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Common features in spatial 
livestock disease transmission 
parameters
Gert Jan Boender * & Thomas J. Hagenaars 

The risk of epidemic spread of diseases in livestock poses a threat to animal and often also human 
health. Important for the assessment of the effect of control measures is a statistical model 
quantification of between-farm transmission during epidemics. In particular, quantification of the 
between-farm transmission kernel has proven its importance for a range of different diseases in 
livestock. In this paper we explore if a comparison of the different transmission kernels yields further 
insight. Our comparison identifies common features that connect across the different pathogen-host 
combinations analyzed. We conjecture that these features are universal and thereby provide generic 
insights. Comparison of the shape of the spatial transmission kernel suggests that, in absence of 
animal movement bans, the distance dependence of transmission has a universal shape analogous 
to Lévy-walk model descriptions of human movement patterns. Also, our analysis suggests that 
interventions such as movement bans and zoning, through their impact on these movement patterns, 
change the shape of the kernel in a universal fashion. We discuss how the generic insights suggested 
can be of practical use for assessing risks of spread and optimizing control measures, in particular 
when outbreak data is scarce.

Epidemics of highly contagious diseases in livestock such as Foot and-Mouth Disease (FMD) and high pathogenic 
avian influenza (HPAI) can have tremendous socio-economic consequences as well as devastating effects on 
animal health1,2. For developing effective contingency planning for the control of such epidemics, it is essential 
to use the data from previous epidemics to gain as much insight as possible in the quantitative characteristics of 
transmission, in particular of between-farm transmission3. These characteristics may include the observed effect 
of control measures such as animal movement standstill or zoning4. By means of using mathematical models 
fitted to describe these characteristics, past or current outbreaks in a given country are often being used to make 
extrapolations to current or future transmission risks in that same country5,6. For countries with no earlier or 
no informative outbreak, one may resort to extrapolation from epidemic patterns observed in other countries, 
addressing uncertainties about model representativity for the country of interest e.g. by exploring the sensitivity 
of the model outcomes to possible differences in parameter values7. For emerging diseases for which there is 
no previous epidemic that can be analyzed, what can we learn from the patterns observed in epidemic data of 
other livestock diseases? Here we present a general framework for the spatial transmission of livestock diseases 
that can help to underpin model extrapolations between control strategies, between countries, and also between 
diseases. It is built on the comparison of epidemic transmission risk patterns across a range of livestock diseases.

Our framework uses the transmission kernel as a central element in the modelling approach. Transmission 
kernels describe the distance-dependent probability of transmission from an infected to a susceptible farm, and 
have been used to describe the between farm transmission of different animal diseases5,6. Use of a transmission 
kernel avoids the modelling of specific transmission pathways where these are poorly known, and allows both 
the construction of risk maps as well as model simulation studies of the effectiveness of control measures5,6,8,9. 
The transmission kernel also facilitates the comparison of the distance-dependent characteristics of transmission 
between epidemics, between diseases, and between phases in one and the same epidemic differing in applied 
control measures, in particular in the type of animal movement restrictions that were applied10–12.

For the interpretation of the comparative kernel analyses results we can build on a body of literature that 
uses spatial kernels to describe movement and dispersal patterns13,14. One of the elements from this literature is 
a distinction between thin-tailed (i.e. exponentially bounded) and fat-tailed (i.e. power-law) kernels15. Whereas 
thin-tailed kernels generate ‘diffusive’ dispersal patterns with constant-speed travelling waves, a fat-tailed kernel 
produces ‘super-diffusive’ behavior lacking a finite velocity and yielding a patchy dispersal pattern15–18. In the 
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description of animal movement, thin-tailed kernels are a signature for an underlying Brownian random walk 
and fat-tailed kernels for Lévy-walk patterns; based on this distinction several studies demonstrate Lévy-walk 
patterns for animal movement19–22. Also human mobility appears to follow a Lévy walk23,24, and this could be of 
relevance to between-farm disease transmission as transmission between farms is likely caused in part by humans 
moving between the farms and thereby acting as passive vectors.

An important subtlety described by the so-called ‘truncated’ Lévy-walk model is the phenomenon that the 
fat-tailed/power-law behaviour is truncated by an exponential decline setting in above a cut-off distance scale. 
This truncated version of the Lévy-walk model describes super-diffusive movement on a distance small compared 
to, and diffusive movement on a scale large compared to, the cut-off distance25. In the case of human mobility, 
such a cut-off distance scale may reflect the existence of an area within which most of the movements are con-
fined, e.g. an urban area for the movements of commuters26. For human travel mobility patterns the power-law 
exponent in the truncated Lévy walk appears to have a universal value of about 1.617,23.

The aim of this article is to yield insight into the similarities and differences between a range of spatial pat-
terns of animal disease transmission by comparison of the corresponding transmission kernels. In particular, 
we seek to investigate to which extent the observed between-farm transmission patterns can be categorized and 
interpreted using insights from the study of movement and dispersal patterns. We will use one and the same 
kernel parametrisation throughout such that parameter values can be directly compared. In our previous kernel 
analyses of between-farm transmission we have mostly adopted a so-called Cauchy form (defined below) to 
parameterize the kernel, motivated in part by the fact that it was identified as having the lowest AIC amongst a 
set of alternatives studied in6, in which the Lévy-walk kernel was not included. Recent analyses suggest that the 
(non-truncated) Lévy-walk kernel produces an even better fit to spatial transmission data from certain livestock 
disease epidemics10,27.

Therefore we re-analyzed eight epidemic datasets available to us using the Lévy-walk kernel; basic character-
istics of these eight datasets are listed in Table 1 and 2. In addition to this, we assembled from the literature three 
Lévy-walk kernels estimated for other animal disease epidemic datasets. Together, the 11 datasets comprise a 
broad set of different host–pathogen combinations, including viral and bacterial pathogens. The resulting set of 

Table 1.   List of 11 epidemic datasets analyzed, ordered by applied control strategy (in order of increasingly 
stringent measures: no movement ban nor zoning (NMNZ), no movement ban but zoning (NMZ), and a 
movement ban (M)) and year. Datasets 1 and 7 represent two time periods of one and the same epidemic; for 
brevity we often refer to all 11 datasets as ‘epidemics’ in the main text.

Nr Disease Year Country Strategy Kernel model of existing analysis

1. FMD10 Before 23rd February 2001 UK NMNZ Lévy Walk

2. SVD12 2006 Italy NMNZ Reference

3. Q fever28 2007–2010 The Netherlands NMNZ Reference

4. BT11 2006 Belgium NMZ Reference

5. BT11 2006 Germany NMZ Reference

6. CSF29 1997–1998 Netherlands M Reference

7. FMD10 Post 23rd February 2001 UK M Lévy Walk

8. FMD8 2001 The Netherlands M Reference

9. HPAI6 2003 The Netherlands M Reference

10. SVD12 2007 Italy M Reference

11. FMD27 2010 Japan M Lévy Walk

Table 2.   Basic characteristics of eight epidemics/epidemic datasets analyzed. For further details we refer the 
reader to the original publications on these datasets.

Nr Disease Disease type Affected species Population size Number of outbreaks Reference

212 SVD viral Pigs 7600 36 12,40

328 Q fever bacterial zoonotic Goats 404 176 28

411 BT vector-borne viral Cattle
Sheep 239,336 1119 11,41,42

511 BT vector-borne viral Cattle
Sheep 87,007 880 11,43

629 CSF viral Pigs 23,131 428 29

88 FMD viral Cattle
Goats 94,506 26 8,44

96 HPAI viral zoonotic Poultry 5360 241 6

1012 SVD viral Pigs 7600 17 12,40
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11 Lévy-walk kernels, each one determined by estimated values for four kernel parameters, allows us to compare 
the results to see if similarities extend across a broad set of livestock disease transmission patterns. Two of the 
four parameters are of highest importance in our analysis, as together these two largely determine the shape of 
the distance dependence. As a formal framework for the comparison between the 11 estimated kernels, we (1) 
apply a hierarchical clustering analysis to the set of 11 pairs of maximum-likelihood values for these two kernel 
shape parameters, and (2) correlate the clusters found to the type of control strategies applied during the 11 
epidemics. A descriptive overview of the epidemics analyzed is given as part of the Materials and Methods. In the 
Results, the estimated Lévy-walk model parameters for each epidemic are presented, the hierarchical clustering 
analysis is carried out, and clusters found are correlated with applied control strategies. In the Discussion, we 
present the insights obtained and their practical relevance for assessing risks of spread and optimizing control 
measures, in particular when outbreak data is scarce.

Material and methods
We assemble and compare the Lévy-walk kernel fits to 11 different between-farm transmission datasets. These 
datasets are listed in Table 1. Three of the datasets were already analyzed using Lévy-walk kernels in the litera-
ture, namely two parts of the UK 2001 FMD epidemics and the 2010 FMD epidemic in Japan10,27. The remaining 
eight datasets of livestock epidemics or parts of epidemics6,8,11,12,28,29 are reanalyzed here by fitting truncated 
Lévy-walk kernels. These eight comprise the 2006 Q fever epidemics in the Netherlands, two parts of the Swine 
Vesicular Disease (SVD) epidemics in 2006/2007 in Italy, the 2001 FMD epidemic in the Netherlands, the 2003 
HPAI epidemic in the Netherlands, the 1997/1998 Classical Swine Fever (CSF) epidemic in the Netherlands, and 
the 2006 Blue Tongue (BT) epidemics in Germany and Belgium. These eight epidemic datasets were previously 
analyzed individually using the ‘Cauchy’ form of the transmission kernel

in which r is the Euclidean distance between an infectious and a susceptible farm, �0 represents the amplitude 
of the transmission kernel and is interpreted as the transmission hazard for very small distance (‘distance zero’) 
between the infectious and the susceptible farm, and r0 is a characteristic distance, also referred to as ‘kernel 
offset’10. It is the distance where the transmission hazard has become half as large as at distance zero, and 
therefore it has an influence on the distance dependence of the kernel for distances up until a few times r0 . The 
parameter α is a scaling exponent that determines how fast the long-distance transmission probability declines, 
and its influence on the kernel shape dominates over the influence of r0 for distances a few times larger than r0 
and beyond. In more detail, the role of α is that its value indicates whether transmission is short-ranged ( α > 3 ), 
intermediate-ranged ( 2 < α ≤ 3 ), or long-ranged ( α ≤ 2)11. In this paper we keep the Cauchy kernel results for 
reference, to compare the fits to those using the Lévy-walk kernel. We use the following parametrization for the 
(truncated) Lévy-walk kernel23:

in which the additional parameter κ is a cutoff distance truncating the Lévy-walk behavior to a finite spatial 
range. The parameter estimates are obtained Maximum Likelihood (ML) estimation, and confidence bounds 
using the likelihood-ratio test. As the kernel amplitude λ0 does not inform about the distance dependence of 
transmission, we only report its estimated values in the Supplementary Information for completeness. We note 
that the estimate for the cutoff distance κ is only informative if it is smaller than the ‘extent’ of the area spanned 
by the dataset; if larger, then no truncation is detected on the distance scales covered by the data. The likelihood 
that is maximized for the kernel estimation is constructed in the following way. For each farm an infection status 
(susceptible (S), becoming infected (C), latent (E), infectious (I), removed (R)) is assigned per time unit (day or 
week depending on dataset). Based on this, we obtain a set of possible infection events (a farm i with status I and 
a farm j with status C in the same time unit) and a set of escape events (a farm i with status I and a farm j with 
status S in the same time unit). �C

j  is the set of all farms i with status I at the start of the time unit in which farm 
j has status C. �S

j  is set of all farms i with status I for at least one time unit during which farm j has status S and 
NS
ij is the number of time units for which i has status I and j has status S. As the escape probability during each 

one of such time units is given by exp
(
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(
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 , where rij is the Euclidean distance between farm i and farm j , it 
is easily derived that the combination of all events has the following likelihood:

where � is the set of all case farms except for the index case farm, and � the set of all farms except for the index 
case farm.

The kernel is defined as a transmission hazard between two given individual farms, and its parameters are 
assumed to be homogeneous across the geographical area where the outbreaks occurred; in particular these 
parameters are assumed to be independent of farm density. To our knowledge there are no examples in the litera-
ture of epidemics in livestock where a regionally stratified kernel analysis produces significant differences in the 
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shape parameters of the transmission kernel; e.g.30 noted that for FMD in 2001 in Great Britain ‘No significant 
regional [….] differences in the spatial transmission kernel were found, although statistical power was limited 
in areas outside Cumbria by lower case incidence.’

During the 11 epidemics the control strategy was either a movement ban (M), or no movement ban but 
zoning (NMZ), or no movement ban nor zoning (NMNZ). Zoning was applied in the 2006 BT epidemic in 
Germany with a typical zone radius of about 20 km and in the 2006 BT epidemic in Belgium, with spillover 
to the Netherlands and France, in which during the main part of the epidemics Belgium was considered to be 
one single zone corresponding approximately to a radius of about 140 km (half the extent of the country)11,31. 
Using the Akaike’s Information Criterion (AIC) the model fit of the Lévy-walk kernel was compared that of the 
reference (i.e. Cauchy) kernel (AIC0). Differences in AIC’s are considered to be significant if larger than 232,33.

In order to objectively identify categories of epidemic transmission patterns we carried out a hierarchical 
clustering analysis using the estimated parameter pairs {α, κ}34. Here we used a Euclidean distance function after 
rescaling both parameters to take values between 0 and 1. The rescaling was carried out using a logistic scaling 
function, in which for each of the two parameters the scaling factor was set to the median value across all 11 
estimates. To assess the statistical significance of correlation between the clusters found and the type of control 
strategies applied during the 11 epidemics, we calculate a p-value by basic combinatorics.

Results
The estimated parameters for the Lévy-walk kernel for the 11 epidemics are given in Table 3; for plots of the 
11 kernel shapes we refer to Fig. S1. Amongst the eight epidemics we re-analyzed here, only epidemics 4 and 5 
correspond to a finite spatial range κ . For epidemics 2, 3, 6 and 8–10, the estimation yielded values for the cutoff 
parameter κ that were much larger than the spatial extent of the datasets and that were not converging to a clear 
best-fit value in our numerical optimization (which was carried out including the ‘FindMinimum’ function in 
Mathematica 10.0 and higher35), indicating that super-diffusive behavior extends across all length scales in the 
dataset. Therefore, for these epidemics, in the final ML estimation procedure we set the factor exp

(

− r
κ

)

 equal 
to 1 (corresponding to assuming κ = ∞ ) to remove the convergence problems. For the epidemics 1–5 (i.e. the 
epidemics without movement ban) the estimate of the scaling exponent α ranges between 0.66 to 1.83 (with the 
majority of values between 1.45 and 1.83) and for the epidemics 6–11 (with movement ban) it ranges between 
2.36 and 2.68; i.e. we observe a perfect separation of the parameter ranges between epidemics with and with-
out movement ban. The AIC and the AIC0 are significantly different (difference > 2) only for epidemics 4 and 
5 (truncated Lévy-walk kernel performing better than the reference kernel). For the kernel estimation results 
taken from the literature (epidemics 1, 7 and 11), that literature gives results for non-truncated Lévy-flight ker-
nels; i.e. no estimates for κ are available. The characteristic distance r0 ranges between 0.18 km and 2.7 km, i.e. 
spanning roughly one order of magnitude across the different epidemics. Differences in r0 are immaterial to the 
long-distance shape of the kernel as the latter is fully determined by the parameters α and κ ; we note that this 
is illustrated by Fig. S1 where the graphs of the kernels for the epidemics 1–3 ( κ = ∞ and α between 1.45 and 
1.83) have very similar long-distance shapes and the same is observed for those of epidemics 6–11 ( κ = ∞ and 
α between 2.36 and 2.68), and the graphs for the kernels of epidemics 4 and 5 each have a long-distance shape 
different from all other graphs due to a unique and finite value for κ . As the kernel amplitude λ0 does not inform 
about the distance dependence of transmission, we only report its estimated values in Table S1 for completeness.

In Fig. 1 we show the dendrogram result from the hierarchical clustering analysis of the value pairs {α, κ} 
for the all 11 epidemics. This dendrogram indicates two main clusters, labelled 1 and 2, in which cluster 1 could 
be subdivided in two sub-clusters 1a and 1b. The clusters coincide completely with the grouping according to 
strategy (p < 0.001): The epidemics 1–3 with strategy NMNZ are all located in cluster 1a, the epidemics 6–11 with 
strategy M are all located in cluster 1b, and the epidemics 4 and 5 with strategy NMZ are both located in cluster 2.

Table 3.   Estimations for the 11 epidemics of the Lévy-walk kernel parameters r0, α and κ (with confidence 
bounds between brackets), the corresponding AIC, the AIC0 for the reference kernel estimation, and 
the applied control strategy (in order of increasingly stringent measures: no movement ban nor zoning 
(NMNZ), no movement ban but zoning (NMZ), and a movement ban (M)). For the kernel parameters of the 
transmission kernel for FMD in Japan (epidemic 11) no confidence bounds were reported in27.

Nr Strategy r0 (km) α κ(km) AIC AIC0

1 NMNZ 0.69 (0.41, 1.07) 1.72 (1.54,1.93) N/A N/A N/A

2 NMNZ 0.36 (0.02,1.64) 1.83 (1.45,2.39) ∞ 437.5 436.632

3 NMNZ 2.5 (0.48,11.1) 1.45 (1.1,2.1) ∞ 699.47 698.566

4 NMZ 1.32 (0.28,3.44) 1.70 (1.39,2.09) 173 (90,932) 24,125.3 24,130.8

5 NMZ 0.18 (0,18.7) 0.66 (0.38,2.13) 25.3 (20.3,45.9) 16,767.9 16,795.5

6 M 0.64 (0.43,0.96) 2.56 (2.36,2.82) ∞ 6800.09 6801.96

7 M 1.33 (1.1, 1.56) 2.68 (2.58,2.78) N/A N/A N/A

8 M 0.76 (0.17,2.64) 2.36 (1.86,3.21) ∞ 505.884 505.015

9 M 2.7 (1.2,6.1) 2.53 (2.03,3.46) ∞ 3089.80 3090.99

10 M 0.78 (0.003,4.05) 2.47 (1.75,3.98) ∞ 206.852 205.017

11 M 0.58 2.47 N/A 2093.08 2094.32
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Discussion
We gathered transmission kernel parameter estimates for 11 livestock disease epidemic datasets that together 
cover a broad range of host–pathogen combinations as well as combinations of control measures applied. A 
subsequent hierarchical clustering analysis of the parameter value combinations showed a maximal correlation 
between clusters and a grouping according to control measures. In particular, we observed a full separation 
of the ranges of estimates for the scaling exponent α between strategies with movement ban (epidemics 6–11, 
coinciding with cluster 1b, where α ranges between 2.36 and 2.68) and without movement ban (epidemics 1–5, 
coinciding with clusters 1a + 2, where α ranges between 0.66 and 1.83). We observed that for the strategies without 
movement bans the scaling exponent is most often close to (and never significantly different from) the universal 
value of approximately 1.6 identified in analyses of human travel mobility patterns. This suggests that in absence 
of movement bans, the distance dependence of between-farm transmission is strongly determined by the pat-
tern of between-farm animal transports; and that this pattern is characterized by a scaling exponent taking a 
value close to the universal value for human mobility. Indeed, modelling suggests that the power-law scaling of 
movements of infected individuals would be directly reflected in the spatial transmission pattern36. In line with 
this interpretation, we observe that only for the two epidemics with zoning measure (NMZ), the inclusion of 
the cutoff parameter κ leads to a better fitting model, suggesting that the zoning measure restricts the universal 
power-law dependence to distances in the order of the size of the zone. The applied protection zone of the 2006 
BT epidemic in Germany (epidemic 11) was about 20 km and if zones overlapped they were merged to one larger 
zone11. The estimate for the cutoff distance κ epidemic 5 is 25.3 (20.3,45.9) km which we deem fully consistent 
with these zoning measures. The estimate for the cutoff distance in the 2006 BT epidemic in Belgium (epidemic 
4) is 173 (90,932) km; as in this analysis (in contrast to the previous analysis reported in11) the populations of 
the Netherlands and France were also included, this 173 km represents an informative distance. This estimate is 
consistent with Belgium being declared one protection zone with the ‘radius’ of the country being about 140 km. 
The close correspondence, in both cases 4 and 5, between zoning measure and kernel shape further underpins 
the interpretation that constraining animal transports to within defined zones limits the dominant transmission 
route to distances within the extent of the zone. We note that although the analyses of the epidemics 1–3 and 6–11 
do no produce a finite cutoff parameter, this is still consistent with the expectation that imposed export bans did 
produce a zoning effect on the scale of the country in question, as such an effect is not identifiable in an analysis 
including only the farm population within that country. Although the truncated Lévy-walk kernel is perform-
ing only better for epidemics 4 and 5 and similar for the other epidemics, the use of the truncated Lévy-walk 
kernel enables the comparison of the parameters of the different transmission kernels yielding further insight.

As noted above, for the six epidemics with movement bans the estimated scaling exponent ranges between 
2.36 and 2.68 which is clearly different from the range (0.66–1.83) estimated for the 5 epidemics without move-
ment ban, the difference being of the order of 1.0. The fact that the imposition of a movement ban produces 
such a dramatic shift of α, implies that in absence of a movement ban, the longer-distance disease transmission 
is mainly driven by animal transports. Other possible transmission routes, such as human and fomite move-
ments unrelated to animal transports, movements of wild animals and wind-borne virus dispersal, together may 
only play a minor role in the longer-distance disease transmission as long as no movement ban is in place. After 
imposition of a movement ban these other possible transmission routes are the ones remaining, and are yielding 
a scaling exponent that, compared to the situation without movement ban, seems to be increased by an amount 
of the order of 1.0. This difference of about 1.0 can be interpreted if we make two assumptions. First, we assume 
that the dispersal or movements underlying the remaining transmission routes are occurring predominantly 
in random directions, i.e. unlike animal transports these are not necessarily directed towards a neighboring 
farm. Second, we assume that these dispersal or movement processes are also described by a scaling exponent 
of approximately 1.6. The difference of about 1.0, which corresponds to a factor 1/r, can then be explained from 
taking into account that for transmission to occur, the random movement direction of the infectious material 
has to match the direction towards a specific susceptible farm; the probability that this match occurs is inversely 

1 2 3 8 10 11 9 6 7 4 5

cluster 2

cluster 1a cluster 1b

Figure 1.   Dendrogram of the hierarchical clustering of the value pairs {α, κ} for the 11 epidemics; two main 
clusters 1 and 2 are indicated, and within cluster 1 the two (sub)clusters 1a and 1b could be distinguished.
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proportional to the distance r to the susceptible farm36. Regarding the first assumption, we note that the indirect 
between-farm contacts occurring when e.g. feed delivery or egg collection trucks visit multiple farms on the same 
day, are clearly directed to the farms as destinations. I.e. these types of contacts do not correspond to movement 
with a random direction. This means that our assumption corresponds to a situation where only a minor part of 
infections can be attributed to these types of contacts, as was the case for epidemic number 937. Regarding the 
second assumption, transmission via human movement, e.g. the route of a passerby accidentally connecting two 
farms, fits well into this interpretation as, Lévy-walk patterns with a scaling exponent of 1.6 have been identified 
for human movement23. This interpretation would thus support the hypothesis that ‘random’ human movement 
is the most important between-farm transmission route once animal movement bans are in place. However, the 
value of 1.6 does not exclusively point towards human movement. Concerning movement of wild animals, it is 
known of some species that they also move according a Lévy-walk pattern with a scaling exponent of about 1.638. 
Concerning wind, specific atmospheric conditions can lead to aerial dispersal following a Lévy-walk pattern 
with a scaling exponent of about 1.539. In addition, we note that our interpretation also implicitly assumes that 
the movement of infectious material between farms is fast enough such that pathogen survival is not influencing 
the scaling of transmission with distance.

Our results show that after imposing a movement ban, transmission retains its super-diffusive character, 
although the movement ban does reduce the longer-distance transmission risks by increasing the scaling expo-
nent α from around 1.6 to around 2.6. As long as transmission has a super-diffusive character (power-law 
dependence on distance), it will be difficult to spatially confine it using local control measures such as ring 
culling or ring vaccination.

The analyses in this paper provide a conceptual framework for analysis of spatial livestock disease spread and 
control. In addition to its relevance for interpreting past epidemic patterns and underpinning model extrapola-
tions from these patterns, our approach provides a framework for assessing the spatial transmission of emerging 
livestock diseases, i.e. diseases for which no previous epidemic is available to estimate kernel parameters. As a 
prior model, the between-farm transmission could be assumed to follow a Lévy-walk kernel with parameter 
values as follows. The exponential power α would be assumed to be about 2.6 if a movement ban is put in place 
and 1.6 without a movement ban. The spatial limitation κ would be assumed to equal the radius of the protection 
zone in case no movement ban is implemented and the radius of (a circular area approximating) the country 
when import bans are imposed by neighboring countries. According to Table 3, the characteristic distance r0 
seems to be of the order of 1 km across all epidemics included. The remaining information needed for the Lévy-
walk kernel, namely the value of the (relative) amplitude of the between-farm transmission (λ0) for the emerging 
disease in question, could be treated as a scenario parameter, to be varied within a plausible range. The resulting 
prior model can be used for analyses that can comprise risk maps for the spread of the emerging disease as well 
as more detailed evaluation of control measures by means of kernel model simulations6,9.

Data availability
All data generated and analyzed during this study are included in this published article and its Supplementary 
Information file.
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