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Deep ensemble learning enables 
highly accurate classification 
of stored red blood cell morphology
Austin H. Routt , Natalia Yang , Nathaniel Z. Piety , Madeleine Lu  & Sergey S. Shevkoplyas *

Changes in red blood cell (RBC) morphology distribution have emerged as a quantitative biomarker 
for the degradation of RBC functional properties during hypothermic storage. Previously published 
automated methods for classifying the morphology of stored RBCs often had insufficient accuracy 
and relied on proprietary code and datasets, making them difficult to use in many research and clinical 
applications. Here we describe the development and validation of a highly accurate open-source RBC 
morphology classification pipeline based on ensemble deep learning (DL). The DL-enabled pipeline 
utilized adaptive thresholding or semantic segmentation for RBC identification, a deep ensemble of 
four convolutional neural networks (CNNs) to classify RBC morphology, and Kalman filtering with 
Hungarian assignment for tracking changes in the morphology of individual RBCs over time. The 
ensembled CNNs were trained and evaluated on thousands of individual RBCs from two open-access 
datasets previously collected to quantify the morphological heterogeneity and washing-induced 
shape recovery of stored RBCs. Confusion matrices and reliability diagrams demonstrated under-
confidence of the constituent models and an accuracy of about 98% for the deep ensemble. Such 
a high accuracy allowed the CNN ensemble to uncover new insights over our previously published 
studies. Re-analysis of the datasets yielded much more accurate distributions of the effective 
diameters of stored RBCs at each stage of morphological degradation (discocyte: 7.821 ± 0.429 µm, 
echinocyte 1: 7.800 ± 0.581 µm, echinocyte 2: 7.304 ± 0.567 µm, echinocyte 3: 6.433 ± 0.490 µm, 
sphero-echinocyte: 5.963 ± 0.348 µm, spherocyte: 5.904 ± 0.292 µm, stomatocyte: 7.080 ± 0.522 µm). 
The effective diameter distributions were significantly different across all morphologies, with 
considerable effect sizes for non-neighboring classes. A combination of morphology classification 
with cell tracking enabled the discovery of a relatively rare and previously overlooked shape recovery 
of some sphero-echinocytes to early-stage echinocytes after washing with 1% human serum albumin 
solution. Finally, the datasets and code have been made freely available online to enable replication, 
further improvement, and adaptation of our work for other applications.

An estimated 4–5 million patients are transfused with approximately 13 million units of stored red blood cells 
(RBCs) in the United States every  year1,2. Most of these RBC units are separated from other components of whole 
blood soon after collection, mixed with an anticoagulant-preservative solution, and stored in a refrigerator at 
1–6 °C for up to 6  weeks1. Biochemical and mechanical properties of RBCs deteriorate during the hypothermic 
storage at a rate that depends on various factors like processing and storage methods and characteristics of the 
 donor1,3,4. A hallmark of this so-called “storage lesion” is the gradual transformation of RBC shape from healthy 
flexible discocytes through various intermediate stages of echinocytosis to rigid and fragile spherocytes, which 
are prone to lysis and are rapidly cleared by the spleen when  transfused5–8.

Recently, RBC morphology has emerged as an integrative marker of the overall functional quality of stored 
 blood6–10. The rate of the echinocytic transformation is highly variable among individual RBCs, even within 
the same unit; by the end of the allowable storage, a unit contains a heterogeneous mixture of RBCs at every 
stage of the morphological  degradation5,11. Quantifying the distribution of stored RBCs in a unit over differ-
ent morphological classes is important because both the overall shape deterioration and the presence of even a 
small fraction of sphero-echinocytes/spherocytes could have a profound impact on the perfusion of capillary 
 networks6,8,12. Evaluation of RBC morphology is a notoriously tedious and error-prone process during which an 
expert manually observes and classifies the shape of 200 to 1,500 individual RBCs to establish a sample distribu-
tion that ostensibly reflects the properties of ~ 2 ×  1012 RBCs contained in a typical  unit5,11,13.
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To simplify the evaluation of RBC morphology, we have previously developed an automated system that 
combined an easy-to-use microfluidic device for rapidly acquiring thousands of high-quality images of indi-
vidual RBCs and a binary decision-tree algorithm for segmenting and classifying the  images5. The classification 
accuracy of the algorithm (which mimicked the manual RBC classification process) was only 73%5. This level 
of accuracy proved insufficient for most practical applications, such as comparisons of storage conditions and 
washing  methods12–14.

Fortunately, rapid advancements in the field of machine learning have yielded deep convolutional neural 
network architectures (CNNs) that surpassed all former approaches to image classification  tasks15–19. Most sci-
entific fields have by now felt the impact of deep learning (DL) enabled image analysis and there have already 
been several attempts to utilize CNNs for classifying morphology of RBCs in different  contexts20–23. Although 
these previous studies showed varying degrees of success, each approach has been tailored to a specific imaging 
modality, and the common lack of dataset and code accessibility made it impossible to compare the approaches. 
Furthermore, none of these studies explored CNN  ensembling24 to reduce variance or implemented tracking 
to follow the evolution of RBC shape changes through time. Thus, the usefulness of these previous solutions to 
researchers in the field of blood storage and transfusion medicine remains limited.

Here, we describe the development and validation of a DL-enabled RBC morphology classification pipe-
line that utilizes adaptive thresholding or semantic segmentation for RBC identification, an ensemble of four 
pre-trained CNNs for classification of RBC morphology, and Kalman filtering with Hungarian assignment for 
tracking changes in the morphology of individual RBCs over time. We trained and validated the pipeline on two 
image datasets collected as part of previously published  studies5,25. The first dataset, ‘Morphological Heterogene-
ity’ (MH)26, was collected in a study that described the previously mentioned automated system consisting of a 
microfluidic device for acquiring high-quality images and a decision-tree algorithm for segmenting and classify-
ing the images. To generate the MH dataset, seven units of stored RBCs were sampled after 6, 7, and 8 weeks of 
hypothermal storage. The samples were passed through the microfluidic device to acquire images of more than a 
million individual  RBCs5. The second dataset, ‘Cells-In-Wells’ (CIW)27, was collected in a study that investigated 
the dynamics of shape recovery by stored RBCs after washing with normal saline or a 1% solution of human 
serum albumin (HSA). To generate the CIW dataset, samples from six RBC units were collected after 4, 5, and 
6 weeks of cold storage, loaded into an array of microfluidic wells, and washed by adding a large volume of normal 
saline or 1% HSA. High-resolution images of the cells in wells were acquired every second for about 17 min, so a 
human expert could quantify the change in shape during the washing process for thousands of individual  RBCs25.

We demonstrated the utility of the DL-enabled classification of RBC morphology by (i) processing the entire 
MH dataset to gain better estimates of central tendency and variability of the effective diameter of RBCs belong-
ing to different morphological classes and (ii) tracking each RBC present in the CIW dataset to discover a rare 
shape recovery transformation which was deemed impossible in previous studies. Finally, we made both datasets 
(including the original bright-field microscopy images, binary image masks, bounding boxes, various identifiers, 
statistics, and labels)26,27 and the code (developed in MATLAB, an easy-to-learn computing platform popular 
in academia and industry alike)28,29 available freely online. We anticipate that such open access will maximize 
the potential usefulness of this study to researchers in the field of blood storage and transfusion medicine and 
will also benefit those in the broader scientific community interested in benchmarking current and future RBC 
classification models using the datasets.

Results and discussion
Development and validation of the DL-enabled RBC morphology classification pipeline: MH 
dataset. Figure 1 shows the entire framework of the DL-enabled RBC morphology classification pipeline, 
composed of modules (e.g., preprocessing, processing, image analysis) that feed data into specific routines (e.g., 
segmentation, classification, tracking, model averaging). The workflow begins with 1280 × 1024 grayscale images 
and produces various outputs from each routine (i.e., bounding boxes, labels, statistics, videos). An expert can 
manually curate lab outputs from images and then feed them back into the system to improve accuracy by 
increasing the size of the training set. Figure 2 illustrates the application of the morphology classification pipe-
line to the images from the MH dataset (for additional details see supplementary Fig. S1–S3)5,26. Because the 
original images had relatively clear backgrounds with only slight variations in illumination, we were able to 
implement a straightforward segmentation method based on adaptive thresholding. The segmentation method 
used morphological dilations and erosions to remove specks and fill holes, and the watershed algorithm to 
ensure that touching cells had dividing lines that differentiated their silhouettes. We used the resulting binary 
mask to perform blob analysis and define RBC bounding boxes, and then passed cropped images of individual 
RBCs to an ensemble of four CNNs (described below) for the classification of RBC morphology. When properly 
segmented and cleaned, the MH dataset yielded 1,294,996 individual RBCs (Fig. S4–S12)26. A subset of the MH 
dataset was pre-classified by an expert to create a subset of 13,353 images of individual RBCs classified into 
seven morphology classes, including discocytes (D), echinocytes 1 (E1), echinocytes 2 (E2), echinocytes 3 (E3), 
sphero-echinocytes (SE), spherocytes (S), and stomatocytes (ST). This pre-classified set was split into an MH 
training set (90%) to train the CNNs used in this study and an MH test set (10% holdout) to test the classification 
accuracy of the trained CNN ensemble.

Classification of RBC morphology was performed through unweighted averaging of models in a heteroge-
neous ensemble of four CNNs, including Darknet-19, MobileNetV2, ShuffleNet, and NASNet-Mobile30–33. The 
purpose of choosing these specific networks was three-fold. First, the best available CNN architecture for RBC 
morphology classification was unknown, and therefore experimentation with multiple models was required. 
Second, we wanted to ascertain the benefits of ensembling through unweighted averaging. Finally, we wanted 
to maximize the accessibility of our  code28,29 by picking popular networks that are readily available as part of 
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the Deep Learning Toolbox™ in MATLAB, which is a ubiquitous programming and computing platform. Each 
CNN was validated individually and cumulatively (as part of the ensemble) against the MH test set of 1,335 
images of individual RBCs.

Singular CNN analysis: MH dataset. Figure 3 shows the reliability diagrams for each of the four CNNs 
used in this study, which we compared with their overall accuracy to assess their impact on the ensemble. Dark-
net-19 had nearly ideal calibration (ECE: 0.96%) aside from some overconfidence (MCE: 15.84%) at the 0.4 to 0.5 
confidence interval (Fig. 3a). The MobileNetV2’s reliability diagram indicated the greatest deviation from perfect 
calibration (ECE: 14.8%), and it showed under-confidence on the interval from 0.5 to 0.99; model accuracy 
was greater than its confidence scores for these values (Fig. 3b). ShuffleNet was under-confident on the interval 
from 0.4 to 0.99 (Fig. 3c). Finally, NASNet-Mobile was extremely under-confident (MCE: 61.95%) from 0.3 to 

Figure 1.  A diagram illustrating the structure and workflow of the RBC image analysis pipeline/framework. 
Grey boxes are modules composed of subprocesses (white ovals or boxes) that receive and output data. Some 
outputs (red boxes with blue outgoing arrows) can be used to improve the system with the help of expert 
curation & feedback (green boxes).

Figure 2.  Application of the deep learning (DL) enabled RBC morphology classification to images from the 
MH dataset. A random image from the MH dataset showing the binary mask, bounding boxes, and RBC labels 
superimposed on the original image. Labels correspond to one of seven classes: discocyte (D), echinocyte 1 (E1), 
echinocyte 2 (E2), echinocyte 3 (E3), sphero-echinocyte (SE), spherocyte (S), and stomatocyte (ST).
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0.99 (Fig. 3d). When tested individually, Darknet-19, MobileNetV2, ShuffleNet, and NASNet-Mobile had overall 
predictive accuracies of 97.4%, 96.1%, 97.4%, and 96.5%, respectively (Fig. S13A).

An analysis of noise robustness also demonstrated Darknet’s superiority at handing gaussian & speckle noise 
compared to the other models and the ensemble (Fig. S1). Therefore, our validation results indicate that Dark-
net-19 with random oversampling is the better model for RBC morphology classification. Although Darknet-19 
had the same overall accuracy as ShuffleNet with focal loss, Darknet-19 was more robust against noise and had the 
lowest expected and maximum calibration errors (Fig. 3). This indicates that Darknet-19 was the more objective 
classifier, as all other models were below 90% accuracy at less than 10% noise and were typically underconfident. 
However, the under-confidence of the weaker learners may be desirable within an ensemble. Underconfident 
learners give lower confidence scores, and since our ensemble used the highest confidence score in an unweighted 
average of confidence scores to predict RBC morphological class, an underconfident weak learner should contrib-
ute less to the prediction than a perfectly calibrated or overconfident model. In other words, if an underconfident 
prediction was wrong, it would have less impact on the average’s highest score, thus reducing the error.

Deep ensemble analysis: MH dataset. Figure 4 provides a deeper insight into the predictive capabilities 
of the ensemble of the four CNNs. Beginning with reliability testing, we checked the objectivity of the ensemble’s 
confidence scores (Fig. 4a). The deep ensemble was under-confident across the entire range, like three of the 
four constituent CNN models. As indicated by the confusion matrix, the deep CNN ensemble achieved high 
class precision rate/low false discovery rate (blue/orange bottom rows) and high recall/low false-negative rate 
(blue/orange far-right columns) across all morphology classes (Fig. 4b). The white cell in the bottom right cor-
ner, where precision and recall meet, is the overall accuracy of the ensemble, which was 98.2% (a value slightly 

Figure 3.  The reliability diagrams for the four convolutional neural network architectures (CNNs) trained to 
classify RBC images in the MH dataset, including (a) Darknet-19 (ECE: 0.96%; MCE: 15.84%), (b) MobileNetV2 
(ECE: 14.8%; MCE: 34.08%), (c) ShuffleNet (ECE: 11.82%; MCE: 24.13%), and (d) NASNet-Mobile (ECE: 
11.95%; MCE: 61.95%). Blue bars show the average accuracy for confidence scores within a certain range 
(bin); for each bin, the number of predictions with the confidence score falling within the range of that bin is 
indicated on the corresponding bar (white font). The calibration curve connects each bin’s average confidence 
and accuracy; perfect calibration is when the confidence score equals the prediction accuracy. ECE is the 
‘expected calibration error,’ which is a weighted average of the difference between bin accuracy and confidence, 
where weight is the proportion of all confidence scores that fall within a particular bin. MCE is the ‘maximum 
calibration error,’ which indicates the largest difference between bin accuracy and confidence overall.
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above the best constituent CNN model). The main diagonal of cells in various tones of blue represents correctly 
classified images, whereas off-diagonal cells in shades of orange are incorrectly classified RBCs. Looking at the 
few incorrectly classified RBCs, one can see that most are off by a single class. For example, in the E3 predicted 
column, one sees cells misclassified as E2 or SE. It is likely that these “off-by-one” errors were due to the continu-
ous nature of the storage-induced transformation of RBC morphology being expressed as discrete categories.

As complex models that make few assumptions about the underlying data, deep CNNs have high variance 
and low  bias24. Ensembling deep CNNs through an unweighted average is one of many techniques to decrease 
variance and help the model generalize to unseen data. However, some literature speaks against ensembling het-
erogeneous networks through unweighted averaging because an overconfident weak learner may dominate the 
 ensemble24. The ensemble validation results, as well as the random sampling test results, indicate that overfitting 
was not an issue in our study, and the ensemble could, in fact, generalize to unseen RBC images more accurately 
than any singular CNN (Fig. 4). (Supplementary Fig. S10A–G show a subset of 100 randomly selected images 
for each morphology class.) Still, the caveat of an increase in inference time for a marginal increase in accuracy 
remains, and one must therefore weigh this benefit against a project’s time limitations when using the ensemble.

The classification accuracy demonstrated by the CNN ensemble was about 25 percentage points higher than 
what we had achieved using the binary decision-tree approach in our earlier  study5. With an accuracy of > 98%, 
the CNN ensemble could potentially replace manual morphology classification in many research applications. 
Moreover, our code was developed using a widely available computational platform (MATLAB), and both the 
code and the MH dataset are freely available to the readers for testing and  modification28,29. We expect that the 
ability to classify large numbers of RBC images automatically will increase the accessibility and reproducibility 
of morphological analysis performed in blood storage and transfusion research.

Using the automated DL-enabled classification to measure cell diameter distribution for each 
morphological class: MH dataset. One of the goals of our original study that generated the MH dataset 
was to determine how the effective diameter of human RBCs change through the echinocytic transformation 

Figure 4.  Accuracy of RBC morphology classification using the deep CNN ensemble applied to the MH 
validation set. (a) The ensemble reliability diagram (ECE: 11.6%; MCE: 23.31%). (b) The confusion matrix for 
the ensemble. Each RBC was classified as belonging to one of the following morphological classes: discocyte 
(D), echinocyte 1 (E1), echinocyte 2 (E2), echinocyte 3 (E3), sphero-echinocyte (SE), spherocyte (S), and 
stomatocyte (ST).
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to aid the design of novel microfluidic devices for separating and removing SE and S cells from units of stored 
 RBCs5. In the current study, we applied the DL-enabled RBC classification pipeline to the whole MH dataset 
to segment and classify the images de novo and to calculate the effective diameter of each cell. To increase the 
usefulness of our results, we implemented a rigorous data cleaning procedure that consisted of a low- and high-
resolution phase (described in detail in the Supplementary Information, Fig. S4–S12).

Briefly, both phases made extensive use of normality testing and random RBC image sampling to gauge the 
influence of segmentation errors, as well as partially visible, aggregate, and poorly oriented cells. The primary 
difference between these phases was that the low-resolution phase cleaned the raw image data by removing 
statistical outliers, whereas the high-resolution phase relied on a trained Darknet-19 classifier to separate good 
from bad standardized and upscaled (to 227 × 227 pixels) RBC images. The overall number of individual RBCs 
in the MH dataset was reduced from 1,826,730 to 1,294,996 after the data cleaning procedure. Additionally, we 
used a previously collected dataset of 37,273 images of fresh RBCs obtained from healthy  volunteers5 to validate 
the effective diameter calculation. The mean effective diameter for fresh discocytes was 7.65 ± 0.45 μm (see sup-
plementary Table S1), consistent with classical values and previously published  literature5.

Figure 5 shows the RBC diameter distributions for each morphological class. The diameter histograms were 
created by binning values from 4 to 10 μm at intervals of 0.1 μm and plotting the bin x-axis centers against the bin 
counts divided by their sum to indicate the frequency within each morphological class (Fig. 5a). Table 1 shows 
the descriptive statistics for each diameter distribution, in which we used 10,000 replicates of bias-corrected 
bootstrapping to calculate the 95% confidence intervals (CI) for the mean, standard deviation (SD), median and 
interquartile range (IQR) (for details see Fig. S12). Although hypothesis testing determined that the mean and 
median diameters of all classes were significantly different (p < 0.05), the magnitude of the effect sizes for most 
neighboring class comparisons (i.e., S vs. SE, E2 vs. ST, and D vs. E1) were small (Cohen’s d < 0.5, see Table S2).

To further clarify the effect size of morphology effective mean diameter, we reframed effect size as a prob-
ability of diameter superiority using McGraw and Wong’s common-language effect  size34. The matrix in Fig. 5b 

Figure 5.  Dependence of effective diameter on RBC morphology. (a) Histograms of RBC effective diameters 
for each morphological class were compiled by classifying the cleaned MH dataset (n = 1,294,996) using the 
deep CNN ensemble. (b) The common-language effect size matrix for the effective RBC diameter of each 
morphological class shows the probability that a random sample from morphology group A (rows) will have a 
greater effective diameter than a random sample from morphology group B (columns).
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shows the probability that a random sample from morphology class A (rows) will have a greater effective diameter 
than a random sample from morphology class B (columns). For example, there is only a 55.14% chance that 
a randomly sampled sphero-echinocyte (SE) will have a greater effective diameter than a randomly sampled 
spherocyte (S) (Fig. 5b). Likewise, if one were to put a randomly chosen discocyte (D) next to a randomly chosen 
stage 1 echinocyte (E1), there is only a 51.20% chance—or a slightly biased coin-toss—that the discocyte (D) 
will have a greater diameter (Fig. 5b). Therefore, even though each morphology class has an effective diameter 
distribution with a distinct mean, one cannot use diameter alone to differentiate between neighboring morphol-
ogy classes because of the overlap between their distributions.

Improved classification accuracy (98% vs. 73%), and a rigorous data cleaning procedure enabled us to group 
RBCs into better-defined morphological classes, eliminating artifacts that were present in the original  study5. 
Along with the random samples, the RBC diameter distributions for each morphology class (Fig. 5a) reflect this 
improvement via better approximation of the normal distribution. For example, the distributions for E1, E2, and 
E3 appear now as distinct classes with well-defined mean diameters (Fig. 5a). Similarly, a small (but significant) 
difference between SE and S is now apparent, which speaks to sphero-echinocytes still having some surface area 
to lose (Fig. 5a). Finally, the substantial difference and minimal overlap between the size distributions for S/
SE and D classes support the possibility to sort these RBC types by their effective diameters, which may have 
significant implications for transfusion  therapy25,35.

Testing the robustness of the DL-enabled RBC classification pipeline: CIW dataset. Next, we 
wanted to test the robustness of our newly developed classification pipeline by applying it to images from the 
CIW  dataset25,27. Figure 6 illustrates the result of our analysis. Because the CIW images had the microfluidic 
wells in the foreground, we enhanced our preprocessing algorithm with semantic segmentation, which utilized 
two separate pre-trained DeepLabv3 models, one for segmenting the wells and the other for segmenting RBCs 
within each well. The well segmentation function classified each pixel into ‘background’ or ‘well’, resized and 
cleaned the mask through the morphological opening, and performed blob analysis to find the well-bounding 

Table 1.  Descriptive statistics for the effective diameter distributions of each morphological class using high-
resolution images (227 × 227 pixels) of individually segmented RBCs from the cleaned MH dataset classified by 
the deep CNN ensemble (n = 1,294,996).

Morphology 
Class Mean ± SD [μm]

Mean 95% CI 
[μm]

SD 95% CI 
[μm]

Mean MAD 
[μm]

Median (IQR) 
[μm]

Median 95% CI 
[μm]

IQR 95% CI 
[μm]

Median MAD 
[μm] Sample size

D 7.821 ± 0.429 7.819–7.824 0.427–0.431 0.342 7.816 (0.580) 7.813–7.819 0.577–0.584 0.290 121,571

E1 7.800 ± 0.581 7.799–7.802 0.580–0.583 0.458 7.798 (0.753) 7.795–7.800 0.750–0.756 0.377 368,292

E2 7.304 ± 0.567 7.301–7.307 0.565–0.570 0.451 7.318 (0.753) 7.314–7.322 0.748–0.758 0.376 112,885

E3 6.433 ± 0.490 6.431–6.435 0.488–0.491 0.390 6.387 (0.655) 6.384–6.390 0.651–0.659 0.324 167,345

SE 5.963 ± 0.348 5.961–5.964 0.347–0.349 0.268 5.948 (0.433) 5.947–5.950 0.431–0.435 0.216 273,332

S 5.904 ± 0.292 5.903–5.905 0.291–0.293 0.231 5.905 (0.385) 5.904–5.907 0.384–0.387 0.193 224,930

ST 7.080 ± 0.522 7.074–7.087 0.518–0.527 0.415 7.084 (0.696) 7.076–7.092 0.685–0.706 0.348 26,641

Figure 6.  Application of the DL-enabled RBC morphology classification pipeline with a re-trained CNN 
ensemble to images from the CIW dataset. A random image from the CIW dataset showing the binary mask, 
bounding boxes, and RBC labels superimposed on the original image.
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boxes. For each well, the RBC segmentation function removed specks through morphological opening, filled 
small holes via dilation and applied the watershed algorithm to delineate touching cells. A blob analysis of the 
resulting binary mask produced area, centroid, and bounding box information for each detected RBC. A subset 
of the segmented images from the CIW dataset was then manually curated and classified by an expert to create 
a pre-classified set of 5,000 images of individual RBCs. When applied ‘as-is’ to these pre-classified CIW images, 
the CNN ensemble (previously trained and validated on the MH dataset) showed a relatively low classification 
accuracy of 36.3%, with most errors caused by poor recognition of RBCs belonging to the SE and S morphology 
classes (Fig. S13B).

Singular CNN analysis: CIW dataset. To restore the classification accuracy of the CNN ensemble, we 
combined the MH training set with the CIW training set (90% of the pre-classified CIW set) and re-trained 
each CNN. We then used the CIW test set (10% holdout) to re-evaluate the performance of each re-trained 
CNN and of the re-trained CNN ensemble overall (Fig. S13C). Figure 7 shows the reliability diagrams of the 
re-trained networks. The re-trained networks had calibration characteristics similar to what we observed for 
the MH dataset (Fig. 3). Darknet-19 had a nearly perfect calibration and the lowest values of ECE and MCE 
(Fig.  7a). MobileNetV2 was generally under-confident (Fig.  7b). ShuffleNet was also mostly under-confident, 
albeit displaying some over-confidence and a large MCE for confidence scores ranging from 0.4 to 0.5 (Fig. 7c). 
Finally, NASNet-Mobile was the most under-confident model (ECE: 18.48%) in the ensemble (Fig. 7d). When 
tested individually against the CIW test set, Darknet-19, MobileNetV2, ShuffleNet, and NASNet-Mobile showed 
classification accuracies of 96.8%, 84%, 96.4%, and 93.8%, respectively.

Deep ensemble analysis: CIW dataset. Figure 8 shows the reliability diagram (Fig. 8a) and the confu-
sion matrix (Fig. 8b) for the classification of RBC morphology using an ensemble of re-trained CNNs applied 
to the CIW test set. The overall classification accuracy of the re-trained CNN ensemble on the CIW dataset was 
97.8%, which was an improvement of 61.5 percentage points over the accuracy of the original CNN ensemble 
trained only on the MH dataset and applied directly to the CIW dataset.

Figure 7.  The reliability diagrams for the four original deep CNNs re-trained to classify RBC images from the 
CIW dataset, including (a) Darknet-19 (ECE: 1.44%, MCE: 19.18%), (b) MobileNetV2 (ECE: 12.91%, MCE: 
30.85%), (c) ShuffleNet (ECE: 16.61%, MCE: 63.11%), and (d) NASNet-Mobile (ECE: 18.48%, MCE: 30.25%). 
(NOTE: For notations, please see the caption of Fig. 3).
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These results suggest that our DL-enabled classification pipeline developed and validated initially for the 
MH dataset was not sufficiently robust to deal with relatively common changes in the source images (i.e., the 
addition of microfluidic wells and slightly different image acquisition parameters) that were characteristic of 
the CIW dataset (Fig. S14). However, generalizing the segmentation algorithm to recognize foreground features 
and re-training the CNNs on a training set expanded with a manually curated subset of images from the CIW 
dataset proved a highly effective solution. The resulting classification accuracy of the re-trained CNN ensemble 
on the CIW test set (97.8%, Fig. 8b) was only slightly lower than the accuracy of the original CNN ensemble on 
the MH test set (98.2%, see Fig. 4b), sacrificing a little accuracy for a substantial improvement in robustness. To 
simplify the adoption, support the reproducibility of our results, and further progress in the field, we released 
the MH and CIW datasets into the public  domain26,27 and provided the code itself under an unrestrictive MIT 
open source  license28,29.

Discovering new shape recovery modalities using automated morphology classification: CIW 
dataset. The images of the CIW dataset depict RBCs as they undergo shape recovery following the replace-
ment of their storage medium with a fresh washing solution, either normal saline or 1% solution of human 
serum albumin (HSA)25. Thus, each RBC from the CIW dataset has a unique time dimension (history) that cells 
from MH dataset lack. In our original study, a human expert manually classified and tracked select RBCs for the 
duration of the experiment to document the evolution of their shape change due to  washing25. In the current 
study, we tested if our DL-enable morphology classification pipeline can provide a deeper insight into washing-
induced shape recovery of stored RBCs. After segmentation and classification of RBCs in each frame, each cell’s 
parameters were passed to a persistent data structure that tracked each identified RBC through a Kalman filter 
predicting the cell’s future position in the subsequent frame and making the appropriate associations from a 
variant of Hungarian assignment. As in the original study, we used the classification data to identify RBCs that 
underwent a change in shape by the 10-min mark (for example, see Fig. S15).

Figure 9 shows representative examples of RBCs classified as SE recovering their shape to join the E3, E2, 
and even E1 morphological classes. We found visual evidence of these transformations in several (but not all) 
donors, and only for washing with 1% HSA. Discovering these anomalous transformations was particularly 

Figure 8.  Accuracy of RBC morphology classification using the re-trained deep CNN ensemble applied to 
the CIW validation set. (a) The ensemble reliability diagram (ECE: 18.33%; MCE: 62.49%). (b) The confusion 
matrix for the ensemble.
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surprising because one of the findings from our previous research was that washing did not improve the shape 
of sphero-echinocytes which we assumed was because the loss of surface area by SE cells was too  great25. Indeed, 
the mean diameter of E1 is over three standard deviations greater than the mean diameter of SE cells (Table 1), 
making SE to E1 shape recovery very unlikely, but evidently not impossible (Fig. 9).

High classification accuracy and automated cell tracking enabled us to discover a new mode of shape recovery 
that was missed by a human expert in the previous study. The notorious tediousness of manual morphology clas-
sification, the relative rarity of SE to E shape recovery, and potential unconscious bias against this transformation 
due to pre-existing knowledge may have contributed to the omission. Our results demonstrate that these fac-
tors can be effectively mitigated by an accurate, automated cell tracker and classifier. Furthermore, our findings 
suggest new opportunities for screening novel rejuvenation regiments, storage solutions, and drug candidates 
through automated morphology classification and tracking massive numbers of stored RBCs automatically.

Limitations of the study
Most limitations of our research involve its scope, which is not exhaustive. We do not compare our pipeline to 
commercially available systems, test all available CNNs or ensembling methods, or try different microscopes, 
objectives, and point spread functions (PSFs). The preliminary nature of our research means that our study of 
the image analysis pipeline is specific to the particular microscope/camera setup used to acquire the images, the 
specific CNN architectures we chose, and ensembling using unweighted averaging. The pipeline’s code is avail-
able for other researchers to alter and compare with other systems. Additionally, our system is data-driven, so 
images meant for scientific analysis must resemble the pictures on which the ensemble of deep neural networks 
is trained. This is illustrated when we attempt to apply the system trained on the MH dataset to the CIW dataset, 
which are images taken with the same microscope but with a different foreground. Accuracy suffered until we 
retrained the ensemble using a small subset of CIW images, and we anticipate a similar situation when using 
images from other microscopes.

Materials and methods
Datasets. This study used two separate sets of RBC images acquired with an inverted bright-field micro-
scope (IX79, Olympus American, Inc., Center Valley, PA) and a high-speed camera (MC1362, Mikrotron 
GmbH, Unterschleisheim, Germany) for two separate studies previously published by our research  group5,25. 
Both datasets have been made publicly available through the UH Dataverse Repository (https:// datav erse. tdl. 
org/ datav erse/ eryth rocyt e).26,27.

Figure 9.  Representative examples of RBCs classified as sphero-echinocytes (SE) recovering shape to various 
stages of echinocytes (E1, E2, and E3) after washing with HSA identified by the deep CNN ensemble in the CIW 
dataset.

https://dataverse.tdl.org/dataverse/erythrocyte).
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The first dataset, herein referred to as ‘Morphological Heterogeneity’ (MH), was collected for a study that 
described a new automated system for classifying the morphology of stored  RBCs5. The system comprised a 
microfluidic device for acquiring high-quality images and a decision-tree algorithm for segmenting and clas-
sifying the images. To generate the MH dataset, seven units of stored RBCs were purchased from two regional 
blood centers. The units were kept at 2–6 °C in a blood bank refrigerator and sampled at 6, 7, and 8 weeks of 
storage. The samples were diluted to approximately 1% hematocrit and passed through the microfluidic device 
to acquire images of stored RBCs flowing through the field of view of the microscope (at 64 × magnification). The 
images (1280 × 1024, grayscale) were acquired every 5 s for 30 min (100 fps, 9.617 ms exposure, global shutter) 
using blue light illumination to enhance contrast (red cells appear dark in blue light). Image acquisition experi-
ments were repeated several times for each unit and storage duration to increase the number of RBC images 
available for  analysis5. The MH dataset used in this study included all of the acquired images (including those 
that were omitted in the original study) which, when properly cleaned and segmented, yielded n = 1,294,996 of 
individual RBCs. A subset of the MH dataset was pre-classified by an expert to create a set of n = 13,353 images 
of individual RBCs classified into 7 morphology classes. This pre-classified set was split into an MH training set 
(90%) to train the CNNs used in this study and an MH test set (10% holdout) to test the classification accuracy 
of the trained CNN ensemble.

The second dataset, herein referred to as ‘Cells-In-Wells’ (CIW), was collected for a study which inves-
tigated the dynamics of shape recovery by stored RBCs after washing with normal saline or a 1% solution of 
human serum albumin (HSA)25. To generate the CIW dataset, RBC units collected from six different donors 
were purchased from a local blood center and stored in a blood bank refrigerator at 2–6 °C for up to 6 weeks. 
The units were sampled at 4 weeks (Donors 1 and 2), 5 weeks (Donors 3 and 5) and 6 weeks (Donors 4 and 6) of 
hypothermic storage, and the samples were diluted with autologous storage medium to 0.05% hematocrit. After 
mixing through gentle inversion for 5 min, aliquots of the diluted samples were deposited onto the microfluidic 
well arrays and washed by adding a large volume of normal saline, 1% HSA or the autologous storage medium 
(negative control). The microscopic images (at 40 × magnification) of RBCs confined in microfluidic wells were 
acquired at a rate of 1 frame per second for about 17 min (1,024 frames). Each image acquisition was of the same 
wells to track the change in shape of the same RBCs throughout the washing  process25. The CIW dataset used in 
this study included all available image sequences which, when properly segmented and tracked, yielded 3,250 
individual RBCs (and their associated longitudinal data following the shape change). A subset of the CIW dataset 
was pre-classified by an expert to create a set of 5,000 images of individual RBCs classified into 7 morphology 
classes. This pre-classified set was split into a CIW training set (90%) to re-train the CNNs initially trained on the 
MH images, and a CIW test set (10% holdout) to test the classification accuracy of the re-trained CNN ensemble.

Hardware and software platforms. All computations were performed on a consumer-grade laptop 
(CPU: Intel i7-8750H, RAM: 16 GB DDR4, GPU: 8 GB NVIDIA GeForce RTX 2070 w/ Max-Q Design) running 
Windows 10 (Microsoft Corporation, Redmond, WA). All scripts, functions, and neural networks were written 
and trained in MATLAB R2021b (The MathWorks, Inc., Natick, MA). A conglomeration of MATLAB examples, 
tutorials, and research articles inspired the segmentation, deep learning, and cell tracking architecture of the 
image analysis pipeline developed in this  study36–42. All code has been made publicly available through GitHub 
(https:// github. com/ Blood ML)28,29 and the UH Dataverse Repository (https:// datav erse. tdl. org/ datav erse/ eryth 
rocyt e).26,27.

Image segmentation. Our segmentation method first attempts adaptive thresholding and then switches 
to a semantic segmentation approach if necessary. This stage of the image analysis pipeline requires MATLAB’s 
Computer Vision Toolbox™, Deep Learning Toolbox™, and Image Processing Toolbox™. The two processed data-
sets illustrate the difference between thresholding and semantic segmentation, as the backgrounds of the MH 
images are clear enough for thresholding, and the CIW images require semantic segmentation due to the pres-
ence of microfluidic wells in the foreground. Nevertheless, the former approach was used to bootstrap the latter 
by giving an expert a subset of CIW image masks that only required minor alterations to train deep learning 
pixel classifiers. Additionally, both segmentation methods used morphological dilations and erosions to remove 
specks and fill holes and the watershed algorithm to ensure that touching cells have dividing lines that differenti-
ated their silhouettes.

Adaptive thresholding was nested in a broader segmentation function, which produced a binary mask for a 
target grayscale image given an adaptive thresholding statistic (mean, median, gaussian), the maximum radius 
in pixels of unwanted specks, and the H-minima transform scalar for the binary blob’s regional minima used 
in the watershed algorithm. Adaptive thresholding is robust with respect to variations in image illumination 
because a different threshold value is computed for each pixel given some neighborhood of surrounding pixels 
and a measure of their central  tendency43. For the MH dataset, we used the median as the adaptive thresholding 
statistic (a pixel neighborhood size equal to one plus two times the floor of the image size divided by 16) and the 
foreground polarity set to dark. After adaptive thresholding returned the threshold matrix, the code binarized 
the image by setting all pixels above their threshold value to true and those equal or below to false. The code then 
filled holes in the center and borders of the image. Next, it morphologically eroded and dilated the new mask 
with a disk structuring element of radius 6 pixels. Finally, the watershed algorithm divided connecting cells by 
finding and masking the catchment basins around the negative distance transform’s regional minima from the 
inverse binary image. Because we needed regional minima small, we set the H-minima transform scalar to one.

Even when adaptive thresholding fails, one can manually gather and correct the segmentation efforts with an 
image labeler to train pixel classification networks. This is how the two DeepLabv3 models—one for segmenting 
wells and the other for segmenting RBCs within the wells—were developed to segment the CIW dataset. We 
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gathered full-sized images for the initial well segmentation and corrected the corresponding binary masks of all 
wells in the first 100 frames of each longitudinal recording. For the cells in the wells, we cropped and padded 
10,327 individual wells to get 170 × 170-sized grayscale training images and binary cell masks. There was no 
validation set for either because our primary concern was how the models performed on the entire CIW dataset.

Before training the models, both two-class networks were made with resnet-18 CNN backbones and modi-
fied with custom pixel classification layers that utilize focal Tversky  loss44–46. Contrary to the available literature, 
we set the loss alpha hyperparameter to 0.7, beta to 0.3, and the focal loss gamma parameter to 0.75. These are 
likely suboptimal values, so both networks may benefit from tuning the loss function’s hyperparameters. Still, 
we achieved good segmentation results on the entire CIW dataset.

With respect to training the networks, there were only minor differences between the two sessions. The well 
segmentation model had its target image size reduced to half the scale of the full-sized images (640 × 512), and 
we set the minibatch size to 8 images. The RBC segmentation model increased its target image size to 224 × 224 
and had a minibatch size of 32. Both used data augmentation to randomly scale images from 80 to 150% of their 
target size. Also, we randomly rotate images (0°, 90°, 180°, 270°) and convert the grayscale images to RGB. To 
further reduce the likelihood of overfitting, we set L2 regularization to 0.005. The training was done on the GPU 
using stochastic gradient descent with momentum set to 90% to minimize the loss function, and we shuffled the 
images every epoch. Each session lasted until loss stagnated and training accuracy plateaued.

Like adaptive thresholding, broader segmentation functions utilized the trained networks. The well segmen-
tation function exported well-bounding boxes given the frame and the DeepLabv3 well segmentation network. 
Internally it reduced the image size by half, classified each pixel into background or a well, and then resized 
and cleaned the mask through a morphological opening operation before MATLAB’s blob analyzer found the 
bounding boxes. The RBC segmentation function differed in that it cropped and padded the wells before resiz-
ing them to 224 × 224 and applying semantic segmentation. The resulting pixel label matrix was then converted 
to a binary RBC mask and was resized to 170 × 170 before removing the array padding around it. We removed 
specks through the morphological opening operation and filled small holes via dilation. In both instances, we 
employed a disk structuring element with a radius of 3 pixels for the opening operation and 2 pixels for dilation. 
Next, we used the watershed algorithm (described above for the adaptive thresholding approach) before remov-
ing blobs with areas under 100  [pixel2]. Finally, MATLAB’s blob analyzer yielded each RBC’s area, centroid, and 
bounding box as output.

Classification via deep learning. Classification was performed through the unweighted averaging of 
models in a heterogeneous deep ensemble of four pre-trained CNNs, including Darknet-19, MobileNetV2, Shuf-
fleNet, and NASNet-Mobile (available in MATLAB as part of the Deep Learning Toolbox™)30–33. For each CNN, 
the input layer was modified to directly receive 227 × 227 grayscale images. Although there was no alteration to 
either CNN’s preferred normalization technique, some required a new initial 2D convolution layer to ensure 
that the dimensions of the subsequent layer matched. Next, a new fully connected layer built for seven mor-
phology classes was created with a weight and bias learning rate factor of 10. Then, each model had its old 
fully connected layer replaced with this newly created layer and a new classification layer. All models, except 
DarkNet-19, received a focal loss classification layer with hyperparameters alpha and gamma set to 0.25 and 
2.0,  respectively47. This modification was introduced to mitigate any potential bias that class imbalance might 
cause by dynamically scaling the cross-entropy loss function to make the network more sensitive to misclassified 
observations. DarkNet-19 received a standard cross-entropy loss classification layer, as it dealt with class imbal-
ance through random minority oversampling.

Random minority oversampling is when classes with fewer images than the majority class have their images 
randomly duplicated until all categories have the same number of images as the majority class. Since there is an 
equal number of pictures in each class, there is no longer an imbalance. However, the random minority over-
sampling approach fills the minority classes with random duplicates that may be easy to memorize, which may 
increase the likelihood of  overfitting48,49.

Ensembling, data augmentation, and L2 regularization are ways to reduce model overfitting by encouraging 
the CNN to make better generalizations. These methods decrease the model’s complexity, or variance, at the 
expense of a, hopefully small, increase in bias, Deep artificial neural networks have high variance and low bias, 
and ensembling several deep CNNs through an unweighted average can decrease variance and help the resulting 
ensemble generalize to unseen  data50. In this study, the softmax scores of the CNNs in the ensemble were aver-
aged, either by a single frame or through a moving average of 100 frames. Likewise, data augmentation decreases 
a CNN model’s variance by increasing the size of the training set. That is, a CNN is more likely to accurately 
classify unseen test samples given that larger training sample sizes more precisely capture the population aver-
age of each  class51. In this study, the size of the training sets was increased by augmenting images through X & Y 
translations (± 100 pixels), rotations (0-360º), and scaling (75–130% of the image resolution). For the MH dataset, 
we also added masked duplicates of each RBC to enable the classification of individually segmented RBCs. L2 
regularization (weight decay), is a parameter shrinkage method that represses a CNN model’s weights by adding 
a penalty term to the loss  function52. It therefore decreases variance by increasing bias towards smaller weights. 
In this study, the L2 regularization coefficient for all CNN models was set to 0.005 to strike a balance between 
model simplicity and training data fitting.

Training sessions were carried out on the GPU (using the Parallel Computing Toolbox™) with a variable 
minibatch size between 10 and 32 randomly shuffled images for each model but with additional hyperparameters 
(such as learning rate and momentum) held constant. Based on the test set (10% holdout) results, early stopping 
was used with model checkpoints to decide when training should end (typically around 20 to 300 epochs). The 
learnable parameters were updated by minimizing loss through stochastic gradient descent with momentum. The 
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initial learning rate was set to a low 3 ×  10–4 to prevent training from reaching suboptimal results or diverging. 
Still, momentum was set at the high default value of 0.9 to allow the previous iterations to strongly influence the 
current update, potentially accelerating model  convergence53.

Cell tracking. In addition to image segmentation and classification, the analysis of CIW dataset required 
tracking the positions of each individual RBCs in each well longitudinally, to document the change in RBC 
morphology due to washing. For the initial frame, a new (blank) data structure was created to hold tracking 
information for each RBC, including a unique identifier (id), position and morphology scoring histories, age and 
visibility counts, and a Kalman filter object. For each unassigned RBC centroid and its associated data obtained 
from image segmentation and classification functions, a new cell track was created with a Kalman filter object 
initialized at the respective centroid. Although the motion of the RBCs appears random, through trial and error, 
we found that a constant velocity model was effective for the Kalman filter when initial location and velocity 
variance were set to 200 and 50, respectively, motion noise was the vector [100, 25], and the variance inaccuracy 
of detected location was set to 100.

For the next frame, each cell’s Kalman filter object was used to predict the location of the cell’s centroid in the 
current frame and thus make an association between existing cell tracks and unassigned RBC centroids detected 
by segmentation and classification of the current frame. The tracking function computed the distance between 
the predictions and each new detection to create a cost matrix. The James Munkres’s variant of the Hungarian 
assignment algorithm was used to then assign cell tracks based on the cost matrix and an experimentally found 
value of 20 for the cost of not assigning a detection to a cell  track42,54,55. Assigned detections were used to update 
the respective cell tracks. Existing cell tracks that did not have a detection associated with them had their age 
and consecutive invisibility counts incremented. To account for segmentation errors, tracks of cells that were 
(i) invisible for over 50 successive frames or (ii) less than eight frames old and visible less than 30% of the time 
were deleted. This tracking process was repeated for each subsequent frame.

Statistical analysis. Statistical analysis was perform using Microsoft Excel or the built-in functions of 
the Statistics and Machine Learning Toolbox™. Sample normality was examined via descriptive statistics, nor-
mal probability plots, q-q plots, and normal distribution fitted histograms. Hypothesis testing was through the 
Kruskal–Wallis test, two-sample t-testing with Bonferroni adjustment, and 10,000 replicates of bias-corrected 
bootstrapping. Likewise, all 95% confidence intervals were calculated using 10,000 replicates of bias-corrected 
bootstrapping, Effect size was analyzed in terms of Cohen’s  d56 and the common-language effect size of McGraw 
and  Wong34.
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