
1

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3296  | https://doi.org/10.1038/s41598-023-30231-9

www.nature.com/scientificreports

Replication and mediation 
of the association 
between the metabolome 
and clinical markers of metabolic 
health in an adolescent cohort 
study
Christian Brachem 1*, Leonie Weinhold 2, Ute Alexy 1, Matthias Schmid 2, 
Kolade Oluwagbemigun 1,3 & Ute Nöthlings 1,3

Metabolomics-derived metabolites (henceforth metabolites) may mediate the relationship between 
modifiable risk factors and clinical biomarkers of metabolic health (henceforth clinical biomarkers). 
We set out to study the associations of metabolites with clinical biomarkers and a potential mediation 
effect in a population of young adults. First, we conducted a systematic literature review searching for 
metabolites associated with 11 clinical biomarkers (inflammation markers, glucose, blood pressure 
or blood lipids). Second, we replicated the identified associations in a study population of n = 218 (88 
males and 130 females, average age of 18 years) participants of the DONALD Study. Sex-stratified 
linear regression models adjusted for age and BMI and corrected for multiple testing were calculated. 
Third, we investigated our previously reported metabolites associated with anthropometric and 
dietary factors mediators in sex-stratified causal mediation analysis. For all steps, both urine and 
blood metabolites were considered. We found 41 metabolites in the literature associated with clinical 
biomarkers meeting our inclusion criteria. We were able to replicate an inverse association of betaine 
with CRP in women, between body mass index and C-reactive protein (CRP) and between body fat 
and leptin. There was no evidence of mediation by lifestyle-related metabolites after correction for 
multiple testing. We were only able to partially replicate previous findings in our age group and did not 
find evidence of mediation. The complex interactions between lifestyle factors, the metabolome, and 
clinical biomarkers warrant further investigation.
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3d-WDR  Three day weighed dietary record
UPLC-MS/MS  Ultra-high performance liquid chromatography-tandem mass spectroscopy
RI  Retention time/index
m/z  Mass to charge ratio
BP  Blood pressure
ACME  Average causal mediation effect
SD  Standard deviation
PLS  Partial least squares

Chronic diseases such as cardiovascular disease (CVD), type 2 diabetes mellitus (T2DM), and cancers are among 
the largest public health burdens modern societies’  face1,2. Important for the prevention of these diseases are key 
modifiable risk factors such as body composition and dietary intake.

Metabolomics is a rich resource in the process of elucidating the etiology of  diseases3,4. To realize the potential 
of the metabolome it is important to validate putative biomarkers (henceforth called “metabolites”) and replicate 
their associations across studies and  settings5. Well-established clinical biomarkers of metabolic health (hence-
forth called “clinical biomarkers”), for example cholesterol as a clinical biomarker for  CVD6,7, HBa1C for  T2DM8, 
or inflammation markers (e.g. CRP, IL-8)4 appear to be intricately linked with  metabolites3,5,9,10. However, study 
findings are largely inconsistent, and might differ by sex and age  groups11–16 calling for in depth confirmation 
and replication across sexes and age groups.

Modifiable lifestyle factors including body composition and food intake are linked to a number of chronic 
diseases such as type 2  diabetes17–20,  CVD7,21–23 or cancer  types24–27 through alterations in the human metabo-
lome. With respect to prevention, a life course approach elucidates preventive potential in younger age groups, 
e.g. early adulthood, which has been shown to be  relevant28,29. In these age groups, clinical biomarkers are of 
importance to evaluate chronic disease risk. While the relationship of body composition and dietary intake 
with clinical biomarkers is well reported, less is known on potential mediation through the metabolome. We 
recently reported associations between body composition and the metabolome (19 metabolites for body mass 
index (BMI) and 20 for body fat (BF) in  urine30, as well as between habitual food intake (in food groups) and 
the metabolome (6 metabolites) in urine and  blood31). The association of body composition and dietary intake 
with clinical biomarkers may be linked via some of these metabolites.

To investigate this complex relationship, the aims of the current study were first to identify associations of 
metabolites with clinical biomarkers based on a systematic literature review (SLR), second to replicate these 
associations in our study population, and third to evaluate whether our previously reported body composition- 
and habitual food intake-associated metabolites mediate the association of body composition and habitual food 
intake with clinical biomarkers. Of note, we focused on the age groups of adolescents and young adults as a 
particular time window of relevance for prevention.

Methods
Systematic literature review. We first conducted a SLR of studies indexed in PubMed, separate for each 
clinical biomarker, to identify relationships between metabolites and clinical biomarkers to be replicated in our 
study. A detailed description of the search terms and flow-charts can be found in Additional File S1. Briefly, we 
included studies that reported associations between Inflammation markers (C-reactive protein (CRP), Interleu-
kin-6 (IL-6), Interleukin-18 (IL-18), Adiponectin, and Leptin), glucose, blood pressure (BP) (systolic blood pres-
sure, diastolic blood pressure, and Hypertension) and blood lipids (high-density lipoprotein (HDL), low-density 
lipoprotein (LDL), total triglycerides) and the human blood or urine metabolome. We developed a search term 
for each of these clinical biomarkers. The review was conducted by CB only.

We included all studies where at least one association was reported. We identified additional studies through 
screening of citations and literature reviews. Information about associations of metabolites and clinical biomark-
ers was finally extracted from each included study. Of these, only associations reported in at least two independ-
ent studies were considered “consistent” and further used in the current study.

Study design. Both, the confirmation and mediation analyses were conducted in a subpopulation of the 
DOrtmund Nutritional and Anthropometric Longitudinally Designed (DONALD)  study32,33. Briefly, the DON-
ALD Study is an ongoing longitudinal open cohort study in Dortmund, Germany, with the goal of analyzing 
detailed data on diet, growth, development, and metabolism between infancy and  adulthood32,33. Participants 
are first examined at the age of 3 months and return for three more visits in the first year of life, two in the second 
and annually thereafter until the age of 18, when examinations start following a five-year cycle. Examinations 
include 3-day weighed dietary records (3d-WDR), anthropometric measurements, collection of 24-h urine sam-
ples (starting at age 3–4), collection of blood samples (starting at age 18), and interviews on lifestyle and medical 
examinations. Further details on the study design have been published  elsewhere32,33.

Study participants. We included all DONALD study participants that were singletons, full term births 
(37–42 weeks of gestation) and had a birth weight of at least 2500 g. For the current analysis participants had to 
have a measurement of both the urine and blood metabolome, as well as at least one measurement of each clini-
cal biomarker. Overall, 218 participants were eligible for the current study.

Variable assessment. Assessment of clinical biomarkers. Inflammation markers (C-reactive protein 
(CRP), Interleukin-6 (IL-6), Interleukin-18 (IL-18), Adiponectin, and Leptin), glucose, and blood lipids (high-
density lipoprotein (HDL), low-density lipoprotein (LDL), total triglycerides) were measured in non-fasted 
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blood plasma. Measurements in blood were always at the same follow-up and from the same sample as metabo-
lome measurement. Blood measurement was always at the same follow-up visit or later than urine metabolome 
measurement.

Blood pressure (mmHg) was measured multiple times by experienced nursing staff. We used the mean of two 
repeated measurements for both systolic and diastolic blood pressure. We chose the blood pressure measurement 
closest after the corresponding metabolome measurement for analysis of the respective participant, which was 
always at the next study visit.

Untargeted metabolomic profiling. The metabolome measurement was already described  elsewhere31. Briefly, 
Metabolon Inc. (Morrisville, NC, USA) performed an untargeted metabolomics assay with lipidomics on plasma 
and an untargeted metabolomics assay on urine samples. For both the plasma and urine untargeted assays, 
Metabolon used ultra-high performance liquid chromatography-tandem mass spectroscopy (UPLC-MS/MS) 
to identify metabolites in the samples. Peak identification was done in their propriety Laboratory Information 
Management System. Compounds were identified by comparison of their retention time/index (RI), mass to 
charge ratio (m/z) and chromatographic data (e.g. MS/MS spectral data) to library standards. Metabolon main-
tains a library of authenticated standards with over 3300 commercially available purified standard compounds. 
Structurally unnamed biochemicals were identified by occurrence. Peaks are quantified using area-under-the-
curve and normalized with block correction correcting for inter-day instrument tuning differences. Further 
details on the metabolic profiling have been reported  elsewhere34. Both blood and urine untargeted assays were 
performed in this fashion. Urine metabolite values were additionally normalized to urine osmolality to account 
for differences in metabolite levels due to differences in the amount of material present in each sample. Metabo-
lon quantified 1042 (811 known and 231 unknown) and 1407 (940 known and 467 unknown) in blood and 
urine, respectively. A deeper explanation of the metabolomics methods can be found in Additional File S2.

Complex lipid platform measurement. Lipids were extracted from samples in methanol:dichloromethane in 
the presence of internal standards. The extracts were concentrated under nitrogen and reconstituted in 0.25 mL 
of 10 mM ammonium acetate dichloromethane:methanol (50:50). The extracts were transferred to inserts and 
placed in vials for infusion-MS analysis, performed on a Shimazdu LC with nano PEEK tubing and the Sciex 
SelexIon-5500 QTRAP. The samples were analyzed via both positive and negative mode electrospray. The 5500 
QTRAP scan was performed in MRM mode with the total of more than 1100 MRMs. Individual lipid species 
were quantified by taking the peak area ratios of target compounds and their assigned internal standards, then 
multiplying by the concentration of internal standard added to the sample. Lipid class concentrations were cal-
culated from the sum of all molecular species within a class, and fatty acid compositions were determined by 
calculating the proportion of each class comprised by individual fatty acids. We identified 966 lipid species in 
14 classes as well as 265 fatty acids. A deeper explanation of the lipidomics methods can be found in Additional 
File S2.

Body composition and habitual dietary intake. Body weight and height were measured at every follow-up by 
experienced nursing staff. Body mass index (BMI) was calculated using height (m) and weight (kg) with the 
formula BMI =

weight

height2
 . Body fat percent (BF) was calculated from four skin/fold thickness measurements 

(biceps, triceps, iliaca, and scapula), using age, puberty status, and sex/specific equations from Deurenberg 
et al.35. Previous associations with BMI used in the mediation analysis and further details on body composition 
assessment were reported in Brachem et al.30.

We used multiple annually applied 3d-WDRs to assess habitual food intake on the food group level. Par-
ticipants had to have at least two 3d-WDR in adolescence (according to the WHO definition, age 10–19). We 
defined habitual intake as the mean intake across all available records in adolescence. To account for differences 
in consumed calories, we standardized intake to grams per 1000 kcal. Previous associations with habitual food 
intake used in the mediation analysis and further details on dietary assessment were reported in Brachem et al.31.

Statistical analysis. Statistical analysis was performed using R software (Version 4.0.3)36. All analyses were 
stratified by sex.

Metabolomics data pre‑treatment. Both urine and blood metabolite values were log transformed, centered to a 
mean of zero and scaled to a standard deviation of one prior to analysis.

Replication. We used ordinary least squares regression to replicate associations between the metabolites and 
clinical biomarkers in the DONALD study. The clinical biomarkers were used as the dependent variables and 
metabolites as the independent variables. We adjusted the models for BMI and age, both at sample collection. 
Data was split into training (70%) and testing (30%) data to evaluate overfitting. We trained the model on the 
training data and used these models to predict clinical biomarker values in the test data. Results from the test 
data were used only to evaluate the model quality. We additionally accounted for multiple testing by holding the 
false discovery rate at 5%37.

Mediation analysis. We used causal mediation analysis to evaluate whether our previously reported body 
composition-30 and habitual food intake-related  metabolites31 mediate the association of body composition and 
habitual food intake with clinical biomarkers. For the first, BMI and BF were the exposure and the clinical bio-
marker (BP, IL-6, IL-18, CRP, Adiponectin, leptin, total cholesterol, HDL, LDL, and triglyceride levels) were the 
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outcomes. The 19 (5‑dodecenoylcarnitine (C12:1), 7‑hydroxyindole sulfate, decanoylcarnitine (C10), formimino‑
glutamate, glucuronide of C10H18O2 (12), guanidinosuccinate, isobutyrylglycine (C4), isovalerylglycine, nicotina‑
mide N‑oxide, proline, succinimide, thymine, tigloylglycine, X—12839, X—21441, X—21851, X—24469, X—24801, 
and X—25003) BMI-associated metabolites and 20 (3‑methylcrotonylglycine, glucuronide of C10H18O2 (12), glu‑
tamine conjugate of C8H12O2 (1), glycine conjugate of C10H14O2 (1), guanidinosuccinate, isobutyrylglycine (C4), 
isovalerylglutamine, isovalerylglycine, nicotinamide N‑oxide, succinimide, tigloylglycine, X—11261, X—15486, 
X—17676, X—21851, X—24345, X—24350, X—24469, X—24801, X—25442, and X—25464) BF-associated 
metabolites were considered as mediators. For the second, habitual food intake was the exposure, the afore-
mentioned clinical biomarker markers were the outcomes, and the six (eggs: indole‑3‑acetamide, N6‑methyl‑
adenosine; vegetables: hippurate, citraconate/glutaconate, X—12111; processed and other meat: vanillylmandelate 
(VMA)) food group-associated metabolites were considered as mediators. We used the ‘mediate()’-function in 
the R package ‘mediation’38 for the analysis. We used 1000 simulations (the recommended default) and quasi-
Bayesian approximation to estimate the standard errors. We used the model-based  approach38. The mediator 
model is the linear regression model that regresses the metabolites on BMI, BF, or habitual food intake adjusted 
for age at sample collection. The habitual food intake models were additionally adjusted for BMI at sample col-
lection. The outcome model is a linear regression model that regresses clinical biomarker on BMI, BF, or habitual 
food intake, the mediator (metabolites), and adjustment variables. From these models the causal mediation 
analysis is performed as described by Imai et al.39. Briefly, the model estimates the average causal mediation 
effect (ACME), which is a numeric measure of how much influence the presence of the mediator has on the total 
effect of the exposure-outcome association, as well as the average direct effect, the average total effect, and the 
proportion mediated. We corrected for multiple testing by holding the false discovery rate at 5%.

Missing values. We excluded metabolites from the analysis when more than 70% of data was missing. Based 
on this we excluded 91 and 67 metabolites in female blood and urine, respectively, and 87 and 74 metabolites in 
male blood and urine, respectively.

For the mediation analysis and the regression models, we performed a single imputation with the “mis-
sRanger” package, using 10 trees with a maximum depth of six and three non-missing candidate values for 
predictive mean matching. We used random forest imputation, as it is recommended for imputation of missing 
metabolomics  data40.

Sensitivity analysis. We performed sensitivity analysis on the choice of the missing data threshold in the impu-
tation approach, repeating the complete study protocol excluding metabolites with more than 30% missing data 
(instead of 70% in the main analysis). In males we additionally excluded 103 metabolites and 106 metabolites 
in blood and urine, respectively, while in females we excluded 123 and 108 additional metabolites in blood and 
urine, respectively.

Ethics approval and consent to participate. Informed written consent was obtained from parents 
and from participants themselves on reaching adolescence. The ethics committee of the University of Bonn, 
Germany (project identification: 098/06) approved the study. We confirm that all methods were performed in 
accordance with relevant guidelines and in accordance with the Declaration of Helsinki.

Results
In the SLR, we found metabolites associated with blood pressure and CRP in at least two independent studies 
(Table 1). Six metabolites (4‑hydroxyhippurate, Androsterone sulfate, Glutamine, Isoleucine, Phenylalanine, and 
Tryptophan) for blood pressure and four metabolites (Betaine, Glutamine, Isoleucine, and Tryptophan) for CRP 

Table 1.  Metabolites associated with conventional systemic markers of chronic disease risk in at least two 
independent observational studies. According to systematic search in PubMed. Metabolites without a match in 
our metabolites and those we did not replicated are available in Additional File S3.

Metabolite Sources

Blood pressure

 4-Hydroxyhippurate Zheng et al.41,42

 Androsterone sulfate Zheng et al.41,42

 Glutamine Goïta et al.43, Le Wang et al.44

 Isoleucine Liu et al.45, Le Wang et al.44

 Phenylalanine Hao et al.46, Wawrzyniak et al.47, Goïta et al.43, Meyer et al.48, Øvrehus et al.49

 Tryptophan Liu et al.45, Le Wang et al.44

CRP

 Betaine Jutley et al.50, Pietzner et al.51

 Glutamine Jutley et al.50, Pietzner et al.51

 Isoleucine Jutley et al.50, Oluwagbemigun et al.52

 Tryptophan Jutley et al.50, Kosek et al.53, Oluwagbemigun et al.52
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were present in more than two studies. The full metabolite list we identified in at least one study with their cor-
responding references can be found in Additional File S3.

In Table 2, we present characteristics of the DONALD study population. Aside from the BMI at blood sam-
pling, there were no differences for basic characteristics between the sexes. Except for diastolic blood pressure 
at urine collection, IL-6, IL-18, and total blood triglycerides, all clinical biomarkers were significantly different 
between the sexes though directions differed. Blood pressure (diastolic at blood draw and systolic at both blood 
draw and urine collection) and blood glucose were higher in males, while CRP, leptin, adiponectin, total cho-
lesterol, HDL, LDL, and triglycerides were higher in females.

We were able to test associations for 41 of the 46 metabolites associated with clinical biomarkers. We were 
able to replicate metabolite associations for 10 out of the 41 metabolites we found (Table 3), four out of five for 
CRP and six out of 36 for blood pressure. We discovered six significant associations in female participants, while 
there were five significant associations in male participants. Across bio specimens, there were more associations 
present in urine (six) compared to blood (five). One metabolite, phenylalanine, was associated across sexes with 
systolic blood pressure. Another metabolite, glutamine, was associated with both diastolic and systolic blood 
pressure. However, the association between glutamine and diastolic blood pressure for male participants was 
positive, while the association between glutamine and systolic blood pressure for females was inverse. Across 
sexes and bio specimen more metabolites (six) were associated negatively. When correcting for multiple testing 
only the association between betaine and CRP in females remained significant. The complete model results, 
including direct sex comparisons, can be found in Additional File S4. The test set model metrics can be found 
in Additional File S5.

We found no metabolite significantly mediating the relationship of either body composition or habitual food 
intake and clinical biomarkers after correcting for multiple testing (Table 4). However, we observed two signifi-
cant total effects, both in male urine. One between CRP and BMI, CRP is estimated to increase by 0.5 standard 
deviations (SD) as BMI increases by one unit (p-Value (FDR) < 0.0001) and one between leptin and BF, leptin 
is estimated to increase by 0.62 standard deviations as BF increases by 1 unit (p-Value (FDR) = 0.040). The full 
model results are available in Additional File S6. The test set model metrics can be found in Additional File S5.

Table 2.  Characteristics and markers of metabolic health of 218 DONALD participants. 1 Median [IQR]. 
2 Wilcoxon rank sum test Males VS Females. Unknown metabolites are not displayed.

N Overall, N =  2181 Male, N =  881 Female, N =  1301 p-value2

BMI [kg/m2] at blood draw 218 22.30 [20.65, 24.91] 23.25 [21.21, 26.16] 21.89 [20.31, 24.09] 0.005

BMI [kg/m2] at urine collection 218 21.88 [19.96, 23.63] 22.06 [20.38, 23.54] 21.85 [19.88, 23.68] 0.4

Age [years] at blood draw 218 18.00 [18.00, 23.00] 18.00 [18.00, 23.00] 18.00 [18.00, 23.75] 0.5

Age [years] at urine collection 218 18.00 [17.00, 18.00] 18.00 [16.00, 18.00] 18.00 [17.00, 18.00] 0.7

Age difference [years] between last dietary record and 
blood draw 218 1.00 [0.00, 6.75] 1.00 [0.00, 4.00] 1.50 [0.00, 7.00] 0.7

Age difference [years] between last dietary record and 
urine collection 218 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] 0.4

3-Methylcrotonylglycine 206 0.99 [0.71, 1.25] 1.00 [0.83, 1.25] 0.94 [0.61, 1.24] 0.075

5-Dodecenoylcarnitine (c12:1) 218 0.93 [0.58, 1.38] 1.18 [0.73, 1.66] 0.84 [0.50, 1.26] 0.001

7-Hydroxyindole sulfate 211 0.92 [0.54, 1.62] 1.25 [0.81, 1.97] 0.68 [0.46, 1.11] < 0.001

Citraconate/glutaconate 218 1.00 [0.63, 1.80] 1.09 [0.72, 2.00] 0.88 [0.57, 1.68] 0.042

Decanoylcarnitine (c10) 217 0.95 [0.64, 1.44] 0.92 [0.64, 1.58] 1.00 [0.64, 1.39] 0.7

Formiminoglutamate 218 0.97 [0.64, 1.33] 1.01 [0.76, 1.35] 0.85 [0.54, 1.31] 0.020

Glucuronide of c10h18o2 (12) 217 1.00 [0.68, 1.58] 1.03 [0.79, 1.44] 0.98 [0.66, 1.65] 0.4

Glutamine conjugate of c8h12o2 (1) 218 0.98 [0.68, 1.54] 0.98 [0.72, 1.45] 0.99 [0.63, 1.58] 0.7

Glycine conjugate of c10h14o2 (1) 218 0.95 [0.59, 1.68] 1.00 [0.68, 1.92] 0.87 [0.59, 1.63] 0.4

Guanidinosuccinate 218 0.96 [0.70, 1.30] 1.10 [0.81, 1.31] 0.83 [0.61, 1.23] 0.005

Hippurate 218 0.99 [0.69, 1.44] 0.92 [0.69, 1.35] 1.07 [0.70, 1.50] 0.3

Indole-3-acetamide 198 0.93 [0.58, 1.87] 1.06 [0.57, 2.03] 0.88 [0.61, 1.78] 0.5

Isobutyrylglycine (c4) 218 0.98 [0.67, 1.31] 1.08 [0.82, 1.33] 0.87 [0.61, 1.28] 0.011

Isovalerylglutamine 218 0.99 [0.66, 1.36] 1.15 [0.96, 1.44] 0.83 [0.56, 1.16] < 0.001

Isovalerylglycine 218 1.00 [0.69, 1.44] 1.21 [0.82, 1.51] 0.86 [0.62, 1.34] < 0.001

N6-methyladenosine 215 0.99 [0.71, 1.42] 1.06 [0.77, 1.44] 0.96 [0.69, 1.41] 0.14

Nicotinamide n-oxide 214 1.01 [0.60, 1.59] 1.00 [0.65, 1.50] 1.05 [0.57, 1.78] 0.7

Proline 218 0.99 [0.69, 1.27] 1.09 [0.78, 1.42] 0.90 [0.66, 1.13] 0.004

Succinimide 217 0.98 [0.70, 1.35] 1.14 [0.90, 1.60] 0.86 [0.60, 1.22] < 0.001

Thymine 217 1.00 [0.75, 1.33] 1.09 [0.82, 1.42] 0.90 [0.64, 1.23] 0.004

Tigloylglycine 218 0.93 [0.71, 1.28] 1.11 [0.83, 1.41] 0.82 [0.68, 1.23] 0.004

Vanillylmandelate (vma) 218 0.99 [0.79, 1.36] 1.11 [0.86, 1.44] 0.93 [0.76, 1.27] 0.007
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In our sensitivity analysis on the amount of missing data we observed one additional significant association 
after correcting for multiple testing, between glutamine and CRP in male urine (p (FDR) = 0.046, ß = − 0.39, − 0.63 
to − 0.15). Additionally, we observed one additional significant total effect in the mediation analysis, between 
BMI and leptin in male urine and no mediators. The full results tables for the sensitivity analysis can be found 
in Additional File S7.

Discussion
In the present study, we conducted an SLR identifying 41 metabolite- clinical biomarker associations (36 for 
BP, 5 for CRP) that were reported in at least two independent studies. Of these 41, we were able to replicate 10 
associations, in our own study population one of which was significant after multiple testing correction. Addi-
tionally, we found no evidence of a metabolite mediating the association between body composition or habitual 
food intake and clinical biomarkers.

Table 3.  Replicated risk-markers-metabolites association for CRP, diastolic blood pressure, and systolic 
blood pressure. Estimates are generated from linear regression. Models were adjusted for age and BMI, both 
at sample collection. Metabolites were log-transformed prior to analysis. Estimates and 95% CI are on the log 
scale. We controlled the false discovery rate (FDR) at 5% to account for multiple testing. Metabolites significant 
after correction for multiple testing are marked in italics.

Metabolite Sex Bio specimen Super pathway Sub pathway β 95% CI p-value p-value (FDR)

Clinical biomarker: CRP

 Betaine Female Blood Amino acid
Glycine, serine 
and threonine 
metabolism

− 0.40 − 0.61 to − 0.19 0.0002 0.0220

 Glutamine Male Urine Amino acid Glutamate 
metabolism − 0.39 − 0.63 to − 0.15 0.0022 0.1008

 Isoleucine Male Urine Amino acid
Leucine, isoleu-
cine and valine 
metabolism

− 0.29 − 0.53 to − 0.04 0.0218 0.2060

 Tryptophan Male Urine Amino acid Tryptophan 
metabolism − 0.38 − 0.63 to − 0.13 0.0033 0.1137

Clinical biomarker: diastolic blood pressure

 Glutamine Male Blood Amino acid Glutamate 
metabolism 0.25 0.02–0.48 0.0337 0.2682

Clinical biomarker: systolic blood pressure

 4-Hydroxyhip-
purate Female Urine Xenobiotics Benzoate 

metabolism 0.28 0.08–0.48 0.0072 0.1374

 Androsterone 
sulfate Female Blood Lipid Androgenic 

steroids − 0.17 − 0.35 to − 0.00 0.0496 0.3076

 Glutamine Female Blood Amino Acid Glutamate 
metabolism − 0.24 − 0.41 to − 0.07 0.0064 0.1368

 Phenylalanine
Female Urine

Amino Acid Phenylalanine 
metabolism

0.19 0.00–0.38 0.0477 0.3076

Male Blood 0.25 0.02–0.48 0.0328 0.2682

 Tryptophan Female Urine Amino Acid Tryptophan 
metabolism 0.19 0.00–0.38 0.0466 0.3076

Table 4.  Metabolites mediating the association of body composition and habitual food intake with clinical 
biomarkers. Estimates and confidence intervals are in standard deviations. ACME average causal mediation 
effect, CRP C-reactive Protein. 1 p-values are corrected for multiple testing by holding the false discovery rate at 
5%.

Bio specimen Sex
Clinical 
biomarker

Mediating 
metabolite

Total effect ACME

Estimate 95% CI p-value1 Estimate 95% CI p-value1

Exposure: BMI

 Urine Male CRP
5-Dodecenoyl-
carnitine 
(C12:1)

0.51 0.254–0.747 0.000 − 0.03 − 0.134 to 
0.035 0.983

Exposure: body fat (%)

 Urine Male Leptin
Glucuronide 
of C10H18O2 
(12)*

0.62 0.203–1.040 0.040 − 0.10 − 0.285 to 
0.018 0.983
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Systematic literature review. We identified 41 metabolites associated with clinical biomarker variables 
in at least two studies. Interestingly, these were distributed only between two clinical biomarker variables: blood 
pressure and CRP. Most of the metabolites (36 of 41) were associated with blood pressure. The methods applied 
to investigate the relationships of the metabolome and the clinical biomarker variables were very heterogene-
ous. They ranged from correlation analysis (e.g.54), through regression (e.g.46) to advanced machine learning 
methods like random forests (e.g.55) or PLS (partial least squares) variants (e.g.56). Additionally, it would be very 
useful for future SLR to have an easier format to export all study results in an appendix. Because of the large 
number of associations usually present in metabolomics studies, this would greatly increase the possibility for 
future studies to build on. Another important observation in the SLR is that only four out of 50  studies43,52,57,58 
stratified by sex, with two additional studies having cohorts restricted to either  males59 or  females60, though 
many additional studies adjusted for or matched by sex. Given how strong the  influence11–13,15,16,30,31,52 of sex is 
on many different aspects of the metabolome, a better and ideally unified strategy to account for these influences 
in future studies is needed. Most studies included in the SLR were in exclusively adult study populations. Three 
studies studied  children53,61,62 and two  studies52,57 adolescents and young adults. Age is another influential factor 
in the composition of the metabolome that may need additional adjustment strategies in the long  term63.

Replication. We were able to replicate 10 out of the 41 metabolites testable in our study sample. We found 
more metabolites replicated in females compared to males (six and five, respectively) and only one metabolite, 
phenylalanine, associated with systolic blood pressure across sexes. In this replication analysis, only one associa-
tion, the negative association between betaine measured in the blood of males and CRP remained significant 
after correction for multiple testing. Betaine is an essential osmolyte derived from either diet or by oxidation 
of  choline64,65. Insufficiencies of betaine have been associated with many chronic diseases, such as metabolic 
syndrome, T2DM or vascular  diseases65. Additionally, betaine is considered as an anti-oxidant64 and fulfills anti-
inflammatory  functions66. The inverse association between betaine in male blood and CRP we observed is there-
fore in line with the literature.

Phenylalanine was not significantly associated with systolic blood pressure after correction for multiple test-
ing but it is interesting. It is the only metabolite associated across sexes and indirectly across bio specimen. It’s 
association with higher blood pressure is in line with previous literature, that reported a strong association with 
infant pulmonary  hypertension67 and more generally elevated cardiovascular  risk68. Furthermore, it was elevated 
in metabolically unhealthy obese (compared to metabolically healthy obese)69. Because it is a precursor to cat-
echolamines an increase in blood pressure even has a known physiological pathway  already64. More studies are 
needed to discern the causal order and exact mechanism of phenylalanine on blood pressure.

Mediation. We did not identify any metabolite as potential mediator of the relationship between either body 
composition or habitual food intake and clinical biomarkers.

While we did not identify any mediators in our sample, we still believe there will be mediators identified in 
the future. Mediators are notoriously hard to identify, as their study requires many association tests (which in 
turn requires a correction for multiple testing), a large study population and large effect sizes. All three of which 
were limiting factors within our study.

Sensitivity analysis. We performed sensitivity analysis on the amount of missing data permitted in the 
metabolites prior to imputation. We excluded over 100 additional metabolites, but the results did not change 
in meaning. In the replication analysis, as was expected by reducing the number of metabolites and therefore 
statistical tests, the metabolite closest to significance in the main analysis was statistically significant in the sen-
sitivity analysis. However, the point estimates of the metabolites remained the same. In the mediation analysis, 
one additional total effect remained significant after correcting for multiple testing but no mediating effects, the 
same as the main analysis. Therefore, interpretation of the results was not depended on the choice of missingness 
permitted in the metabolites prior to imputation.

Future research. Future research should take the sex differences we reported into consideration in their 
own study design, ideally by stratification, in order to further our understanding of the physiological differences 
in metabolism between males and females. A study evaluating the metabolites associated with metabolic health 
markers as mediators to lifestyle factors would be a great continuation of the present study, ideally in a larger 
cohort. Lastly, metabolomics would greatly benefit from both a more unified data analysis approach as well as a 
unified measurement approach to better facilitate meta-analysis and ease the burden of replicating results from 
different studies.

Strengths and limitations. The present study has some notable strengths. We used results from our own 
previous studies to investigate mediation and conducted a SLR to facilitate replication of previously reported 
associations in the literature. We were able to use global measurements of the urine and blood metabolome in 
the same participants for both analyses in a comparatively (for metabolomics) large study population. Though 
the number of statistical tests required for metabolomics in relation to the available data in our study is high, 
therefore sampling power may be a reason for few total associations found. We employed state of the art statistical 
analysis and machine learning to investigate both the mediation and the replication. However, we acknowledge 
several limitations to the study. Our participants are Caucasians (Germans), residing in a large city (Dortmund) 
and surrounding area and are mostly from a high socio-economic background. This may limit the generalizabil-
ity of our findings. We used non-fasted plasma samples, which increases the variability of inter and intra par-
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ticipant variability of measurements introducing non-differential measurement error. We constructed habitual 
diet from multiple measurements in adolescence, which increases the time difference between diet measurement 
and metabolome assessment. This limits results to more long-term markers but increases the effect size needed 
to detect a signal. Additionally, we cannot rule out residual confounding by either unknown or unmeasured 
confounders or related factors such as genetics. In our mediation analysis, we had, compared to other mediation 
analysis, a relatively small sample size. Lastly, we only have one measurement of the metabolome available, so the 
temporal reproducibility of these findings is unknown.

Conclusions
In summary, we identified 41 metabolites associated in at least two independent studies with clinical biomarker 
and replicated ten associations in our own data, only one of which was significant after multiple testing correc-
tion. Additionally, there was no metabolite mediating the relationship between body composition or habitual 
diet and clinical biomarker. The intricate interplay between lifestyle factors, the metabolome, and metabolic 
health warrants further investigation.

Data availability
The datasets generated and/or analyzed during the current study are not publicly available due data protection 
concerns for sensitive data but are available on reasonable request and approval of the principal investigator. 
Requests can be sent to epi@uni‑bonn.de. All model results are available in the supplement to this article.

Received: 31 May 2022; Accepted: 20 February 2023

References
 1. Global Burden of Disease Collaborative Network. Global Burden of Disease Study 2019 (GBD 2019) Reference Life Table (Institute 

for Health Metrics and Evaluation (IHME), 2021).
 2. Mozaffarian, D. et al. Heart disease and stroke statistics-2015 update: A report from the American Heart Association. Circulation 

131, e29-322 (2015).
 3. Zhang, A., Sun, H., Yan, G., Wang, P. & Wang, X. Metabolomics for biomarker discovery: moving to the clinic. Biomed Res. Int. 

2015, 354671 (2015).
 4. Furman, D. et al. Chronic inflammation in the etiology of disease across the life span. Nat. Med. 25, 1822–1832 (2019).
 5. López-López, Á., López-Gonzálvez, Á., Barker-Tejeda, T. C. & Barbas, C. A review of validated biomarkers obtained through 

metabolomics. Expert Rev. Mol. Diagn. 18, 557–575 (2018).
 6. Millán, J. et al. Lipoprotein ratios: Physiological significance and clinical usefulness in cardiovascular prevention. Vasc. Health 

Risk Manag. 5, 757–765 (2009).
 7. Upadhyay, R. K. Emerging risk biomarkers in cardiovascular diseases and disorders. J. Lipids 2015, 971453 (2015).
 8. Bennett, C. M., Guo, M. & Dharmage, S. C. HbA(1c) as a screening tool for detection of type 2 diabetes: A systematic review. 

Diabetic Med. J. Br. Diabetic Assoc. 24, 333–343 (2007).
 9. Susan, C. et al. Potential impact and study considerations of metabolomics in cardiovascular health and disease: A scientific state-

ment from the american heart association. Circ. Cardiovasc. Genet. 10, e000032 (2017).
 10. Iida, M., Harada, S. & Takebayashi, T. Application of metabolomics to epidemiological studies of atherosclerosis and cardiovascular 

disease. J. Atheroscler. Thromb. 26, 747–757 (2019).
 11. Peters, S. A. E., Singhateh, Y., Mackay, D., Huxley, R. R. & Woodward, M. Total cholesterol as a risk factor for coronary heart disease 

and stroke in women compared with men: A systematic review and meta-analysis. Atherosclerosis 248, 123–131 (2016).
 12. Leuzzi, C., Sangiorgi, G. M. & Modena, M. G. Gender-specific aspects in the clinical presentation of cardiovascular disease. Fun‑

dam. Clin. Pharmacol. 24, 711–717 (2010).
 13. Isacco, L. & Miles-Chan, J. L. Gender-specific considerations in physical activity, thermogenesis and fat oxidation: Implications 

for obesity management. Obesity Rev. 19(Suppl 1), 73–83 (2018).
 14. Darst, B. F., Koscik, R. L., Hogan, K. J., Johnson, S. C. & Engelman, C. D. Longitudinal plasma metabolomics of aging and sex. 

Aging 11, 1262–1282 (2019).
 15. Clegg, D. J. & Mauvais-Jarvis, F. An integrated view of sex differences in metabolic physiology and disease. Mol. Metab. 15, 1–2 

(2018).
 16. Krumsiek, J. et al. Gender-specific pathway differences in the human serum metabolome. Metabolomics 11, 1815–1833 (2015).
 17. Fretts, A. M. et al. Associations of circulating very-long-chain saturated fatty acids and incident type 2 diabetes: A pooled analysis 

of prospective cohort studies. Am. J. Clin. Nutr. 109, 1216–1223 (2019).
 18. Guasch-Ferré, M. et al. Metabolomics in prediabetes and diabetes: A systematic review and meta-analysis. Diabetes Care 39, 

833–846 (2016).
 19. Park, J.-E., Lim, H. R., Kim, J. W. & Shin, K.-H. Metabolite changes in risk of type 2 diabetes mellitus in cohort studies: A systematic 

review and meta-analysis. Diabetes Res. Clin. Pract. 140, 216–227 (2018).
 20. Sun, Y., Gao, H.-Y., Fan, Z.-Y., He, Y. & Yan, Y.-X. Metabolomics signatures in type 2 diabetes: A systematic review and integrative 

analysis. J. Clin. Endocrinol. Metab. 105, 1000–1008 (2020).
 21. Deng, Y., Huang, C., Su, J., Pan, C.-W. & Ke, C. Identification of biomarkers for essential hypertension based on metabolomics. 

Nutr. Metab. Cardiovasc. Dis. 31, 382–395 (2021).
 22. Dhingra, R. & Vasan, R. S. Biomarkers in cardiovascular disease. Trends Cardiovasc. Med. 27, 123–133 (2017).
 23. Ruiz-Canela, M. et al. Comprehensive metabolomic profiling and incident cardiovascular disease: A systematic review. J. Am. 

Heart Assoc. 6, e005705 (2017).
 24. Mallafré-Muro, C. et al. Comprehensive volatilome and metabolome signatures of colorectal cancer in urine: A systematic review 

and meta-analysis. Cancers 13 (2021).
 25. Long, N. P. et al. Metabolomics-guided global pathway analysis reveals better insights into the metabolic alterations of breast 

cancer. J. Pharm. Biomed. Anal. 202, 114134 (2021).
 26. Campi, R. et al. Novel liquid biomarkers and innovative imaging for kidney cancer diagnosis: What can be implemented in our 

practice today? A systematic review of the literature. Eur. Urol. Oncol. 4, 22–41 (2021).
 27. Ahmed-Salim, Y. et al. The application of metabolomics in ovarian cancer management: A systematic review. Int. J. Gynecol. Cancer 

31, 754–774 (2021).



9

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3296  | https://doi.org/10.1038/s41598-023-30231-9

www.nature.com/scientificreports/

 28. GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental 
and occupational, and metabolic risks or clusters of risks, 1990–2015: A systematic analysis for the global burden of disease study 
2015. Lancet (London, England). 388, 1659–1724 (2015).

 29. Rippe, J. M. Lifestyle strategies for risk factor reduction, prevention, and treatment of cardiovascular disease. Am. J. Lifestyle Med. 
13, 204–212 (2018).

 30. Brachem, C. et al. Associations of BMI and body fat with urine metabolome in adolescents are sex-specific: A cross-sectional study. 
Metabolites 10, 330 (2020).

 31. Brachem, C. et al. Exploring the association between habitual food intake and the urine and blood metabolome in adolescents 
and young adults: A cohort study. Mol. Nutr. Food Res. 66, e2200023 (2022).

 32. Kroke, A. et al. The DONALD Study. History, current status and future perspectives. Eur. J. Nutr. 43, 45–54 (2004).
 33. Buyken, A. E., Alexy, U., Kersting, M. & Remer, T. Die DONALD Kohorte. Ein aktueller Überblick zu 25 Jahren Forschung im 

Rahmen der Dortmund Nutritional and Anthropometric Longitudinally Designed Study. Bundesgesundheitsblatt Gesundheits‑
forschung Gesundheitsschutz 55, 875–884 (2012).

 34. Evans, A. et al. High resolution mass spectrometry improves data quantity and quality as compared to unit mass resolution mass 
spectrometry in high-throughput profiling metabolomics. Metabolomics 04, 1–7 (2014).

 35. Deurenberg, P., Pieters, J. J. & Hautvast, J. G. The assessment of the body fat percentage by skinfold thickness measurements in 
childhood and young adolescence. Br. J. Nutr. 63, 293–303 (1990).

 36. R Core Team. R: A Language and Environment for Statistical Computing (2019).
 37. Benjamini, Y. & Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. Roy. 

Stat. Soc. Ser. B (Methodol.) 57, 289–300 (1995).
 38. Tingley, D., Yamamoto, T., Hirose, K., Keele, L. & Imai, K. Mediation: R package for causal mediation analysis. J. Stat. Soft. 59, 

1–38 (2014).
 39. Imai, K., Keele, L. & Tingley, D. A general approach to causal mediation analysis. Psychol. Methods 15, 309–334 (2010).
 40. Kokla, M., Virtanen, J., Kolehmainen, M., Paananen, J. & Hanhineva, K. Random forest-based imputation outperforms other 

methods for imputing LC-MS metabolomics data: A comparative study. BMC Bioinform. 20, 492 (2019).
 41. Zheng, Y. et al. Metabolomics and incident hypertension among African Americans: The atherosclerosis risk in communities 

(ARIC) study. Hypertension 62, 398–403 (2013).
 42. Zheng, Y. et al. Associations between metabolomic compounds and incident heart failure among African Americans: The ARIC 

study. Am. J. Epidemiol. 178, 534–542 (2013).
 43. Goïta, Y. et al. Sexual dimorphism of metabolomic profile in arterial hypertension. Sci. Rep. 10, 7517 (2020).
 44. Wang, Le. et al. Reconstruction and analysis of correlation networks based on GC-MS metabolomics data for young hypertensive 

men. Anal. Chim. Acta 854, 95–105 (2015).
 45. Liu, Y. et al. An ultrasonication-assisted extraction and derivatization protocol for GC/TOFMS-based metabolite profiling. Anal. 

Bioanal. Chem. 400, 1405–1417 (2011).
 46. Hao, Y. et al. A nested case-control study of association between metabolome and hypertension risk. Biomed. Res. Int. 2016, 7646979 

(2016).
 47. Wawrzyniak, R. et al. Untargeted metabolomics provides insight into the mechanisms underlying resistant hypertension. Curr. 

Med. Chem. 26, 232–243 (2019).
 48. de Meyer, T. et al. NMR-based characterization of metabolic alterations in hypertension using an adaptive, intelligent binning 

algorithm. Analyt. Chem. 80, 3783–3790 (2008).
 49. Øvrehus, M. A. et al. Gene expression studies and targeted metabolomics reveal disturbed serine, methionine, and tyrosine 

metabolism in early hypertensive nephrosclerosis. Kidney Int. Rep. 4, 321–333 (2019).
 50. Jutley, G. S. et al. Relationship between inflammation and metabolism in patients with newly presenting rheumatoid arthritis. 

Front. Immunol. 12, 676105 (2021).
 51. Pietzner, M. et al. Comprehensive metabolic profiling of chronic low-grade inflammation among generally healthy individuals. 

BMC Med. 15, 210 (2017).
 52. Oluwagbemigun, K. et al. Longitudinal relationship of amino acids and indole metabolites with long-term body mass index and 

cardiometabolic risk markers in young individuals. Sci. Rep. 10, 6399 (2020).
 53. Kosek, M. N. et al. Plasma tryptophan and the kynurenine-tryptophan ratio are associated with the acquisition of statural growth 

deficits and oral vaccine underperformance in populations with environmental enteropathy. Am. J. Trop. Med. Hyg. 95, 928–937 
(2016).

 54. Thévenot, E. A., Roux, A., Xu, Y., Ezan, E. & Junot, C. Analysis of the human adult urinary metabolome variations with age, body 
mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J. Proteome Res. 
14, 3322–3335 (2015).

 55. Dietrich, S. et al. Identification of serum metabolites associated with incident hypertension in the european prospective investiga-
tion into cancer and nutrition-potsdam study. Hypertension (Dallas, Tex.: 1979) 68, 471–477 (2016).

 56. Ameta, K. et al. Essential hypertension: A filtered serum based metabolomics study. Sci. Rep. 7, 2153 (2017).
 57. Kumar, A. A. et al. Plasma leptin level mirrors metabolome alterations in young adults. Metabolomics 16, 87 (2020).
 58. ter Horst, R. et al. Sex-specific regulation of inflammation and metabolic syndrome in obesity. Arterioscler. Thromb. Vasc. Biol. 40, 

1787–1800 (2020).
 59. van Deventer, C. A. et al. Use of metabolomics to elucidate the metabolic perturbation associated with hypertension in a Black 

South African Male Cohort: The SABPA study. J. Am. Soc. Hypertension JASH 9, 104–114 (2015).
 60. Mokkala, K. et al. GlycA, a novel marker for low grade inflammation, reflects gut microbiome diversity and is more accurate than 

high sensitive CRP in reflecting metabolomic profile. Metabolomics 16, 76 (2020).
 61. Kirchberg, F. F. et al. Metabolomics reveals an entanglement of fasting leptin concentrations with fatty acid oxidation and gluco-

neogenesis in healthy children. PLoS ONE 12, e0183185 (2017).
 62. Li, K. J., Jenkins, N., Luckasen, G., Rao, S. & Ryan, E. P. Plasma metabolomics of children with aberrant serum lipids and inadequate 

micronutrient intake. PLoS ONE 13, e0205899 (2018).
 63. Rist, M. J. et al. Metabolite patterns predicting sex and age in participants of the Karlsruhe Metabolomics and Nutrition (KarMeN) 

study. PLoS ONE 12, e0183228 (2017).
 64. Wishart, D. S. et al. HMDB 4.0: The human metabolome database for 2018. Nucleic Acids Res. 46, D608–D617 (2018).
 65. Lever, M. & Slow, S. The clinical significance of betaine, an osmolyte with a key role in methyl group metabolism. Clin. Biochem. 

43, 732–744 (2010).
 66. Zhao, G. et al. Betaine in inflammation: Mechanistic aspects and applications. Front. Immunol. 9, 1070 (2018).
 67. Steurer, M. A. et al. Altered metabolites in newborns with persistent pulmonary hypertension. Pediatr. Res. 84, 272–278 (2018).
 68. Würtz, P. et al. Metabolite profiling and cardiovascular event risk: A prospective study of 3 population-based cohorts. Circulation 

131, 774–785 (2015).
 69. Cheng, D., Zhao, X., Yang, S., Cui, H. & Wang, G. Metabolomic signature between metabolically healthy overweight/obese and 

metabolically unhealthy overweight/obese: A systematic review. Diabetes Metab. Syndrome Obesity Targets Therapy 14, 991–1010 
(2021).



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3296  | https://doi.org/10.1038/s41598-023-30231-9

www.nature.com/scientificreports/

Acknowledgements
The authors would like to appreciate the DONALD study participants and their families for the provision of 
data. We also acknowledge the support of the staff at the study center for data collection and processing of the 
urine and blood samples.

Author contributions
Conceptualization, C.B., K.O., and U.N.; Data curation, U.A., K.O., and U.N.; Formal analysis, C.B.; Funding 
acquisition, U.N.; Investigation, C.B.; Methodology, C.B., L.W., M.S., K.O., and U.N.; Project administration, K.O. 
and U.N.; Resources, U.A. and K.O.; Software, C.B.; Supervision, M.S. and U.N.; Validation, K.O.; Visualization, 
C.B.; Writing—original draft, C.B.; Writing—review and editing, all authors.

Funding
Open Access funding enabled and organized by Projekt DEAL. This work was partly supported by Diet–Body–
Brain (DietBB), the Competence Cluster in Nutrition Research funded by the Federal Ministry of Education and 
Research (FKZ:01EA1410A). KO is supported by the German Research Foundation (460591722).

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 023- 30231-9.

Correspondence and requests for materials should be addressed to C.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

https://doi.org/10.1038/s41598-023-30231-9
https://doi.org/10.1038/s41598-023-30231-9
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Replication and mediation of the association between the metabolome and clinical markers of metabolic health in an adolescent cohort study
	Methods
	Systematic literature review. 
	Study design. 
	Study participants. 
	Variable assessment. 
	Assessment of clinical biomarkers. 
	Untargeted metabolomic profiling. 
	Complex lipid platform measurement. 
	Body composition and habitual dietary intake. 

	Statistical analysis. 
	Metabolomics data pre-treatment. 
	Replication. 
	Mediation analysis. 
	Missing values. 
	Sensitivity analysis. 

	Ethics approval and consent to participate. 

	Results
	Discussion
	Systematic literature review. 
	Replication. 
	Mediation. 
	Sensitivity analysis. 
	Future research. 
	Strengths and limitations. 

	Conclusions
	References
	Acknowledgements


