suffered from practical limitations 
attributable to complexities and inter-individual variabilities of the cerebrovasculature covering only the major 
branches of the Circle of Willis for automated labelling2–4.

Here, we overcome the problems mentioned above, leveraging geometric features obtained from systematic 
time-of-flight magnetic resonance angiography (TOF MRA) with a deep neural network and advanced the 
performance of the models by reorganising vascular units for clinically disparate personalised cerebral vessel 
modules.

The strengths and unique nature of the investigation in this study reside in the validation of vessel unit restruc-
turing and mathematical factor analysis in cerebrovasculature with the jointed assembly of machine learning 
models up to 62 cerebral branches. The study reveals that the prediction capacity of combined machine learning 
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models fully automated and advanced the cerebral arterial labelling of queued vessel segments and minimised 
inter-individual anatomical variability confronted in clinical practice. The structural heterogeneity of control, 
stroke, and ICAS cerebrovasculature rarely undermined the prediction performance of the model ensemble.

This study aimed to segment the cerebrovascular arterial branches in a fully automatic manner. We focused on 
cerebral arterial circuits, systematising and validating neural network models to render them clinically pragmatic.

Materials and methods
Study design and subjects.  In accordance with the primary purpose of this study which was the develop-
ment of an automated cerebral arterial labelling algorithm, we used a pre-established cohort retrospectively. The 
study subjects were healthy controls, stroke patients, and stroke patients with intracranial atherosclerosis (ICAS) 
over 20 years (Fig. S1).

The control cohorts for the algorithm development were healthy subjects who visited the comprehensive 
health promotion centre at the Samsung Medical Center and who underwent MRA from January 1, 2013, to 
December 31, 2013, excluding those who had the following: (1) stroke including ischemic stroke, hemorrhagic 
stroke, and transient ischemic attack; (2) coronary artery or heart disease; (3) ICAS; (4) intracranial arterial 
anomalies corresponding to pathological conditions or variants of normal anatomy; (5) congenital morbidity 
including cerebral arterial hypoplasia; and (6) miscellaneous abnormal cases diagnosed by angiography.

Stroke patients for the external validation of the algorithm were selected from the Samsung Medical Center 
stroke registry (SMC stroke registry). This prospectively collected stroke registry recruited acute stroke patients 
seven days after stroke onset. Another specially selected stroke group was intended to provide clinical relevance 
to the algorithm from the patients who participated in The Intensive Statin Treatment in Acute Ischemic Stroke 
Patients with Intracranial Atherosclerosis—High-Resolution Magnetic Resonance Imaging (STAMINA-MRI) 
study5 with significant and symptomatic intracranial arterial stenosis of > 50% in the middle cerebral artery of 
the basilar artery.

Demographic data and vascular risk factors were collected from the medical records for controls and the 
stroke registry for the stroke cohort.

The Samsung Medical Center Institutional Review Board approved the study design (SMC-2021-04-072). 
This study was performed in accordance with the declaration of Helsinki. Informed consent was waived by the 
Samsung Medical Center Institutional Review Board for the control group because the study progressed in 
a retrospective manner, and we provided the clinical data and brain images in an anonymised form. Written 
informed consent was obtained from those enrolled in the SMC stroke registry.

Imaging preparation.  Magnetic resonance machine.  The intracranial arteries were imaged using a 3.0 T 
Philips Achieva magnetic resonance imaging scanner (Philips Medical Systems) equipped with a 32-element 
phased-array receiver head coil.

Magnetic resonance sequence.  This study used whole-brain three-dimensional (3D) MRA images with a TOF 
protocol collected from each participant. With an isotropic voxel size configured to 0.284 × 0.284 mm3, the 
parameters were as follows: echo time, 4.59  ms; repetition time, 22  ms; flip angle, 23°; RBW, 130  Hz/pixel; 
GRAPPA factor, 3; 32 reference lines.

Region growing.  We used the raw input data format DICOM, which employs a TOF modality. Preprocessing 
procedures included anonymisation using DICOM Anonymizer Pro (Neologica, Montenotte, Italy) and region 
growing by an in-house vessel analyser program that created segmented brain angiography maps, converting 
them into the NII format. The internally developed vessel morphology pipelines then analysed and extracted 
brain vessel features to examine the cerebrovascular structure. Figure 1 provides a schema of the intravascular 
feature vector extraction process. Intelligent morphological surface, centerline, bifurcation, and airway sectional 
processing algorithms were used to characterise vascular spots, segments, chunks, and branches. The procedures 
were finalised upon providing multifaceted systematic dimensions of the geometrically modelled features.

Feature extraction.  To specify feature modelling, the dissection of isosurfaces for vessel surface model genera-
tion was initially performed using the vascular modelling toolkit libraries6–9. The z-axis voxels were tailored to 
the isovoxel image scale using bicubic interpolation to minimise artefacts and rough image resampling on a 
regular planar grid10–12. A continuous 3D space was divided into myriad cells uniformly based on the respective 
vertices of their isosurfaces. The major arterial centerlines from the boundary surface of each cell were then 
extracted. At this stage, a set of spatial coordinates, whose nearest vertex among the vertices of the isosurface is 
homogeneously distributed, works as a unit cell. The framework determines the starting point and skeleton of 
the centerlines of the significant brain arteries from a lower slice of the vascular region for extraction. Vessel skel-
eton refinement strengthens the determination of the endpoints of the centerline. Specifically, (i) skeletonising 
the cerebrovascular region and surface, (ii) pruning the branch under a predetermined threshold, (iii) generat-
ing a linked list of a tree structure based on the refined skeletal structure, and (iv) specifying leaf nodes from the 
linked list determine the endpoints. The centerlines were extracted by tracking the boundary surfaces of the cells 
connecting the start and end points. Finally, the pipelines characterised numerous blood vessel feature vectors 
of compartmentalised groups based on a branch point of a centerline. Quantified vessel characteristics include 
the cerebral blood vessel cross-sectional area, maximally inscribed sphere radius, minimised and maximised 
diameter, maximum-minimum radius ratio, surface circumference, distortion, curvature, and (hydraulic) lumi-
nal circularity (Table S1).
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Thus, the vascular morphological modelling pipelines precede the preprocessing. This leads to surface extrac-
tion and re-meshing, centerline and branch extraction, and centerline merging to obtain its derivative subfeatures. 
The finalised vessel features then support ensemble neural networks to detect structural brain anomalies. The 
feature vectors accompany subject-wise gold-standard ground truth vascular labels established by two board-
certified neurologists with expertise in stroke imaging and angiography.

Reframing hierarchical cerebrovasculature.  In contrast to the conventional nomenclature employed 
in the clinical neurology field, approximately 4,000 detailed minuscule cerebral arterial segments, subdivided 
by our algorithm, required a dimensional reduction of the feature data for utilisation in neurovascular research. 
Therefore, we restructured the conventional concepts of the vascular unit system into four hierarchical levels 
(Fig. 1). ‘Spots’ are the most rudimentary units of cubic cells in the binarised 3D cerebral arterial tree with an 
interval of 0.2801 mm on the arterial centerline. Each spot, along with its morphological features, was reorgan-
ised and hybridised into segments according to continuity and ending between bifurcations. According to the 
vessel geometry upon bifurcation, feature vector extraction algorithms geometrically grouped segments into 
62 branches. Branches corresponded to the conventional cerebral arterial nomenclature. The vessel branches 
composed of the vascular segments could be reconstructed according to clinically practical criteria of symme-
try: anterior or posterior, basal or pial, and MCA, ACA, or PCA. The cerebrovasculature consisted of 20 types 

Figure 1.   Flow schema describes the comprehensive preprocessing procedures and the geometric 
characterisation algorithms. Reconstruction encompasses vascular spots, segments, chunks, and branch 
units. Morphological and geometrcharacterisationion algorithms were used to process the vascular units 
automatically. A1, horizontal pre-communicating ACA; M1, sphenoidal middle cerebral artery; BA, basilar 
artery; ICA, internal carotid artery.
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of vessel chunks. The appropriateness of this system was validated using uniform manifold approximation and 
projection (UMAP)13,14.

We provide a new nomenclature for the cerebral arteries (Table 1, Table S2).

Classification method development.  Two‑step modelling.  The primary objective of this study was 
the automatic segmentation and labelling of the cerebral vasculature using the conventional nomenclature (62 
branches). To achieve this, we used a stepwise strategy: first allocating each spot of the whole brain to a specific 
chunk (step 1), and then allocating each spot of a single chunk to a specific branch (step 2). The supervised 
machine learning procedures initialised the allocation of each spot to a single chunk level using the multi-layer 
perceptron neural network15–18. Input features included the coordinates of each spot, cerebral blood vessel cross-
sectional area, maximally inscribed sphere radius, minimised and maximised diameter, maximum-minimum 
radius ratio, surface circumference, distortion, curvature, and (hydraulic) luminal circularity. Subsequently, the 
final chunk assignment was performed by allocating each spot to a specific chunk (step 1). A similar process 
was repeated to allocate spots in a specific chunk to a single branch by supervised machine learning, and the 
subsequent voting process enhanced accuracy (step 2). The voting algorithm obtained profiles of classified vessel 
labels from spots and selected the most frequently appearing vessel label among vascular chunks and segments.

Table 1.   Vessel brancompartmentalisationion into a 20-chunk macrovessel framework composed of 62 major 
arterial segments delineated the whole cohort-wise performance range of vessel chunks and segments. a Each 
unit of major arterial segments was further condensed and tagged with identifiers composed of chunk and 
segment digits. b Symmetrical properties of entire cerebrovascular branches were prefixed with ‘Right’ or ‘Left’; 
abbreviations are defined in the text. c If the sample size was too small for inclusion in the test pool or there 
was only one type of branch within the chunk, the performance profile of the vessel branch was excluded. ICA, 
internal carotid arteries; OA, ophthalmic arteries; ACHA, anterior choroidal arteries; VA, vertebral arteries; 
PICA, posterior inferior cerebellar arteries; AICA, anterior inferior cerebellar arteries; IAA, internal auditory 
arteries; SCA, superior cerebellar arteries; PCOA, posterior communicating arteries; PCA, posterior cerebral 
arteries; P1, pre-communicating PCA; P2, post-communicating PCA; P1P2, coalescence among P1 and P2; 
P3P4, mixture of quadrigeminal and calcarine PCA; PO, parieto-occipital arteries; PCALC, calcarine arteries; 
PPA, direct peduncular perforating arteries; HA, hippocampal arteries; PCAAT, anterior temporal PCA; 
PCAPT, posterior temporal PCA; PCALP, lateral posterior choroidal arteries; M1, sphenoidal middle cerebral 
artery; MCA, middle cerebral arteries; MCAS, superior division of MCA; MCAI, inferior division of MCA; 
MCALO, lateral orbitofrontal arteries; MCAPR, pre-Rolandic MCA; MCAR, Rolandic MCA; MCAAP, anterior 
parietal MCA; MCAPP, posterior parietal MCA; MCAA, angular MCA; MCAPT, posterior temporal MCA; 
MCAMT, middle temporal MCA; MCAAT, anterior temporal MCA; MCAPF, pre-frontal MCA; ACA, anterior 
cerebral arteries; A1, horizontal pre-communicating ACA; A2, vertical post-communicating pre-callosal 
ACA; A1A2, combination of A1 and A2; ACAMO, medial orbitofrontal ACA; A2F, frontopolar vertical post-
communicating pre-callosal ACA; ACAC, callosomarginal ACA; ACAP, pericallosal ACA; BA, basilar artery; 
ACOA, anterior communicating artery.

Vessel chunk (serial)

Accuracy (%) Precision (%) Recall (%) F1 (%)

Control Stroke ICAS Control Stroke ICAS Control Stroke ICAS Control Stroke ICAS

Right ICA 99 98 98 93 98 99 97 99 99 95 99 99

Left ICA 99 96 99 95 100 99 97 99 99 96 99 99

Right anterior basal MCA 95 90 92 84 96 95 82 97 96 83 97 96

Left anterior basal MCA 92 92 92 81 97 96 82 97 97 81 97 97

Right anterior pial MCA 98 96 99 97 99 99 97 99 100 97 99 99

Left anterior pial MCA 99 97 99 97 99 99 96 99 99 96 99 99

Right anterior basal ACA​ 91 87 89 72 95 96 68 95 94 70 95 95

Left anterior basal ACA​ 90 82 89 64 95 92 75 97 96 69 96 94

Right anterior pial ACA​ 91 90 95 70 95 97 66 96 96 68 96 96

Left anterior pial ACA​ 92 88 94 71 97 97 73 95 96 72 96 96

Right posterior VA 97 95 96 79 94 96 75 97 96 77 96 96

Left posterior VA 93 94 97 83 98 97 77 95 97 80 96 97

Right posterior basal PCA 97 91 97 80 97 98 84 98 97 82 97 97

Left posterior basal PCA 98 94 97 84 98 98 84 97 98 84 98 98

Right posterior pial PCA 87 87 93 69 97 97 65 86 96 67 91 96

Left posterior pial PCA 90 89 94 72 97 98 68 97 98 70 97 98

Right SCA, AICA, and PICA 96 94 95 84 93 96 90 98 98 87 96 97

Left SCA, AICA, and PICA 96 90 95 86 98 98 82 96 97 84 97 97

BA 96 93 95 85 97 96 80 97 95 82 97 96
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Validation.  An area under the receiver operating characteristic (AUROC) test was used to assess the internal 
and external validity and the chunk- and branch-level accuracy. First, we tested the performance of the algo-
rithm in a set of independent stroke patients with ICAS. The structural dissimilarities in the cerebral arterial 
configuration between the healthy standard controls and those with stroke with ICAS were expected to indicate 
the clinical relevance of this algorithm in subjects with pathological conditions.

Statistics.  We performed groupwise t-statistics and ANOVA from the standpoints of feature vectors and 
vascular chunks to interpret between-group differences for statistical significance (Fig. S3). We visualised each 
group’s similarity profiles in a two-dimensional plane, excluding t-values with p-values > 0.001 as insignificant.

Results
Subject characteristics.  Finally, we recruited 157 participants among the 203 screened subjects (42 / 50 
controls, 46 / 77 stroke patients with ICAS, and 69 / 80 stroke patients; Fig. S1). Table 2 presents the demograph-
ics and distribution of the participants’ vascular risk factors. The training and test sets comprised 70% and 30%, 
respectively, of the healthy control group (n = 42). The group had a mean age of 58 years (SD, 10.1 years; Table 2) 
and was predominantly male (73.8%). A stroke group was included to validate the algorithm. The same train-
ing–test ratio policy was used for the rest of the study cohorts. The stroke-with-ICAS group comprised 46 stroke 
patients (58.7% male), with a mean age of 64.2 years (SD, 13.3). No data were excluded for any of the variables 
used in the training or testing sets. Stroke patients were older and more likely to smoke cigarettes and have 
diabetes, hyperlipidemia, hypertension, or derivative coronary artery diseases than those in the control group.

Vascular component characteristics.  Considering inter-subject hallmarks in the stepwise vessel iden-
tification process, the cerebrovascular images were evaluated under a vascular component profile containing 
5016.4 ± 732.9 spots, 42.5 ± 4.2 segments, and 18.3 ± 0.8 chunks in controls; 4393.6 ± 1906.3 spots, 33.6 ± 11.7 seg-
ments, and 15.8 ± 4.3 chunks in patients with stroke with ICAS; and 4810.4 ± 1357.5 spots, 39 ± 7.6 segments, and 
17.6 ± 1.9 chunks in patients with stroke. We considered the vessel unit distribution for each cohort to precisely 
analyse complex cerebral arterial trees (Fig. S5).

We mapped the distribution profile of spots across the control, stroke-with-ICAS, and stroke groups (Fig. S2). 
Regardless of study cohorts, concerning the vessel chunks, the most frequently appearing components were 
the right and left anterior pial MCA. They were followed by the right and left ICA, right anterior pial ACA, left 
posterior VA, and right and left posterior basal PCA with cohort-wise subtle fluctuations. Concerning the ves-
sel segments, independent of the study groups, the four most frequently appearing vascular elements were the 
ICA and MCA angular branches, including the right and left branches. The following most frequent vascular 
segments included the pericallosal branch of the ACA and the posterior temporal branch of the PCA across the 
study groups, including the right and left branches.

Testing the appropriateness of the reframed vascular structure.  We evaluated the appropriateness 
of the reframed vascular elements by unsupervised dimensional reduction using the UMAP and visualised the 

Table 2.   Demographic and clinical features of the cohorts (n = 157). a The intensity of smoking ranges from 
zero to two. *Boldened if p < 0.05. P-values statisticalanalysedsed by homoscedastic two-sample t-test had 
two-tailed distribution parameters between the controls and stroke-with-ICAS patients. † Homoscedastic two-
sample t-test had two-tailed distribution parameters between the stroke-with-ICAS and stroke-only patients. 
‡ Homoscedastic two-sample t-test had two-tailed distribution parameters between the controls and stroke-
only patients. AF, atrial fibrillation; TOAST, Trial of Org 10,172 in Acute Stroke Treatment.

Cases Control (n = 42)
Stroke with ICAS
(n = 46) Stroke (n = 69) p-value* p-value† p-value‡

Sex, male 31 (73.8) 27 (58.7) 77 (67.5) 0.138  < 0.001 0.433

Age, years 58 ± 10.1 64.2 ± 13.3 69.3 ± 12.8 0.018  < 0.001  < 0.001

Height, cm 166.3 ± 8.3 161.5 ± 9.7 163.4 ± 9 0.016 0.923  < 0.001

Weight, kg 67.4 ± 10.9 63.7 ± 12.5 65.8 ± 11.4 0.148 0.637 0.008

Hypertension 16 (38.1) 29 (63) 74 (66.7) 0.019 0.01  < 0.001

Diabetes 5 (11.9) 18 (42.9) 31 (27.9) 0.003 0.877 0.003

Hyperlipidaemia 11 (26.2) 18 (42.9) 56 (50.5) 0.201 0.006  < 0.001
aCurrent smoking 6 (16.7) 11 (23.9) 14 (20.3) 0.671 0.067 0.162

NIHSS 3.2 ± 4.2 2.8 ± 3.4 0.524

TOAST40,

0.459

Large artery atherosclerosis 34 (73.9) 12 (17.4)

Cardioembolism 0 (0.0) 16 (23.2)

Small vessel occlusion 0 (0.0) 16 (23.2)

Other determined etiology 1 (2.2) 3 (4.3)

Undetermined etiology 6 (13.0) 10 (14.5)
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cluster results in the planar space with colour mapping according to the 20 types of vessel chunks (Fig. S2-A, 
C, and E). The dimensionality reduction had nonlinear properties, and the global data structure was conserved. 
Each chunk’s lesional profile precisely depicted the characteristics of each vessel, and the embedding algorithms 
efficiently captured high dimensions. The qualitative observations showed that the control, stroke, and stroke-
with-ICAS groups had similar overall accuracy in clustering.

Figures S2-B, D, and F depict the unsupervised clustering of the spots visualising each conventional vascular 
branch. Unlike in the chunk-level mapping, the branch-level clustering was insufficient to discriminate each 
branch.

Step 1 modelling: chunk.  The model ensemble identified 20 chunks with 87–99% accuracy (Fig. 2), except 
in the left anterior basal ACA chunk in the stroke group (82%). The anterior communicating artery (ACOA; A0) 
showed cohort-wise fluctuating performance attributable to sample size constraints and significant anatomical 
variations (37–91%). The training and test sets included both epitomised and anomalous (Fig. 2A) 3D vascular 
component coordinates and derivative features at each spot vector as inputs. The controls, stroke cohort, and 
stroke-with-ICAS cohort gave similar results in that, except for A0, most of the vessel chunks (between 90 and 
99%) were successfully classifiable. In the chunk prediction results of the control group (Fig. 2B), the majority of 
chunks showed 90–99% accuracy, except for the A0 (0.36) and P5 chunks (pial branches of the right posterior 
cerebral artery; 0.87). In the stroke group, only A5, A6, A10, P5, and P6 (basal branches of the right and left ante-
rior cerebral artery, pial branches of the left anterior cerebral artery, and pial branches of the right and left pos-
terior cerebral artery; 0.82–0.89) with A0 (0.37) fell outside the 90–99% range (Fig. 2D). In patients with ICAS 
(Fig. 2C), A5 and A6 (basal branches of the right and left anterior cerebral artery; 0.89) had an 89% accuracy and 
the rest of the branches, excluding ACOA, ranged within a 91–99% precision. When training both controls and 
stroke patients as a general group in chunk predictions (Fig. 2D), except for ACOA, the right and left anterior 
basal ACA and right and left posterior pial PCA chunks had an 82–89% performance. The rest showed unexcep-
tional performances (90–98%) before the post-processing procedures.

With regard to sensitivity and specificity, the area under the curve (AUC) of the receiver operating charac-
teristic (ROC) curve showed an overall value of 0.99–1.00 (0.97–1.00), and the precision-recall curve (PRC) 
was 0.992 (0.626–0.999) for the control, ICAS, and stroke cohorts. The algorithm’s AUC accuracy improved 
from 0.56–0.96 (95% CI 0.52–0.96; Table S3) to 0.62–0.98 (95% CI 0.56–0.98; Table S3) after applying the voting 
procedure, with statistical significance (p < 0.001) observed in all cases except for A5 and P5.

Step 2 modelling: branch.  With regard to the branch-level classification of 62 branches in the controls, 
each spot had the following accuracy, except for a few exceptions: A1-A2: 89–100%, A3–A8: 73–96%, A9–A10: 
86–98%, P5-P6: 89–100%, and P7-P8: 85–100% (Fig.  3, Table  1, Table  S2). The control results showed that, 
except for A2.02, A3.02, A4.02, A7.01, A7.08, A7.09, A8.01, A8.08, A10.01, P5.05, and P7.02, the overall clas-
sification performance was roughly 90–99% (Table 1, Table S2). In the analysis of classification performance in 
the stroke cohorts, the following precision capacities were observed: A1-A2: 92–100%, A3-A8: 87–97%, A9-A10: 
93–100%, P5-P6: 81–99%, and P7-P8: 93–99% (Fig. 3, Table 1, Table S2). Considering the deviations in the 
classification performance of the A4.02, A7.08, and P6.03 segments in the stroke group, the categorisation per-
formance showed percentage values in the upper 90s (Table 1, Table S2). Further details of the classification per-
formance are presented in Table 1 and Table S2. For segment-wise categorisation in ICAS patients, each type of 
segment had the following performance: A1-A2: 94–100%, A3-A8: 89–99%, A9-A10: 93–99%, P5-P6: 95–100%, 
and P7-P8: 92–100% (Fig. 3, Table 1, Table S2). Except for segment A7.09, the overall accuracy profile rarely fell 
below 90% (Table 1, Table S2).

Concerning sensitivity and specificity, the AUC-ROC showed an overall value of 0.99 (0.97–1.00), and the 
PRC was 0.992 (0.483–0.975) for the control, ICAS, and stroke cohorts scaled to macro-average and micro-
average values (Fig. S6).

Vascular morphological features according to the vascular risk factors.  Fig. S3 presents differ-
ences in vascular morphological features among the control, stroke, and stroke-with-ICAS groups at each chunk. 
Notably, the phenomenon was conspicuous in the right ICA, left ICA, right anterior pial, and left anterior pial 
MCA chunks (Fig. 5). The ICAS group had similar propensities concerning characterised geometric features. 
However, we also discovered the following unforeseen heterogeneous chunks between the control-stroke-ICAS 
functional profiles (Fig. 5): anterior basal MCA, right anterior basal ACA, left anterior basal, right anterior pial 
ACA, and left anterior pial ACA.

The profiles of geometric feature vectors weighted on deep neural networks.  The sensitivity 
and specificity results summarised by the AUROC revealed an overall micro-average performance of 0.97 and 
macro-average performance of 0.96 (Fig. 4A and Fig. S4) to discern stroke patients (n = 40) as external valida-
tion subjects, employing healthy subjects as the training set. When externally validated by the stroke-with-
ICAS group (n = 46), the micro-average and macro-average performance values were 0.95 and 0.92, respectively 
(Fig. 4B and Fig. S4). For the external stroke patients, the AUROC performance ranged beyond the threshold 
of 0.95 for the entire vascular chunks except for A0, A5-6, A9, and P1-2, which spanned the 0.91–0.94 range. In 
contrast, in the external stroke-with-ICAS group, the AUROC scores of the vessel chunks A2, A4, A7–8, P2, and 
P7–8 exhibited values more extraordinary than the 0.95 capacity, leaving the rest of the chunks to bear perfor-
mances between 0.90 and 0.94 (except for chunk A6 [0.89] and chunk A0 [0.70]).
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Discussion
This study demonstrated that patient-specific cerebral arterial profiles aid in the quantitative and in-depth label-
ling of cerebral arterial branches that is clinically useful19–24. We hypothesised that: (i) the appropriate combina-
tion of classical anatomical rules and computational prediction expedites the exhaustive classification of cerebral 
arteries; (ii) variations in vessel branches are detectable by employing neural networks. Accordingly, we designed 
a deep-learning algorithm that intelligently established in-depth vascular territories using strategies stemming 
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Figure 2.   Prediction performance profiles of a 20-chunk macrovessel in the control, ICAS, and stroke group 
cohorts. (A) Examples of 3D cerebrovascular models of the disease-free healthy subjects, stroke-only patients, 
and stroke-with-ICAS patients. Macrovessel chunk prediction results of (B) control cohorts, (C) ICAS cohorts, 
and (D) stroke cohorts are shown. A0, anterior communicating artery; A1, branches of the right internal carotid 
arteries; A2, branches of the left internal carotid arteries; A3, basal branches of the right middle cerebral artery; 
A4, basal branches of the left middle cerebral artery; A5, basal branches of the right anterior cerebral artery; 
A6, basal branches of the left anterior cerebral artery; A7, pial branches of the right middle cerebral artery; A8, 
pial branches of the left middle cerebral artery; A9, pial branches of the right anterior cerebral artery; A10, pial 
branches of the left anterior cerebral artery; P0, basilar artery; P1, branches of the right vertebral artery; P2, 
branches of the left vertebral artery; P3, basal branches of the right posterior cerebral artery; P4, basal branches 
of the left posterior cerebral artery; P5, pial branches of the right posterior cerebral artery; P6, pial branches of 
the right posterior cerebral artery; P7, branches of the right superior cerebellar artery, anterior inferior cerebellar 
artery, and posterior inferior cerebellar artery; P8, branches of the left superior cerebellar artery, anterior inferior 
cerebellar artery, and posterior inferior cerebellar artery.
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from the systematic geometric characterisation of MRA data. The preprocessing modules uniquely reframed 
the entire cerebrovasculature into clinically redefined compartments: spots, segments, chunks, and branches.

A quantitative approach to investigating cerebrovasculature has shown limited success, and conventional 
approaches have used less precise quantitative methods to understand complex cerebrovascular structures with 
limited clinical relevance25–27. In previous attempts, vascular structures were overlooked, and distortion during 
thresholding was not adequately accounted for due to the shortage of appropriate geometric characterisation algo-
rithms for examining small vessels. Additionally, these methods inadequately assessed residual variation, leading 
to overfitting, and thus their conclusions must be considered with caution. Furthermore, the cerebrovascular 
coverage of previous studies is lacking27–29, even excluding some vessel categories that were too complex to clas-
sify. The arterial geometry has also not been characterised; they are, therefore, vulnerable to normal variations.

Figure 3.   Prediction performance profiles of 62 major arterial branches in control, stroke-with-ICAS, and 
stroke group cohorts. The right and left posterior VA, BA, and ACOA chunks only include one significant type 
of arterial segment. The (A) control, (B) stroke, and (C) stroke-with-ICAS groups showed significant arterial 
segment classification capacity in the A0–A10 and P0–P8 chunks.
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MRA is one of the most widely used tools for assessing cerebral arterial disease. Using its template align-
ment, attempts have been made to label cerebral arteries limited to variations of those underlying the anterior 
circulation and those in clinical datasets or by bifurcations of interest, covering only roughly eight territorial 
frameworks using typical angiography of healthy subjects3,30–33. Therefore, we cannot claim to have included all 
of the components of the cerebrovasculature in our analysis. Several graph neural network studies have facilitated 
the construction of arterial morphometry, assuming that arterial traces are entirely intact and typically repre-
sentative. In other words, their hypotheses are vulnerable to interpreting vascular abnormalities or variations 
such as vessel occlusion4,25,26,34–36. Thus, conventional anatomical rules are less appropriate for quantitatively 
understanding the cerebrovasculature.

The role of neural networks in this study.  The deep neural networks employed 3D coordinates and 
geometric vessel feature vectors (Fig. 5) derived from the reframed vascular fragments. We specifically tagged 
them into major arterial branches by employing segment-wise voting algorithms and orchestrated neural net-
works, creating 62 intelligently identifiable vessel territories. Implementing these algorithms does not require 
heavy graphics microprocessors, high resolution, advanced noise nullification, or a specific region of interest 
choice.

By stochastically clustering the classified vascular regions, we identified blood vessels by exploiting the con-
ventional neuroanatomical branch nomenclature. Finally, we propose that morphological parameters such as 
diameter, roundness, and tortuosity strengthen characterisation vectors complementing variations under the 
Cartesian coordinates of angiographical categories. Therefore, reduced dependence on a Cartesian framework, 
owing to an overall uniform distribution of the contribution of geometric vascular features, lends this study a 
high level of robustness and reliability of performance.

Cerebral arterial labelling is not only a function of accuracy; therefore, targeted vessel chunks and segment 
ranges of the ensemble classifier cover should be exhaustive to fulfil clinical potential. Usually, pathological 
variations in the cerebral vasculature are expected to lower labelling performance. However, the multifaceted 
structural analysis among healthy controls, stroke patients, and stroke patients with ICAS revealed only a trivial 
difference in the performance of identifying each cerebral arterial branch (Fig. 5). Considering the consistent 
labelling performance of this algorithm, the distinct contribution of the weighting algorithm of each cubic cell 
consisting of a 3D vessel model is worthy of continued focus in future studies to improve accuracy. The prestruc-
tured models require an entire cerebral arterial label identification time of no more than a minute, unbridled by 
manual visual inspection bias and observer variabilities37–39. Therefore, this algorithm can be applied to inves-
tigate cerebrovascular morphological features in various settings, such as in a longitudinal study, assessment of 
drug effects, and between-group comparison.

Paradigm‑shifting vascular unit reframing.  A mainstream strength of this study is the vascular fram-
ing using ‘chunk’, a critical element referring to a group of cerebrovascular elements sharing functional and 
anatomical similarities. As substantiated by the comparative analysis of UMAP assessment group-wise chunk-
level feature vectors, chunk-level analysis is a rational categorisation method for territorialising cerebrovascular 
regions. Chunk discernment is a salient approach in a fundamental unit framework dedicated to the quantitative 
analysis of the cerebrovasculature and as an intermediate stage of vessel classification. Furthermore, this refram-
ing reduces data dimension from about 5,000 spots to 20 chunks level, providing a valuable way of analysing and 
summarising the massive data into a valid format.

A BReceiver operating characteristic: stroke group Receiver operating characteristic: stroke with ICAS
A1
A2
A3
A4
A7
A8
A5
A6
A9

A10
P1
P2
P3
P4
P5
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P7
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P0
A0

Figure 4.   External validation via the receiver operating characteristic in the stroke-only and stroke-with-ICAS 
groups. Analysedsed the area under the receiver operating characteristic curve for the external validation of 
each spot’s deep neural network ensemble to a specific chunk for stroke patients. The employed model ensemble 
received training only with a control group tested and validated by (A) the stroke group and (B) the stroke-with-
ICAS group.
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Figure 5.   Clinical cases of the control, stroke and ICAS groups compared with predictively modeled vessel 
labels. Controls, stroke patients, and stroke-with-ICAS patients underwent colour labelling avisualisationion 
according to the branch within the cerebrovasculature. The algorithm consistently showed good performance 
for cerebral arterial branch identification among healthy controls, stroke patients, and stroke patients with ICAS. 
The structural abnormalities in patients with ICAS produced no significant adverse effects on identification 
performance.
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Limitations and future directions.  Several limitations exist. First, the results of this study have a limita-
tion of generalizability. This study included participants with only an ischemic stroke rather than a hemorrhagic 
stroke. Thus, there are some potential challenges in discerning the various subtypes of the stroke to improve 
further the feasibility of the clinical application of neural network ensembles. In addition, all subjects were eth-
nically Korean. Considering the anatomical and pathological inter-racial differences in the intracranial cerebral 
vasculature, the performance of the model should be validated in different populations. Bespeaking general-
izability and inter-institutional compatibility require additional external validation using images outside the 
Samsung Medical Center. Second, we acknowledge that the sample size at present is not sufficiently large; how-
ever, based on patient-specific profiles, we have provided the potential for finding additional novel brain frailty 
biomarkers. Third, our results indicate that neural networks effectively identify the cerebral arterial segment. 
However, a few structure-ambiguous vascular segments suffer from unsatisfactory performance complemented 
via segment-wise voting post-processing. We hypothesise that the enigmatic nature of some small vessel seg-
ments predisposes them to idiosyncratic performances. The geometric features of the developed redefined vas-
cular units provide groundbreaking opportunities to interpret mixed vascular territories intelligently. However, 
covering various subjects with reproducible iterative measurements and theorising optimised feature combina-
tions remains an important scientific question. Another limitation of this study is that we only used TOF MR 
angiographic images. MRA does not, per se, provide authentic structural images but includes hemodynamic 
information. Therefore, modifications are mandatory if we apply the model developed in this study to other 
imaging modalities, such as digital subtraction angiography or computed tomographic angiography.

Our system utilises segment-wise voting algorithms, anatomical post-processing, paradigm-shifting vascular 
unit reframing, and robust systematic geometric feature characterisation for clinical usability. The model perfor-
mance was further synchronised and engineered using anatomical rule-assisted post-processing complementa-
tion. Exhaustive categorisation resulted in segmenting the 20 vascular chunks, which were narrowed down and 
further classified into small vessel segment compartments composed of spot cells. The unlimited applicability of 
orchestrated neural networks to non-matched feature vector data provides patient-specific profiles, facilitating 
successful clinical interpretations, the potential prognosis of brain debility progression, and post-stroke treat-
ment management.

Conclusions
In conclusion, we have pioneered the in-depth labelling cerebral arterial segments by scrutinising neural network 
ensembles via cerebrovascular structural reframing. By systematically analysing diverse cohorts, our results 
demonstrate that this technique is feasible and robust in profiling vessel-specific labelling.

Data availability
According to the Korean governmental policy and health security policy of the data sharing committee of the 
Samsung Medical Center, all clinical information and brain image data are limitedly available through formal 
approval procedures upon requests to validated investigators. Further requests and inquiries are available to 
corresponding author (W.-K. Seo).
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