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Algorithm of quantum engineering 
of large‑amplitude high‑fidelity 
Schrödinger cat states
Mikhail S. Podoshvedov 1,2, Sergey A. Podoshvedov 1* & Sergei P. Kulik 1,3

We present an algorithm of quantum engineering of large‑amplitude ≥ 5 high‑fidelity ≥ 0.99 even/odd 
Schrödinger cat states (SCSs) using a single mode squeezed vacuum (SMSV) state as resource. Set of 
k beam splitters (BSs) with arbitrary transmittance and reflectance coefficients sequentially following 
each other acts as a hub that redirects a multiphoton state into the measuring modes simultaneously 
measured by photon number resolving (PNR) detectors. We show that the multiphoton state 
splitting guarantees significant increase of the success probability of the SCSs generator compared 
to its implementation in a single PNR detector version and imposes less requirements on ideal PNR 
detectors. We prove that the fidelity of the output SCSs and its success probability are in conflict with 
each other (which can be quantified) in a scheme with ineffective PNR detectors, especially when 
subtracting large (say, 100 ) number of photons, i.e., increasing the fidelity to perfect values leads to a 
sharp decrease in the success probability. In general, the strategy of subtracting up to 20 photons from 
initial SMSV in setup with two BSs is acceptable for achieving sufficiently high values of the fidelity 
and success probability at the output of the generator of the SCSs of amplitude ≤ 3 with two inefficient 
PNR detectors.

In quantum optics the notion of the superposition of classically distinguishable macroscopic  states1 finds its 
embodiment in a form of superposition of coherent states with amplitudes equal in magnitude but opposite in 
 sign2,3. Macroscopic SCSs can be of great significance in the demonstration of the fundamental  problems4,5. In 
addition, the superpositions are well adjusted for the implementation of the quantum  protocols6–13. The interac-
tion of two coherent states with amplitudes equal in magnitude on a balanced beam splitter guarantees an increase 
in the modulus of one coherent state by 

√
2 times, while, at the same time, leaving the other output mode in the 

vacuum state 
(

|β�|β� → |
√
2β�|0�

)

 . Furthermore, mixing of the components of entangled coherent states on 
the balanced BS separates them on their parity assuming that the vacuum state is an even  state6,7,9. This allows 
for nearly deterministic implementation of Bell state measurement by means of two PNR detectors. To reduce 
contribution of an event when both PNR detectors are silent which may occur, SCSs of amplitude β ≥ 2 are 
required to provide the sufficiently high degree of  orthogonality9 of the coherent states | ± β� . As quantum 
protocols work on the principle of producing the required state with subsequent measurement to obtain infor-
mation stored in the prepared state, it is not surprising that the need to put into practice bright nonclassical 
continuous variable (CV) states especially including high-amplitude SCSs as well as entangled both with each 
other and with the photonic states (hybrid states) provoked a fairly large  drive14–32. So, entangled coherent states 
can be realized by passing pure SCSs through the balanced BS. Development of advanced technologies of quan-
tum engineering of nonclassical states can be used to implement more complex entangled states with more than 
two distributed coherent nodes.

Practical realization of the optical SCSs mainly relies on nondeterministic photon subtraction technique, 
being the key for quantum engineering of the nonclassical CV states. The first implementation of the technique 
is based on passage of a Gaussian quantum state through highly transmitting beam  splitters14 (HTBS). By detect-
ing photons in the measurement channel, catlike state may be generated in the output channel. But the detec-
tion of photons diverted by such HTBS into the measuring mode becomes a fairly rare event even in the case of 
small values of the SCS amplitude β ≤ 2 . Undoubtedly, given the serious progress in PNR detection based on 
transition-edge sensor (TES)  technology33–37, further modification of the photon subtraction technique could 
go in the direction of increase of number of subtracted  photons17,18,21,22,29–32, as well as using BS with arbitrary 
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 parameters29–32 to have a chance to enhance output state characteristics. So, TES detector  in36 has a near unity 
detection efficiency and feature resolution below 20 photons at 1535nm but can detect up to 100 photons with a 
few-photon uncertainty which makes it appropriate to take theoretical consideration of subtracting one hundred 
and even more photons from the initial Gaussian SMSV state. In general, despite a number demonstrations of the 
SCS  prototypes16,18,19,21,26–28, the problem of generating large-amplitude with β ≥ 2 even/odd SCS states remains 
challenge the solution of which can give impulse for the practical implementation of quantum protocols with 
coherent states. Here, we use a hub of k sequentially arranged BSs with arbitrary transmission and reflection 
amplitudes in each measuring mode which PNR detector is set to generate measurement-induced even/odd 
SCSs. As a component from which the target state is generated, the SMSV is applied as a state that is routinely 
used in practice. Moreover, use of the SMSV as input to the hub is quite natural as the state has even parity as 
well as the even SCS and can approximate it with sufficiently high fidelity for small amplitudes β ≤ 1 23. First, 
we introduce a family of CV states of a certain parity realized by the hub by means of subtraction of arbitrary 
number of photons from the SMSV state. The parity of the number of photons extracted from the SMSV in an 
indistinguishable manner determines the parity of the generated states. We show the family of the CV states of 
certain parity depends on one parameter. Second, we numerically demonstrate a possibility of generating even/
odd SCSs amplitudes β ≥ 5  with a fidelity exceeding > 0.99 (so-called perfect values) at the exit from the hub in 
the case of subtraction of 90, 91 photons from the initial SMSV by ideal PNR detectors. Third, we show advantage 
of using multiphoton state  demultiplexing37 resulting in a significant gain in the success probability of generating 
the SCSs on compared to the case of redirecting the multiphoton state into one PNR detector. In addition, the 
use of several PNR detectors reduces the requirements on maximum number of measurable photons detected 
with single-photon resolution. Fourth, we show that the characteristics (fidelity and success probability) of the 
output SCSs compete with each other in the practical case of using imperfect PNR detectors, which to a large 
extent can prevent the creation of a larger amplitude SCSs generator when it is required to subtract large number 
(say, 100 ) of photons. To avoid the competition, it is required to extract a smaller (say, 20 ) number of photons to 
guarantee obtaining close-to-ideal values of the output parameters.

Results
Perfect values of even/odd SCSs parameters at the hub exit. Let us consider the passage of SMSV 
state through a system of k > 0 lossless beam splitters BSs (BSi) with real transmittance ti > 0 and reflectance 
ri > 0 coefficients (i = 1, . . . , k) satisfying the normalization condition t2i + r2i = 1 and arranged in a row one 
after another, as shown in Fig. 1. No other states (vacuum) are applied to the second input of each beam splitter. 
In Fig. 1, the SMSV state occupies zero mode while the auxiliary modes denoted by i(i = 1, 2, . . . , k)  are termi-
nated by k PNR detectors. The original SMSV state is given by.

where the parameter s > 0 is the squeezing amplitude of the SMSV state defining amount y0 = tanhs/2 ≤ 0.5 ≥ 0 . 
It follows from formula (1) the SMSV state is described by two parameters s and y0 , respectively. Furthermore, 
the input state in Eq. (1) can also be characterized by two more parameters, namely, the squeezing S expressed 
in dB as S = −10log

(

exp(−2s)
)

 and the mean number of photons �n�SMSV = sinh2s in the state. The absence of 
input SMSV (vacuum) is determined by the values s = 0 , y0 = 0 , while the value of y0 = 0.5 corresponds to the 
non-physical case of an infinitely large squeezing amplitude s → ∞ of the original SMSV. The optical scheme 
in Fig. 1 can be considered as a hub composing of k elements. Each i− element of the hub consists of one BS and 

(1)|SMSV� =
1

√
coshs

∑∞

n=0

yn0√
(2n)!

(2n)!
n!

|2n�,

Figure 1.  Optical scheme used to shape even/odd SCS of large amplitude with fidelity over 0.99 . It consists 
of a sequence of k beam splitters with transmittance coefficient ti (i = 1, 2, . . . , k) following one after another 
through which the original SMSV state with squeezing amplitude s passes forming the entangled hybrid state in 
Eq. (24). Part of the reflected photons (n1, n2, . . . ., nk) is simultaneously measured in auxiliary modes resulting 
in either even CV (Eq. (25)) in the case of n1 + n2 + · · · + nk = 2mN or odd CV (Eq. (26)) heralded states 
provided that n1 + n2 + · · · + nk = 2mN + 1 . The conditional CV states can approximate either an even or an 
odd SCSs under certain values of one parameter yk defined by s and ti (i = 1, 2, . . . , k).
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PNR detector capable of resolving the number of photons to within one redirected by the BS from the initial 
SMSV state.

Subtraction of total either even Nk = n1 + n2 + · · · + nk = 2mN or odd Nk = n1 + n2 + · · · + nk = 2mN + 1 
number of photons from original SMSV state in an indistinguishable manner so all information about which 
Fock state of the original superposition the photons are subtracted is lost generates the whole family of heralded 
CV states of definite parity in Eqs. (25, 26). The projection of the hybrid entangled state in Eq. (24) onto Fock 
states can be realized by the simultaneous registration of n1 . . . , ni , . . . nk photons in k measurement modes by 
modern TES detectors resolution of which has been  improved37. The measurement-induced CV states have a 
well-defined parity. The superpositions in Eq. (25) involve only even number states, while the CV states in 
Eq. (26) consist exclusively of odd number states. Therefore, the family can be divided into two subfamilies by 
its parity, namely, even in Eq. (25) and odd Eq. (26), respectively. As the state in Eq. (25) becomes SMSV state 
in Eq. (1) in the case of mN = 0 , the SMSV state belongs to an even subfamily. The success probabilities to realize 
the 2mN , 2mN + 1 CV states follow from definition of the amplitudes of the entangled state in Eq.  (27) 

P
(0,0,...,0)
n1,n2,...,nk =

∣

∣

∣
C
(0,0,...,0)
n1,n2,...,nk

∣

∣

∣

2

/coshs with the normalization condition 
∑∞

n1,...,ni,...,nk=0P
(0,0,...,0)
n1,n2,...,nk = 1.

The optical scheme in Fig. 1 can be used for quantum engineering of measurement-induced even/odd SCSs. 
Indeed, such a task makes sense since the heralded CV states of definite parity may have photon distributions 
similar to even/odd SCSs ones which are given by.

where N± =
(

2
(

1± exp
(

−2β2
)))−1/2 are the corresponding normalization factors and β > 0 is an amplitude 

of the SCSs. For example, the difference between the heralded and target states is in that the amplitude β to the 
power of 2m 

(

β2m
)

 in Eq. (2) unlike the parameter yk to the power of m 
(

ymk
)

 in Eq. (25). Instead of the difference 
between β2m and ymk  , the CV states in Eq. (25) have an additional factor either (2(n+mN ))!/(n+mN )! associ-
ated with the number of extracted photons which can compensate for the difference between β2m and ymk  . To 
estimate how close the measurement induced 2mN , 2mN + 1 CV states can be to the target even/odd SCSs, one 

uses parameter fidelity F2mN =
∣

∣

∣
�SCS+|�(0,0,...,0)

2mN
�
∣

∣

∣

2

 and F2mN+1 =
∣

∣

∣
�SCS−|�(0,0,...,0)

2mN+1 �
∣

∣

∣

2

 for two pure states. Ideal 

fidelity F2mN ,max = F2mN+1,max = 1 can indicate on identity of the two states |�(0,0,...,0)
2mN

� = |SCS+� and 
|�(0,0,...,0)

2mN+1 � = |SCS−� . We are interested in finding such conditions that provide the highest possible value of the 
fidelity, which nevertheless is less than one. In what follows, we do not use the subscript max for the highest 
possible fidelity.

The dependences of the maximum possible fidelities F2mN , F2mN+1 of the CV states in Eqs. (25, 26) on the SCS 
amplitude β are shown in Fig. 2. The number of subtracted photons varies from 0 to 90 for even (Fig. 2a,b) and 
from 1 to 91 (Fig. 2c,d) for odd CV states. In general, the more photons are subtracted from the initial SMSV, the 
higher the fidelity of the generated even/odd SCSs with greater amplitude β . So, in the case of extracting more 
than 80 photons from original SMSV, even/odd SCSs of amplitude of more than 5 can be generated with fidelity 
exceeding 0.99 . The maximum possible fidelity F2mN , F2mN+1 solely depends on one parameter either y2mN (β) 
or y2mN+1(β) . The parameters y2mN (β) and y2mN+1(β) that provide the fidelity values in Fig. 2 are shown in 
Fig. 3 in dependency on the SCS amplitude β . The obtained values of y2mN (β) and  y2mN+1(β) can be used to 
select the BS transmittances ti and also the squeezing amplitude s of the initial SMSV state. Note that the reverse 
rule is observed for values of y2mN (β) and y2mN+1(β) . The more photons are extracted from SMSV state, the 
smaller the value of the parameter y2mN (β) and y2mN+1(β) is required to generate the target even/odd SCSs. If 
the value of the parameter yk becomes less of either y2mN (β) 

(

yk < y2mN (β)
)

 or y2mN+1(β) 
(

yk < y2mN+1(β)
)

 , 
then the generation of the even/odd SCSs with the fidelity shown in Fig. 2 is impossible for given value of β . This 
imposes certain restrictions on the squeezing amplitude s of the original SMSV state and, as a consequence, on 
the value of the initial parameter y0 taking into account the fact that the passage of the SMSV state through the 
BSs reduces the value of y0 . So, in the case of using a system of one BS and PNR detector, initial value y(1)0  (here 
the superscript indicates a hub with the corresponding number of elements) of SMSV must meet the condition 
y
(1)
0 ≥ y2mN ,2mN+1(β) to provide required fidelity in Fig. 2 for a preselected range of β . If a system with k BSs 

and PNR detectors is used in Fig. 1, then the following stronger constraint on y(k)0  , i.e. y(k)0 ≥ y
2mN ,2mN+1

(β) , 
must be imposed to guarantee the fidelity shown in Fig. 2 for required values of β . The inequality can imply use 
of the SMSV state with larger squeezing amplitude s to provide the more value of y(k)0  on compared with y(1)0  , 
i.e. y(k)0 > y

(1)
0  . It is also interesting to note a rather strong density of curves y2mN (β) and y2mN+1(β) at certain 

values of the SCS amplitude β in Fig. 3, especially, in the range of 0.11 ≥ y2mN ,2mN+1(β) > 0 . This may mean 
that at a certain value of either yk = y2mN

(β) or yk = y2mN+1(β) , most of the measurement outcomes, except for 
measuring outcomes with a small number of photons including vacuum, can generate SCSs of certain amplitude 
with slightly different fidelities which can reduce the requirements for the PNR detector to resolve the number 
of photons. The idea of generating even/odd SCSs of large amplitude for almost any measurement outcome n 
greater than a certain value n0 , i.e. n > n0 is promising and deserves separate consideration.

(2)|SCS+� = 2N+(β)exp
(

−β2/2
)

∑∞

n=0

β2n

√
(2n)!

|2n�,

(3)|SCS−� = 2N−(β)exp
(

−β2/2
)

∑∞

n=0

β2n+1

√
(2n+ 1)!

|2n+ 1�,
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Figure 2.  (a–d) Dependence of the even (a, b) F2m and odd (c, d) F2m+1 fidelities between 2m, 2m+ 1− 
heralded CV states of definite parity and even/odd SCSs on the SCS amplitude β . The more photons n is 
measured in auxiliary modes, the higher fidelities Fn of the generated states is observed. Dependences of the 
fidelities of higher-order CV states with n from 70 up to 91 depending on β are separately shown in subfigures 
(b) и (d). The dependences on subfigures (b) и (d) allow for one to observe generation of even/odd SCSs with 
an amplitude greater than 5 with fidelity exceeding 0.99.
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The success probabilities to conditionally generate 2m1, 2m1 + 1 CV states in optical scheme with one BS and 
PNR detector follow from Eqs. (23) and are given by.

It is worth noting that the success probability of the measurement also depends on the BS parameter t1 , in 
contrast to the fidelity, which is completely determined by the value y1 . To evaluate the success probability to 
implement the even/odd SCSs one should take y1 = y2mN (β) in Eq. (4) and y1 = y2mN+1(β) in Eq. (5). The suc-
cess probabilities both for arbitrary values of y1 and for those providing SCSs generation fall rather quickly with 
increasing the parameter m1 , i.e. P(0)2m1+2/P

(0)
2m1

=
((

1− t21
)

/t21
)2
y21((2m1)!/(2m1 + 2)!)

(

Z(2m1+2)
(

y1
)

/Z(2m1)
(

y1
))

(4)P
(0)
2m1

=
1

coshs

(

1− t21
t21

)2m1 y2m1

1

(2m1)!
Z(2m1)

(

y1
)

,

(5)P
(0)
2m1+1 =

1

coshs

(

1− t21
t21

)2m1+1
y2m1+1
1

(2m1 + 1)!
Z(2m1+1)

(

y1
)

.

Figure 3.  (a, b) 2m, 2m+ 1− heralded states in Eqs. (25, 26) depend solely on one CV parameter 0 ≤ yk ≤ 0.5 . 
The plots demonstrate the dependencies of the parameter (a) y2mN (β) and (b) y2mN+1(β) that provide the 
fidelities in Fig. 2 if either yk = y2mN (β) or yk = y2mN+1(β) . The larger the number n of the extracted photons, 
the smaller the value of the parameters y2mN (β) and y2mN+1(β) , moreover accompanied by an increase in the 
fidelity of the conditional states.
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≪ 1, 
P
(0)
2m1+3/P

(0)
2m1+1 =

((

1− t21
)

/t21
)2
y21((2m1 + 1)!/(2m1 + 3)!)

(

Z(2m1+3)
(

y1
)

/Z(2m1+1)
(

y1
)) ≪ 1 involving the case of y1 = y2mN (β) and 

y1 = y2mN+1(β) . The finding drastically reduces the generation rate of the even/odd SCSs of larger amplitude 
requiring more photon subtraction in setup with one BS and PNR detector.

Let us compare the success probabilities P(0,0,...,0)n1,n2,...,nk of the even/odd SCSs generation in configuration with k 
BSs and PNR detectors and ones P(0)n1+n2+···+nk

 by equal subtraction of photons in both cases. Here, a superscript 
(0) indicates on the hub with one BS and PNR detector while a superscript (0, 0, . . . , 0) with k zeros is applied to 
show that k BSs and PNR detectors are used in the optical scheme in Fig. 1. The success probability to implement 
the CV states of definite parity in Eqs. (25, 26) becomes.

where the conditional probability is given by.

obeying the normalization condition 
∑∞

ni=0P
(0)
ni/n1,n2,...,ni−1

= 1 . Here, the quantity P(0)n1  is presented in Eqs. 
(4, 5). The success probabilities for generating even/odd SCSs is obtained by taking either yk = y2mN (β) or 

yk = y2mN+1(β) heeding the relationship between yi and yk (i < k) in Eq. (6) to get amounts P(0,0,...,0)n1,n2,...,nk

(

y2mN (β)
)

 
and P(0,0,...,0)n1,n2,...,nk

(

y2mN+1(β)
)

 , respectively. Substituting either y2mN (β) or y2mN+1(β) instead of yk , one estimates 

the ratio of the success probabilities for the hub with one element P(0)n1+n2+···+nk

(

y2mN ,2mN+1(β)
)

 and k elements 
P
(0,0,...,0)
n1,n2,...,nk

(

y2mN ,2mN+1(β)
)

 configured to generate even/odd SCSs.

with the same number of extracted photons in both cases, where the hub with k elements composes 
of identical BSs t1 = t2 · · · = tk = t  . When evaluating ratio in Eq.  (8), we supposed that y(1)0 = y

(k)
0  

which is acceptable to compare two values. As can be seen from the relation, the following estimate 
P
(0,0,...,0)
n1,n2,...,nk

(

y2mN ,2mN+1(β)
)

≫ P
(0)
n1+n2+···+nk

(

y2mN ,2mN+1(β)
)

 takes place, since there are two factors postulat-
ing the inequality. The factor (n1 + n2 + n3 · · · + nk)!/(n1)!(n2)! . . . (nk)! makes a significant increasing con-
tribution to the ratio of the probabilities in addition to the increasing multiplier 

(

t−2
)(k−1)n1+(k−2)n2+...+nk−1 . 

But it is worth heeding the decrease in the transmittance coefficient t  is limited by the corresponding condition 
on amount y(k)0  noted above. Substantial reducing the transmittance coefficient t  can lead to impossibility of 
generating even/odd SCSs of certain amplitude with required high fidelity. Note also the inequality under study 
can be only increased in the case of t1 > t2 > . . . tk.

Let us consider in more detail the success probability to implement SCSs in a scheme with two identical BSs 
(t1 = t2 = t) and two PNR detectors. Then, for example, the success probability to generate even SCS can be 
written as.

in the case of total even number of detected photons 2m1 + 2m2 = 2mN provided that both detectors have 
registered even Fock states 2m1 and 2m2 , respectively. Here, the multiplier 1/coshs is expressed in terms of the 
parameter y2mN (β) = t4y0 . In Fig. 4(a,b), we show the dependence of the success probabilities to generate even 
SCSs for various even measurement outcomes registered by two PNR detectors provided that the total number 
of registered photons is 20 , i.e. 2m1 + 2m2 = 20 . Here, the SCS amplitude range is selected from 2.2 to 3 , where 
the appropriate large fidelity (Fig. 2a) is provided. Note that a further increase of the SCS amplitude β > 3 may 
lead to the impossibility of generating the corresponding SCS with the fidelity shown in Fig. 2a for the selected 
values of the BSs parameters t1 = t2 = t since the value y2/t4 may exceed the threshold value 0.5 . Numerical 
results confirm significant gain in the success probability when using two PNR detectors compared to one. All 
probabilities P(0,0)n1,n2 in Fig. 4a,b with n1  = 0 exceed the probability to implement even SCS with one PNR detector. 
The dependence of P(0,0)0,2mN

(

y2mN (β)
) ∼= P

(0)
2mN

(

y2mN (β)
)

 (the difference between the probabilities is very insig-
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 ) is shown in Fig. 4a,b 
and takes on the lowest possible values of all the plots presented. As can be seen from the plots, the probability 
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P
(0,0)
10,10 significantly exceeds all other probabilities P(0,0)n1,n2 with n1  = n2 for definite values of β . The use of the BSs 

with a little lower transmittance coefficient (Fig. 4b) makes it possible to increase the success probability P(0,0)10,10 
by almost two orders compared P(0,0)10,10 in Fig. 4a. Note also that the fidelity of the output state solely depends on 
the total number of extracted photons either 2mN or 2mN + 1 , in contrast to the success probability, which is 
also determined by the number of photons extracted by each PNR detector.

Thus, use of the multiple hub can provide, at least, two advantages over optical scheme with a single BS and 
PNR detection. PNR detectors are characterized by several different parameters, such as efficiency, maximum 
number of the detectable photons, photon number resolution, etc. Registration of a large number of photons by 
a single PNR detector can impose too high requirements on maximum number of detectable photons detected 
with single-photon resolution which can be quite difficult to implement in practice. The multiphoton state split-
ting realized by multi-element hub through a split of the measured light into several output measurement modes 
each of which measures a smaller number of photons avoids higher requirements for the PNR detection. So, 
the multiphoton state demultiplexing with two PNR detectors registering up to 10 photons with single-photon 
resolution each is more feasible compared to one PNR detector, which should resolve up to 20 photons with the 
same resolution. An even more advantageous situation can take place in the case of exact detection maximum, 
say, up to 50 photons by one PNR detector. Instead of measuring 50 photons by one PNR detector, one can make 
use of, for example, a hub with 5 BSs and PNR detectors capable of resolving up to 10 photons with single-photons 
resolution each. In addition to reducing the sensitivity requirements for the PNR detectors in a scheme with a 
large number of elements, multi-element hub provides a significant gain in the success probability. The gain can 
only exponentially increase with an increment in the number of elements in the hub.

The discussion presented above referred to the ideal operation of the measuring technique. Therefore, the 
obtained numerical results in the Figs. 2, 3, 4 can be classified as perfect, that is, those that can be observed under 
ideal experimental conditions without taking into account the imperfection of the experimental measurement 
technique. Taking into account the imperfection of measuring equipment can worsen the values of perfect 
parameters (SCS amplitude β , fidelity). Nevertheless, consideration of the optical scheme in Fig. 1 under ideal 

Figure 4.  (a, b) Plots of the success probabilities P(0,0)n1,n2

(

y20(β)
)

 (Eq. (6)) to generate even SCSs with the fidelity 
presented in Fig. 2a on output of the hub with two BSs and PNR detectors in the dependency on the SCS 
amplitude β . The plots are constructed for different BSs transmittance coefficients: (a) t1 = t2 = 0.8 and b) 
t1 = t2 = 0.77 . Detection of only even photon states n1 = 2m1 and n2 = 2m2 is considered. The maximum 
possible probability P(0,0)10,10

(

y20(β)
)

 is observed when n1 = 10 and n2 = 10 . Moreover, the probability is several 
orders of magnitude higher than the probability P(0,0)0,20

(

y20(β)
)

 , which almost coincides with the probability 
P
(0)
20

(

y20(β)
)

 of generating SCS in a scheme with one BS and PNR detector 
(

P
(0,0)
0,20

(

y20(β)
) ∼= P

(0)
20

(

y20(β)
)

)

 . 
Transmission of more photons into the measurement modes (b) makes it possible to increase the success 
probability by almost two orders of magnitude.
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conditions makes sense, since it allows one to find the perfect values of the parameters that one should strive for 
in the practical implementation of quantum engineering of even/odd SCSs.

Influence of the quantum efficiency of the PNR detector on perfect values of the SCS genera‑
tor. In real experiments, PNR detectors can have rather high quantum efficiency, but not an ideal one, i.e. 
η < 1 that can lead to a deterioration of the characteristics of the output states. To estimate the level of the fidelity 
degradation of generated SCSs, one introduces even/odd positive-operator values measure (POVM) elements 
of the PNR detector.

where Cj
i  is a binomial coefficient. Now, the fidelities Fid(0)2m(η) = tr

(

ρ
(0)
2m(|SCS+��SCS+|)

)

 and 

Fid
(0)
2m+1(η) = tr

(

ρ
(0)
2m+1(|SCS−��SCS−|)

)

 , where tr means the trace operation, ρ(0)
2m = tr2

(

ρ(0)�2m(η)
)

 , 

ρ
(0)
2m+1 = tr2

(

ρ(0)�2m+1(η)
)

 are the conditional states and ρ(0) = (BS12(|SMSV�1|0�2))(BS12(|SMSV�1|0�2))+ 
is an original one, where upper symbol  + in operator is responsible for the Hermitian conjugation operation, 
should be analyzed by their decomposing in terms of the powers of small parameter 1− η up to (1− η)2 , provided 
that quantum efficiency of modern PNR detectors is high enough η ≈ 1 but η < 1

where the mean number of photons of the even/odd SCSs.

is calculated with y = y2mN (β) for even SCSs and y = y2mN+1(β) for odd SCSs. Second order terms in decom-
positions in Eqs. (12, 13) are defined as.
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 . Here, the fidelities Fid(0)2m(η = 1) and Fid(0)2m+1(η = 1) are those that are shown in 
Fig. 2. The success probabilities in detecting 2m, 2m+ 1 photons and thereby generating even/odd SCSs in the 
output mode are given by

(10)�2m =
∑∞

x=0
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where P(0)2m(η = 1) and P(0)2m+1(η = 1) are given by Eqs. (4, 5). As can be seen from the presented formulas, the 
fidelity is a deviation by a certain amount from the perfect value 

(

F
(0)
2m,2m+1(η = 1) > F

(0)
2m,2m+1(η)

)

 in the case 
of small values of the quantum inefficiency 1− η ≪ 1 . The success probability is increased by the same amount 
compared to the perfect value P(0)2m,2m+1(η) > P

(0)
2m,2m+1(η = 1).

The largest decreasing contribution to the fidelities in Eqs. (12, 13) proportional to 1− η includes the product 
of the BS parameter 

(

1− t21
)

/t21 by the mean number of photons either 〈n〉2m or �n�2m+1 . The mean number of 
photons in SCSs is known to be proportional to its amplitude squared i.e. �n�SCS ∼ β2 and the more the SCS 

Figure 5.  (a–d) Dependence of average number of photons (a) 〈n〉2mN
 and (b) �n�2mN+1 in generated CV states 

on parameters y2mN (β) and y2mN+1(β) , respectively, which provide the maximum fidelity of the states with even/
odd SCSs. When constructing (c) 〈n〉2mN

 and (d) �n�2mN+1 depending on the corresponding SCS amplitude β , the 
curves coincide with each other which confirms the rule for the SCSs i.e. �n�2mN

≈ β2 and �n�2mN+1 ≈ β2.
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amplitude is, the greater the average number of photons is in it. To check the fact for the CV states of certain 
parity, the dependences of the mean number of photons in the generated states are shown in the Fig. 5. The plots 
in Fig. 5a,b are the dependence of the mean number of photons on the parameter  y2mN (β), y2mN+1(β) which 
provides the fidelities in Fig. 2, while the graphs in Fig. 5c,d also show the mean number of photons in the CV 
states of definite parity but in dependence on the SCS amplitude β . The form of the curves in Fig. 5a,b is related 
to the fact that their arguments are defined in different ranges of change y (see Fig. 3a, b). So, the arguments 
y90(β) and y91(β) for the states |�(0,0,...,0)

90 � and |�(0,0,...,0)
91 � , respectively, change in a smallest range (Fig. 3a,b), 

which entails that the plots of 〈n〉90 and 〈n〉91 are maximally shifted to the left. As can be seen the Fig. 5c,d the 
condition �n�2m ≈ β2, �n�2m+1 ≈ β2 is met (the curves on the graphs almost coincide regardless of the number 
of extracted photons), which also indicates the that the generated CV states of a certain parity can approximate 
even/odd SCSs with high fidelity (Fig. 2). The maximum number of average number of photons is limited to a 
value of just over 35 for the maximum considered number of subtracted photons, namely 90 and 91 . Note that 
the graphs in Fig. 5 are applicable to a hub regardless of the number of its elements, that is, both to the hub with 
one and k elements.

The contribution of the mean number of photons can be partly compensated for by the BS parameter pro-
vided that a beam splitter different from the balanced one that is, with t1 > 1/

√
2 is used to guarantee the 

performance of the condition 
(

1− t21
)

/t21 < 1 . Then, the factor reducing the fidelity can be reduced to zero in 
the case of use of the HTBS with t1 → 1 , when the BS parameter 

(

1− t21
)

/t21 tends to zero, thereby nullifying 
contribution of the mean number of photons to the overall fidelity in Eqs. (12, 13) that can provide perfect values 
of the fidelity, i.e.Fid(0)2m(η) ≈ Fid

(0)
2m(η = 1) and Fid(0)2m+1(η) ≈ Fid

(0)
2m+1(η = 1) . Unfortunately, the strategy of 

using HTBS has a significant drawback. It follows from the formulas (18, 19) that the success probability just 
depends on the same BS multiplier 

(

1− t21
)

/t21 in the appropriate degree either 2m or 2m+ 1 as well as its per-
fect values in Eqs. (4, 5). The power dependence can very quickly reduce the perfect values of the success rate 
and to zero which confirms the inapplicability of the HTBS strategy to extracting a large number of photons 
from the initial SMSV state. Indeed, the HTBS redirects a single photon into measurement mode with prob-
ability ∼

(

1− t21
)

 , while n photons can be redirected with probability ∼
(

1− t21
)n ≈ 0 in the case of t1 → 1 . In 

general, the relationship between the fidelity of the output CV state and its success probability can be reflected 
by the following expressions: �F

(0)
2m(η) ·�P

(0)
2m(η) ≈ (1− η)2

((

1− t21
)

/t21
)2�n�2mF(0)2m(η = 1) · P(0)2m(η = 1) 

a n d  �F
(0)
2m+1(η) ·�P

(0)
2m+1(η) ≈ (1− η)2

((

1− t21
)

/t21
)2�n�2m+1F

(0)
2m+1(η = 1) · P(0)2m+1(η = 1)  ,  w h e r e 

�F
(0)
2m,2m+1(η) = F

(0)
2m,2m+1(η = 1)− F

(0)
2m,2m+1(η) and �P

(0)
2m,2m+1(η) = P

(0)
2m,2m+1(η)− P

(0)
2m,2m+1(η = 1) are the 

differences between the perfect and those values that are realized in the case of using an inefficient PNR detector.
The result can be extended to the case of an optical hub consisting of k elements, which leads to rather cum-

bersome expressions for the fidelity and the success probability. Nevertheless, for qualitative conclusions, it is 
sufficient to consider the case of k detectors with the same quantum efficiency η and limit our consideration to 
the first order in quantum inefficiency 1− η , which gives.

where Fid(0,0,...,0)2mN ,2mN+1(η = 1) and P(0,0,...,0)2mN ,2mN+1(η = 1) are the perfect values of the fidelity and the success probabil-
ity. It follows from the expressions that the values of the fidelity and success probability act in discord with respect 
to each other, that is, the fidelity decreases and the success probability increases by the same amount. The value 
is proportional both to the mean number of photons in the generated state, which follow from the curves in 
Fig. 5, and to the hub’s parameter 

(

1− t21 t
2
2 . . . t

2
k

)

/t21 t
2
2 . . . t

2
k . In general, the multiplier 

(

1− t21 t
2
2 . . . t

2
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/t21 t
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2 . . . t

2
k 

is more than the factor 
(

1− t21
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/t21 present in Eqs. (12, 13), i.e. 
(

1− t21 t
2
2 . . . t

2
k

)

/t21 t
2
2 . . . t

2
k ≥

(

1− t21
)

/t21 which 
reduces the possibilities for the hub parameter to decrease the contribution of the mean number of photons. So, 
in the case of using the same BSs so that the condition t1 = t2 = · · · = tk = t takes place, the hub’s parameter 
becomes lowering 

((

1− t2k
)

/t2k < 1
)

 in the case of t > 1/
2k
√
2 . As in the case of a one-element hub, it is possible 

to achieve perfect values for the fidelity Fid(0,0,....,0)2mN ,2mN+1(η) ≈ Fid
(0,0,...,0)
2mN ,2mN+1(η = 1) in the case of 

(

1− t21 t
2
2 . . . t

2
k

)

/t21 t
2
2 . . . t

2
k → 1 which is guaranteed to lead to a strategy of using k HTBSs with 

t1 → 1, t2 → 1, . . . , tk → 1 . The strategy with HTBSs is hardly practical for the quantum state engineering of 
the even/odd SCSs, since the perfect values of the success probability tend to zero in the case of subtracting a 
large number of photons (say, more of 20 ) even though (as shown above) the strategy with multiphoton state 
demultiplexing gives a certain gain to the final success probability (Eq.  (21)) due to the multiplier 
(1− η)

((
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2
2 . . . t

2
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/t21 t
2
2 . . . t

2
k

)

�n�2mN ,2mN+1 . However, the strategy with HTBSs (or partial use of HTBSs) 
may become practical when extracting a small number of photons (say, less than 10 ). It is also possible to estimate 
deviations of the parameter values from their perfect values taking into account Fid(0)2m,2m+1(η = 1) >
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(1− η)2
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1− t
2
1 t

2
2 . . . t

2
k

)

/t21 t
2
2 . . . t

2
k

)2�n�2mN+1F
(0,0,...,0)
2mN+1 (η = 1) · P(0,0,...,0)2mN+1 (η = 1) ,  where the quantities 

�F
(0,0,...,0)
2mN ,2mN+1(η) and �P

(0,0,...,0)
2mN ,2mN+1(η) are the differences between the perfect and those values that are obtained 

in the practical case of using an inefficient PNR detector �F
(0,0,...,0)
2mN ,2mN+1(η) = F

(0,0,...,0)
2mN ,2mN+1(η = 1)− F

(0,0,...,0)
2mN ,2mN+1(η) 

and �P
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2mN ,2mN+1(η) = P

(0,0,...,0)
2mN ,2mN+1(η)− P

(0,0,...,0)
2mN ,2mN+1(η = 1) , respectively.

The dependences in Fig. 5 allow us to estimate the contribution of the decreasing term to the fidelity of the out-
put states generated with inefficient PNR detectors. Let us take the maximum observed value �n�90 = �n�91 ≈ 35 
for estimation. Then, the decreasing factor can be evaluated by ≈ 35

((

1− t21
)

/t21
)

 in a scheme with one BS and 
PNR detector (Eqs. (12, 13)) and ≈ 35

((

1− t21 t
2
2

)

/t21 t
2
2

)

 (Eq. (20)) in setup with two BSs and PNR detectors in the 
case subtraction of either 90 for generation of even SCS or 91 photons for generation of odd SCS. The reducing fac-
tor 35

((

1− t21
)

/t21
)

 can take the following values: 8.21 for t1 = 0.9 ; 3.78 for t1 = 0.95 and  1.44 for t1 = 0.98 . In the 
case of a hub with two identical BSs (t1 = t2 = t) and PNR detectors, the decreasing multiplier 35

((

1− t21 t
2
2

)

/t21 t
2
2

)

 
can take on the following values: 18.35 for t = 0.9 ; 7.97 for t = 0.95 and 2.94 for t = 0.98 . If we take value of the 
quantum efficiency η = 0.98 33, then one have the following fidelities: Fid(0)90,91(η) ≈ 0.8358 · Fid(0)90,91(η = 1) for 

t1 = 0.9 ; Fid(0)90,91(η) ≈ 0.9244 · Fid(0)90,91(η = 1) for t1 = 0.95 ; Fid(0)90,91(η) ≈ 0.9712 · Fid(0)90,91(η = 1) for t1 = 0.98 . 

One can choose the value of the SCS amplitude β in such a way that Fid(0)90,91(η = 1) > 0.99 (Fig. 2), but it does not 
corroborate the utility of the strategy, since the success probability is proportional to either 

(

1− t21
)90 or 

(

1− t21
)91 

and can take on very small values, much less of < 10−20 . Comparing the values of decreasing multipliers, it can 
be noted that they can only increase with an increase in the number of the hub’s elements. So, one can evaluate 
from Eq. (20) Fid(0,0)90 (η) ≈ 0.8406 · Fid(0,0)45,45(η = 1) for t1 = t2 = 0.95 and η = 0.98.

In order to take advantage of two-element hubs in terms of substantial gain in the success probabil-
ity keeping the fidelity of the output SCS at an acceptable level, it is worth reducing the number of pho-
tons subtracted. As follows from Fig. 4, an increase in the success probability is provided when two PNR 
detectors detect the same or almost the same number of photons. So, in the case of generating even SCS of 
amplitude of β = 3 by detecting 20 photons with two PNR detectors, we approximately have �n�20 ≈ 8 and 
Fid

(0,0)
20 (η = 0.98) ≈ 0.9162 · Fid(0,0)10,10(η = 1) for t1 = t2 = 0.9 . The success probability of the event takes the 

values ∼ 10−9 . If one reduces the number of extracted photons by half (say 10 photons) with help of two BSs 
with t1 = t2 = 0.95 , then one can estimate the final reduction factor as 0.9727 and the output fidelity becomes 
Fid

(0,0)
10 (η = 0.98) ≈ 0.9727 · Fid(0,0)5,5 (η = 1) . The success probability of the event is estimated at the level of 

∼ 10−7  which can be evaluated as more practical in the quantum engineering of even/odd SCSs of amplitudes 
β = 2.5 . Progress in the development of the qualitative PNR detectors with quantum efficiency η > 0.98 can 
improve the above estimates. Note that the term acceptable is used in comparison with the success probability 
of spontaneous parametric down conversion whose effectiveness is usually bounded above by a value 10−6 . In a 
real experimental case, the efficiency of the conversion can be even lower, on the order of 10−8 . In addition to the 
quantum inefficiency inherent to PNR detectors, losses in detector couplers can also worsen the above estimates 
due to the loss of part of the photons. So, if we take into account the coupling efficiency of each detector, then 
the total quantum efficiency of the PNR detector should be reduced by an appropriate amount, for example, to 
η = 0.9 , which reduces the above estimates when extracting 10 and 20 photons with two PNR detectors. Estimates 
for generating even/odd SCSs of amplitudes in the range from 2.5 to 3 by subtraction from 10 to 20 photons 
from the initial SMSV state can also be extended to the case of photon resolution by three PNR detectors. The 
use of three PNR detectors for the measurement-induced generation of the SCSs is more effective for brighter 
input SMSV state (with squeezing more than 10dB ). So in case of t1 = t2 = t3 = 0.9  the estimates following 
from the formula (6) (it follows from Eq. (21) the contribution of the quantum efficiency of the PNR detector to 
the success probability is minimal) give the success probability in the range P(0,0,0)6,6,6 (η = 0.98) ≈ 10−4 for SCS 
amplitude β = 2.5 to P(0,0,0)4,4,4 (η = 0.98) ≈ 10−3 for β = 2.5 . Note that, as follows from the Eq. (20), the fidelity 
of the output CV state can only decrease in the case compared to the one in the case of using two PNR detectors.

Discussion
Study of quantum effects in physical systems of macroscopic sizes is largely driven by introduction of Schrödinger 
cat  states1 as one of the most fundamental issue of quantum mechanics. It is no occasional that solution of the 
problem spurred serious interest to multiphoton states that could contain, on average, larger number of photons 
not limiting to a few to observe nonclassical features on the macroscopic states. Here, we have demonstrated the 
possibility of generating a whole family of multiphoton states of a certain parity generated from related to them 
SMSV state by extraction of multiphoton state from original state and registering them in the measurement 
modes of a multi-element hub. Redirecting photons in an indistinguishable manner, followed by probabilistic 
detection of a certain number of photons, redistributes the input distribution of the SMSV state to a new associ-
ated with the original. New CV states of definite parity with a larger mean number of photons in Eqs. (25, 26) have 
potential applications in quantum state engineering and optical quantum metrology. The generated states of the 
CV family of definite parity are characterized by only one parameter 0 < y < 0.5 , which exclusively depends on 
the squeezing amplitude of the original SMSV. In the scheme with one BS and PNR detector, the input parameter 
y0 is multiplied by the BS transmittance coefficient squared, thereby lowering it by the corresponding value. In 
the scheme with multiphoton state demultiplexing, the reduction of y0 can be more destructive due to successive 
multiplication by BS transmittance coefficients squared. We have shown that for each multiphoton state |mN � 
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subtracted from original SMSV there is a parameter value y2mN (β) for even and y2mN+1(β) for odd number of 
subtracted photons which provides the maximum fidelity of the CV state of a certain parity with even/odd SCS 
of amplitude β . In order to achieve the perfect fidelity of the SCSs generator, it is necessary to ensure the fulfill-
ment of the condition yk = y2mN ,2mN+1(β) . Thus, the squeezing amplitude s and BS’s parameters ti can be chosen 
appropriately to ensure the condition yk = y2mN ,2mN+1(β) . From a practical point of view, the important point 
is that the values of y2mN ,2mN+1(β) decrease with an increase of the number of the detected photons.

Control over the success probability is possible since it largely depends on the number of photons extracted 
by each detector, in contrast to the fidelity of the output state, which is solely determined by the total number 
of photons detected. Therefore, use of the multiphoton state demultiplexing by means of use of multi-element 
hub makes sense to greatly increase the success probability without affecting the fidelity of the output state. The 
use of only one BS and detector leads to a rather small values of the success probability 

(

10−20 >
)

 of even/odd 
SCSs generation of large amplitude, when a sufficiently large number (> 50) of photons is subtracted. Greater 
redirection of photons of original SMSV state into measurement modes due to increased reflectance coefficients 
of the BSs is additional factor raising the success probability of the required event. But the strategy with BSs with 
increased reflectance coefficients should be accompanied by an increase in the squeezing amplitude of the initial 
SMSV and has a restrictive effect due to the inability to achieve the required condition yk = y2mN ,2mN+1(β) if a 
large number of BSs is used. In addition, use of several PNR detectors instead of one reduces the requirements 
imposed on the maximum number of detected photons registered with single-photon resolution. In general, 
strategy with multiple hub is more effective and promising for the quantum engineering of high-fidelity ≥ 0.99 
even/odd SCSs of amplitude ≥ 5 with perfect PNR detectors. In general, the number of the subtracted photons 
can be increased (say up to 106 ) which leads to an increase in the amplitude of the generated even/odd SCSs 
with high fidelity > 0.99.

Consideration of an optical scheme in Fig. 1 with ideal PNR detection allows for one to find maximum pos-
sible values of the output parameters of the CV states and the conditions under which they could be observed. 
These perfect values can no longer be improved by any means in optical scheme in Fig. 1, they can only be 
worsened in their practical implementation due to the imperfection of measuring technology. In the case of 
practical quantum engineering of even/odd SCSs with inefficient PNR detectors, fidelity and success probability 
can become competing parameters which is analytically expressed. Use of the highly transmitting BSs gener-
ates the even/odd SCSs with fidelity close to perfect but only at the expense of a sharp decrease of the success 
probability since the multiphoton state has less chance of appearing in the measurement modes. An increase in 
the success probability is possible by redirecting more photons into the measurement modes but it reduces the 
fidelity of the even/odd SCSs. A trade-off between the values of the output characteristics (fidelity and success 
probability) can be achieved by subtraction of smaller photonic state (say, up to 20 photons) from original SMSV 
state in scheme with two BSs and PNR detectors to generate even/odd SCSs of less amplitudes ≤ 3 . Practical 
quantum engineering of even/odd large-amplitude ≥ 5 high-fidelity ≥ 0.99 SCSs by subtraction of large (say, 
100 photons) with help of multiple hub currently is a challenge. Note the recent  work37, where researchers were 
able to accurately resolve 0− 100 photons by three TESs, each capable of detecting maximum of 37 photons. By 
post-selecting data, they achieved error rates below 1% on photon number measurements beyond 30 photons per 
measurement channel not perturbing the measurement distribution. Progress in practical quantum engineering 
of large-amplitude and high-fidelity SCSs may stem from the measurement technology developed in the work.

Methods
Passing SMSV state through the optical hub. To trace the influence of the optical hub on the unitary 
evolution of the initial SMSV state in Fig. 1, it is worth using the system of transformations on the creation 
operators imposed by each of BSi : a+0 → tia

+
0 − ria

+
i  , a+i → ria

+
0 + tia

+
i  , where a+0  is the creation operator of 

the light field propagating in 0 mode and a+i  is the creation operator of i light field generated by BSi . The trans-
formations are the basis to derive output entangled state. Let us first apply them to situatio with one BS and one 
PNR detector, i.e. BS01(|SMSV�0|0�1) . Using the linearity of the beam splitter quantum operator, expanding the 
action of superposition of the creation operators 

(

t1a
+
0 − r1a

+
1

)l|00�01 and collecting all the terms for the Fock 
state in the first mode |n�1 , one obtains the following hybrid entangled state.

with amplitudes.

while the CV states of definite parity present in the hybrid entangled state in Eq. (22) follow directly from those 
below. Also details of the mathematical function Z

(

y1
)

 , its derivatives of order 2m, 2m+ 1 and its argument y1 
are presented below. Generalization to the case of the passage of the SMSV state through a series of BSs arranged 
one behind the other as shown in Fig. 1 can be carried out according to a similar algorithm when the output 
entangled state from the current BS is the input for the next. Finally, output entangled state produced by series 
of k BSs over SMSV inputted into mode 0 is given by

(22)BS01(|SMSV�0|0�1) =
1

√
coshs

∑∞

n=0
C(0)
n |�(0)

n �0|n�1,

(23)C(0)
n = (−1)n

�

1− t21
t21

�

n
2 y1

n
2

√
n!







�

Z(2m)
�

y1
�

, ifn = 2m
�

Z(2m+1)
�

y1
�

, ifn = 2m+ 1
,
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where BS0i means the beam splitter operator mixing modes 0 and i . Here, the CV states with even total number 
Nk = n1 + n2 + · · · + nk = 2mN of photons reflected to ancillary measurement modes are presented by.

while the CV states with odd total number  Nk = n1 + n2 + · · · + nk = 2mN + 1 of photons redirected to ancil-
lary measuring modes are given by.

Amplitudes of the entangled state in Eq. (24) are given by.

Here, the following function Z
(

y
)

= 1/
√

1− 4y2 and its derivative Z(m) = dmZ/dym with respect to the 
parameter y = t2tanhs/2 determined through the experimental parameters (t, s) are introduced. If only one 
beam splitter is used in Fig.  1, then the argument of the Z

(

y
)

 becomes y1 = t21 tanhs/2 , that is, 

Z
(

y1
)

= 1/

√

1− 4y21  , it differs from the original y0 by the value t21 i.e. y1 = t21y0 . By definition, the parameter 
y1 can also take values in the range 0 < y1 < 0.5 in the case of s > 0 . Note that the case y1 = 0 is realized either 
in the absence of the SMSV state at the input to the BS (s = 0) or in the case of reflection of all photons into the 
second auxiliary mode that is, when t1 = 0, r1 = 1 , while the case of y1 = 0.5 can only appears in the non-physical 
case of s → ∞ and t1 = 1 . The passage of the original SMSV through i− BS leads to a change of the input param-
eter y0 to yi as y0 → yi =

(

t21 t
2
2 . . . t

2
i

)

tanhs/2 = t21 t
2
2 . . . t

2
i y0 = t2i yi−1 in Eqs. (25–27). The parameter yi−1 

acquires an additional reducing factor t2i  after CV state has passed the next i BS i.e. yi = t2i yi−1 . Finally, output 
state’s parameter yk used in Eqs. (25–27) becomes yk =

(

t21 t
2
2 . . . t

2
i . . . t

2
k

)

tanhs/2 = t21 t
2
2 . . . t

2
i . . . t

2
k y0 after the 

initial SMSV state goes through all k beam splitters. Thus, the action of the system of k successive BSs causes a 
decrease in the initial parameter y0 in t21 t

2
2 . . . t

2
i . . . t

2
k times, i.e. yk/y0 = t21 t

2
2 . . . t

2
i . . . t

2
k and function Z depends 

on yk , i.e. Z
(

yk
)

= 1/

√

1− 4y2k  . The limiting values of the parameter yk can be taken in the case of either s = 0 
or ti = 0 leading to yk = 0 or in the case of s → ∞ , t1 = t2 = · · · = ti = . . . tk = 1 resulting in yi = 0.5 which 
are not of interest. Note that the CV states |�(0)

n � present in the hybrid entangled state in Eq. (22) follow directly 
from CV states in Eqs. (25, 26).

Data availability
The datasets used and/or analysed during the current study available from the corresponding author (S.A.P.) 
on reasonable request.

Received: 18 December 2022; Accepted: 17 February 2023

References
 1. Schrödinger, E. Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 807–812 (1935).
 2. Sanders, B. C. Entangled coherent states. Phys. Rev. A 45, 6811–6815 (1992).
 3. Gerry, C. C. & Knight, P. L. Quantum superpositions and Schrödinger cat states in quantum optics. Am. J. Phys. 65, 964–974 (1997).
 4. Wenger, J., Hafezi, M., Grosshans, F., Tualle-Brouri, R. & Grangier, P. Maximal violations of bell inequalities using continuous-

variable measurement. Phys. Rev. A 67, 012105 (2003).
 5. Wineland, D. J. Nobel lecture: Superposition, entanglement, and raising Schrödinger’s cat. Rev. Mod. Phys. 85, 1103 (2013).
 6. van Enk, S. J. & Hirota, O. Entangled coherent states: Teleportation and decoherence. Phys. Rev. A 64, 022313 (2001).
 7. Wang, X. Quantum teleportation of entangled coherent states. Phys. Rev. A 64, 022302 (2001).
 8. Cochrane, P. T., Milburn, G. J. & Munro, W. J. Macroscopically distinct quantum-superposition states as a bosonic code for ampli-

tude damping. Phys. Rev. A 59, 2631 (1999).
 9. Ralph, T. C., Gilchrist, A., Milburn, G. J., Munro, W. J. & Glancy, S. Quantum computing with optical coherent states. Phys. Rev. 

A 68, 042319 (2003).
 10. Sangouard, N. et al. Quantum repeaters with entangled coherent states. J. Opt. Soc. Am. B 27, A137–A145 (2010).
 11. Podoshvedov, S. A. Efficient quantum teleportation of unknown qubit based on DV-CV interaction mechanism. Entropy 21, 150 

(2019).
 12. Joo, J., Munro, W. J. & Spiller, T. P. Quantum metrology with entangled coherent states. Phys. Rev. Lett. 107, 083601 (2011).
 13. Podoshvedov, S. A. & An, N. B. Designs of interactions between discrete- and continuous- variable states for generation of hybrid 

entanglement. Quantum Inf. Process. 18, 68 (2019).

(24)

BS0kBS0k−1 . . .BS0i . . .BS01(|SMSV�0|0�1|0�2 . . . |0�i . . . |0�k)

=
1

√
coshs

∑∞

n1=0
. . .

∑∞

ni=0
. . .

∑∞

nk=0
(−1)n1+n2+···+nkC

(0,0,...,0)
n1,n2,...,nk

|�(0,0,...,0)
n1,...,ni ,...,nk

�
0
|n1�1 . . . |ni�i . . . |nk�k ,

(25)|�(0,0,...,0)
n1,...,ni ,...,nk

� = |�(0,0,...,0)
2mN

� =
1

√

Z(2mN )
(

yk
)

∑∞

n=0

ynk√
(2n)!

(2(n+mN ))!
(n+mN )!

|2n�

(26)|�(0,0,...,0)
n1,...,ni ,...,nk

� = |�(0,0,...,0)
2mN+1 � =

√

yk

Z(2mN+1)
(

yk
)

∑∞

n=0

ynk√
(2n+ 1)!

(2(n+mN + 1))!
(n+mN + 1)!

|2n+ 1�.

(27)C(0,0,...,0)
n1,n2,...,nk

=
�k

l=1

�

1− t2l
t2l

�

nl
2 y

nl
2

l√
nl !







�

Z(2mN )
�

yk
�

, ifNk = 2mN
�

Z(2mN+1)
�

yk
�

, ifNk = 2mN + 1



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3965  | https://doi.org/10.1038/s41598-023-30218-6

www.nature.com/scientificreports/

 14. Dakna, M., Anhut, T., Opatrny, T., Knöll, L. & Welsch, D. G. Generating Schrödinger-cat-like state by means of conditional meas-
urement on a beam splitter. Phys. Rev. A 55, 3184–3194 (1997).

 15. Dakna, M., Knöll, D. & Welsch, D. G. Quantum state engineering using conditional measurement on a beam splitter. Eur. Phys. J. 
D 3, 295–308 (1998).

 16. Ourjoumtsev, A., Tualle-Brouri, R., Laurat, J. & Grangier, P. Generating optical Schrödinger kittens for quantum information 
processing. Science 312, 83–86 (2006).

 17. Podoshvedov, S. A. Elementary quantum gates in different bases. Quantum Inf. Process. 15, 3967–3993 (2016).
 18. Gerrits, T. et al. Generation of optical coherent-state superpositions by number-resolved photon subtraction from the squeezed 

vacuum. Phys. Rev. A 82, 031802 (2010).
 19. Takahashi, H. et al. Generation of large-amplitude coherent-state superposition via ancilla-assisted photon subtraction. Phys. Rev. 

Lett. 101, 233605 (2008).
 20. Podoshvedov, S. A. & Kim, J. Testing quantum mechanics against macroscopic realism using the output of χ2 nonlinearity. Phys. 

Rev. A 74, 033810 (2006).
 21. Ourjoumtsev, A., Ferreyrol, F., Tualle-Brouri, R. & Grangier, P. Preparation of non-local superpositions of quasi-classical light 

states. Nat. Phys. 5, 189–192 (2009).
 22. Huang, K. et al. Optical synthesis of large-amplitude squeezed coherent-state superpositions with minimal resource. Phys. Rev. 

Lett. 115, 023602 (2015).
 23. Gerry, C. C., Benmoussa, A. & Bruno, K. M. Single-mode squeezed vacuum states as approximate Schrödinger phase cats: Relation 

to su(1,1) phase operators. J. Opt. B 5, 109–115 (2003).
 24. Giancy, S. & de Vasconcelos, H. M. Methods for producing optical coherent state superpositions. J. Opt. Soc. Am. B 25, 712–733 

(2008).
 25. Podoshvedov, S. A. & Kim, J. Dense coding by means of the displaced photon. Phys. Rev. A 77, 032319 (2008).
 26. Sychev, D. V. et al. Entanglement of optical Schrödinger cat states. Nat. Photonics 11, 379–382 (2017).
 27. Ulanov, A. E., Fedorov, I. A., Sychev, D., Grangier, P. & Lvovsky, A. I. Loss-tolerant state engineering for quantum-enhanced 

metrology via the reverse Hong-Ou-Mandel effect. Nat. Commun. 7, 11925 (2015).
 28. Israel, Y. et al. Entangled coherent states created by mixing squeezed vacuum and coherent light. Optica 6, 753–757 (2019).
 29. Takase, K., Yoshikawa, J., Asavanant, W., Endo, M. & Furusawa, A. Generation of optical Schrödinger’s cat states by generalized 

photon subtraction. Phys. Rev. A 103, 013710 (2021).
 30. Mikheev, E. V., Pugin, A. S., Kuts, D. A., Podoshvedov, S. A. & An, N. B. Efficient production of large-size optical Schrödinger cat 

states. Sci. Rep. 9, 14301 (2019).
 31. Podoshvedov, S. A. & Podoshvedov, M. S. Entanglement synthesis based on the interference of a single-mode squeezed vacuum 

and a delocalized photon. J. Opt. Soc. Am. B 38, 1341–1349 (2021).
 32. Kuts, D. A. & Podoshvedov, S. A. Entangled states shaping with CV states of definite parity. Sci. Rep. 12, 1558 (2022).
 33. Lita, A. E., Miller, A. J. & Nam, S. W. Counting near-infrared single-photons with 95% efficiency. Opt. Express 16, 3032–3040 

(2008).
 34. Fukuda, D. et al. Titanium-based transition-edge photon number resolving detector with 98% detection efficiency with index-

matched small-gap fiber coupling. Opt. Express 19, 870–875 (2011).
 35. Sridhar, N. et al. Direct measurement of the Wigner function by photon-number-resolving detection. J. Opt. Soc. Am. B 31, B34–B40 

(2014).
 36. Gerrits, T. et al. Extending single-photon optimized superconducting transition edge sensors beyond the single-photon counting 

regime. Opt. Express 20, 23798–23810 (2012).
 37. Eaton, M. et al. Resolution of 100 photons and quantum generation of unbiased random numbers. Nat. Photon. 17, 106–111 (2023).

Acknowledgements
MSP, SAP and SPK are supported by the Ministry of Science and Higher Education of the Russian Federation 
on the basis of the FSAEIHE SUSU (NRU) (Agreement No. 075-15- 2022-1116).

Author contributions
S.A.P. contributed to the conception of the idea and development of mathematical apparatus. M.S.P. have per-
formed all the numerical simulations and created all plots and took part in discussion of the results obtained. 
S.A.P. wrote the draft of the manuscript. S.P.K carried out general control of the work and reviewed the 
manuscript.

Competing interests 
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to S.A.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2023

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Algorithm of quantum engineering of large-amplitude high-fidelity Schrödinger cat states
	Results
	Perfect values of evenodd SCSs parameters at the hub exit. 
	Influence of the quantum efficiency of the PNR detector on perfect values of the SCS generator. 

	Discussion
	Methods
	Passing SMSV state through the optical hub. 

	References
	Acknowledgements


