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The symmetry in the model of two 
coupled Kerr oscillators leads 
to simultaneous multi‑photon 
transitions
Bogdan Y. Nikitchuk 1,2*, Evgeny V. Anikin 1,3, Natalya S. Maslova 4 & Nikolay A. Gippius 1

We consider the model of two coupled oscillators with Kerr nonlinearities in the rotating‑wave 
approximation. We demonstrate that for a certain set of parameters of the model, the multi‑photon 
transitions occur between many pairs of the oscillator states simultaneously. Also, the position of 
the multi‑photon resonances does not depend on the coupling strength between two oscillators. We 
prove rigorously that this is a consequence of a certain symmetry of the perturbation theory series for 
the model. In addition, we analyse the model in the quasi‑classical limit by considering the dynamics 
of the pseudo‑angular momentum. We identify the multi‑photon transitions with the tunnelling 
transitions between the degenerate classical trajectories on the Bloch sphere.

For decades, the models consisting of interacting nonlinear oscillator modes attract much attention because of 
their importance for various fundamental concepts of quantum physics, quantum information and nonlinear 
dynamics. The phenomena present in such models include quantum  chaos1, multi-stability2, dissipative phase 
 transitions3, and dynamical  tunnelling4. Nonlinear oscillator networks were suggested as a framework for uni-
versal quantum  computation5, and also quantum nonlinear oscillators were suggested as a tool for non-classical 
states creation such as squeezed  states6, entangled  states7,8 and cat  states9. Also, such models are a fundamental 
tool to study quantum-classical  correspondence10.

The models of interacting nonlinear oscillators can be realised in various experimental setups including 
optomechanical  systems11, trapped  ions12 and superconducting  circuits13. The presence of a dynamical bifurca-
tion point was experimentally demonstrated in RF-driven Josephson  junctions14 and transitions between two 
basins of attraction were observed in a nano-mechanical resonator. Also, non-degenerate parametric amplifiers 
were created based on the Josephson junction  arrays13.

Lots of efforts are devoted to studying the nonlinear oscillator systems in the mesoscopic  regime3,10,15. In this 
regime, it is possible to use the quasi-classical approximation, but the quantum effects are important as well. The 
interplay of complex classical dynamics and quantum effects such as quantum tunnelling leads to new interest-
ing phenomena. For example, it was shown that in the model of a single oscillator mode with Kerr nonlinearity, 
tunnelling affects the switching rate between the stable  states16.

The specifics of tunnelling in such systems are determined by the complex structure of the phase space. 
For the models exhibiting bi- or multi-stability, there exist several different classical trajectories with the same 
energies. This opens way for tunnelling transitions between the corresponding quantum states. However, as the 
tunnelling transition amplitudes are exponentially small, the certain resonant condition should be usually satis-
fied in order to achieve a non-vanishing tunnelling  probability4. Also, the interconnection between tunnelling 
and multi-photon transitions was established in many  systems17–20. In particular, for a single nonlinear oscillator 
with Kerr nonlinearity, tunnelling between different regions of the phase space is equivalent to simultaneous 
absorption or emission of many oscillator quanta in the quasi-classical limit.

In this work, we consider the model of two coupled nonlinear oscillators in the rotating-wave approximation 
(RWA)21. The classical limit of this model can be described as the dynamics of the pseudo-angular momentum 
on a two-dimensional sphere. Among the classical trajectories, there exist ones with equal energies, which 
makes tunnelling transitions between them possible. We show that tunnelling between such trajectories can 
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be described with the perturbation theory in the coupling constant, and tunnelling transition is equivalent to 
the exchange by many quanta between the oscillators. We use high-order perturbation theory to study these 
processes and account for both resonant and non-resonant contributions. We identify the resonant condition 
for tunnelling between different classical trajectories and we prove rigorously that this resonant condition is 
satisfied simultaneously for many pairs of the oscillator states. Also, it is independent of the value of the coupling 
constant between oscillators, in contrast with many systems demonstrating similar behaviour (such  as22). This 
fact is a consequence of an internal symmetry of the system Hamiltonian which we establish in all orders of the 
perturbation theory series. Also, we discuss how the presence of such symmetry modifies the energy spectrum 
and the structure of the eigenstates.

These results could have applications for quantum information processing and quantum state manipulation, 
in particular, the generation of the entangled states of two modes. We believe that the predicted features can 
be observed in systems with high-quality oscillator modes with a pronounced Kerr nonlinearity, such as the 
plasmon modes of Josephson junction arrays or the phonon modes of trapped ion ensembles. Both mentioned 
systems represent a natural realization of a system of coupled quantum nonlinear oscillators well isolated from 
the environment Also, the considered model is closely related to some  models23,24 of dissipative time crystals 
(DTC)25,26. The results of this work could be useful to study the quantum effects in the DTC. In addition, the 
discovered symmetry extends the range of known symmetries in quantum–optical  systems27–30.

Multi‑photon transitions between two coupled nonlinear oscillators
We consider the model of two oscillators with linear coupling and Kerr nonlinearities. Let the frequencies of the 
oscillators be ω1,2 , and the Kerr shifts per oscillators quanta be α1,2 . When the detuning between the oscillators 
� = ω2 − ω1 is much smaller than the oscillators frequencies, one can neglect the counter-rotating terms in 
coupling (RWA)21, and the model Hamiltonian reads

where g is the coupling constant between the oscillators. As the counter-rotating terms are not present in (1), 
this Hamiltonian commutes with the total number of quanta operator N̂ = â†â+ b̂†b̂ (we will denote its eigen-
values as N). Therefore, the total Hilbert space H of the considered model (1) splits into the direct sum of invari-
ant Hilbert subspaces each corresponding to N quanta in the oscillators: H =

∞
⊕

N=0

HN , and also Ĥ =
∑

N ĤN . 

The Hamiltonians ĤN which act on the subspace HN can be written with help of bra-ket notation as

where |na, nb� = |na� ⊗ |nb� are the oscillators Fock states ( na and nb are the numbers of quanta in modes a and 
b respectively), and

The model (1) is closely related to the model of a single Kerr  oscillator31 in the classical external field. Namely, 
in the limit N → ∞ , g

√
N = const , the Hamiltonian ĤN approaches the Hamiltonian of a single Kerr oscilla-

tor in the classical external field with nonlinearity α1 + α2 , detuning αµN/2 , and the external field amplitude 
g
√
N  . This can be seen from Eq. (2) (Fig. 1).
In the following, we will focus on the case of relatively weak coupling. Moreover, in “The proof of the sym-

metry properties” sections and High-order perturbation theory for the degenerate energy levels, we will use the 
perturbation theory in g as a theoretical tool. Because of that, let us first consider the model without perturbation. 
In this case, the Hamiltonian (1) commutes both with a†a and b†b , and its eigenstates are the Fock states |na, nb� 
of the oscillators. The energy of each state |na, nb� can be found easily from Eq. (1)

The perturbation operator allows the oscillator to exchange quanta between each other. Namely, the pertur-
bation directly couples |na, nb� and |na ± 1, nb ∓ 1� . Because of that, the states |na, nb� and |na + k, na − k� also 
become coupled in the order k by perturbation, and the transition amplitude between them is proportional to 
gk . It turns out that at certain values of the detuning between the oscillators, such transitions (we will call them 
multi-photon) become resonant, and even at small couplings, the oscillators can exchange by k quanta simul-
taneously between each other.

This occurs because the unperturbed energies of the oscillators Fock states |n,N − n� in each subspace corre-
sponding to N quanta have a parabolic dependence on n. The way how a sequence of the values ε(0)n,N are arranged 
on a parabola depends on the value of the parameter µN . One can easily see that at integer µN = m ∈ Z , many 
energies split into pairs with equal values: ε(0)n,N−n = ε

(0)
m−n,N−m+n for n = 0, . . .m Fig. 1(a). In contrast, for non-

integer µN the unperturbed energies are non-degenerate Fig. 1(b). Also, for the case α1 = α2 , the resonance 
condition is simultaneously satisfied for all N.
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â†â
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When µN is close to an integer, the degeneracy makes multi-photon transitions possible between the states 
|n,N − n� and |m− n, N −m+ n� when the perturbation is turned on. In other words, the integer values of µN 
at small g correspond to multi-photon resonances between |n,N − n� and |m− n,N −m+ n�.

However, the perturbation not only leads to multi-photon transitions between |n,N − n� and 
|m− n,N −m+ n� , but also induces the energy shifts of these levels due to the non-resonant coupling with 
other levels. In general, these shifts could lift the position of the multi-photon resonances from exactly µN ∈ Z , 
and to make them dependent on g. The surprising feature of the considered model is that these energy shifts are 
equal for every degenerate pair |n,N − n� and |m− n,N −m+ n� (see Fig. 2). Because of that, simultaneous 
multi-photon resonances between many level pairs occur exactly at integer values of µN even at relatively large 
values of g.

In the absence of degeneracy in the unperturbed model (for the case of non-integer µN ), weak coupling 
between the oscillators leads only to a small O(g) perturbation of the Fock states of the system: the eigenstates 
remain close to Fock states. This is not the case when the multi-photon resonance condition is satisfied. Due 
to the reasons indicated above, even at small couplings the structure of the Hamiltonian eigenstates and the 

Figure 1.  The dimensionless eigenenergies ε̃(0)
n,N−n

= (α1 + α2)ε
(0)
n,N−n

/(�+ α2N)2 (with ε denoting the 
unnormalized eigenenergies) of the Hamiltonian (1) at g = 0 , N = 14 , α2/α1 = 1.1 , and (a) µN = 12 and (b) 
µN = 12.5 as functions of n for fixed N.

33.5 34 34.5 35 35.5 36 36.5 37 37.5

1.7

1.8

1.9

2

2.1

2.2

Figure 2.  The dimensionless eigenenergies ε̃ = (α1 + α2)ε/(�+ α2N)2 (with ε denoting the unnormalized 
eigenenergies) of the Hamiltonian (1) corresponding to the subspace with N = 46 quanta at α2/α1 = 1.5 , 
� = µN (α1 + α2)/2− α2N , and g = 0.32gcrit (see “Classical limit” section for the definition of gcrit ) are shown 
as functions of µN . All the anti-crossing points are located on the vertical lines corresponding to integer values 
of µN.
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temporal dynamics of the system wave function for integer µN qualitatively differ from the case of non-inter-
acting oscillators.

In this case, the leading-order contributions to the wave functions are symmetric and antisymmetric super-
positions of the Fock states |n,N − n� and |m− n,N −m+ n� . For every n = 0, . . . ,m,

This can be seen from the results of the numerical diagonalization of the Hamiltonian (1). We find the eigen-
states of the Hamiltonian (1) in the Fock basis in the form |ψℓ� =

∑

n cℓ,n |n,N − n� . The eigenstates are sorted 
in the ascending order according to their eigenenergies. Then, we plot the matrices of the expansion coefficients 
cℓ,n in Fig. 3 for the cases of integer (Fig. 3a) and non-integer µN (Fig. 3b). For each eigenstates shown in Fig. 3a, 
there is a single Fock state which has dominant contribution, whereas the eigenstates in Fig. 3b contain equal 
contributions from two Fock states as in Eq. (5).

The energy difference between the states |ψ±
n,m−n� exhibiting the anti-crossing is determined by the multi-

photon transition amplitude ωR
n,m−n ∝ gm−2n (see Fig. 4)

(5)|ψ±
n,m−n� ∼

1√
2

(

|n,N − n� ± |m− n,N −m+ n�
)

+ O(g).

(a) (b)

Figure 3.  The expansion coefficients cℓ,n of the eigenstates of the Hamiltonian (1) at N = 12 , α2/α1 = 1 , 
g/α1 ≈ 0.03 , (a) �/α1 = 6.25 and (b) �/α1 = 6.5 are shown. For each pair n, ℓ , a unit square centered at the 
corresponding point of the figure is drawn. The color of the square indicates the magnitude of cn,ℓ according to 
the color bar.
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Figure 4.  The dimensionless eigenenergies ε̃ = (α1 + α2)ε/(�+ α2N)2 of the Hamiltonian (1) (with 
ε denoting the eigenenergies) as functions of the coupling g for µN = 14 , α2/α1 = 1.5 , N = 50 and 
� = µN (α1 + α2)/2− α2N . For the definition of gcrit , see “Classical limit”.
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In addition, from Eqs. (5) and (6), for the initial state: |ψ(0)� =
∑

n cn|n,N − n� , one can find (at integer 
µN = m ) the following approximate solutions of the non-stationary Schrodinger equation

As can be seen, the system exhibits multi-photon Rabi oscillations between many pairs of the Fock states 
simultaneously.

In Fig. 5, we show the numerical solution of the Schrodinger equation for different Fock states taken as initial 
conditions. We plotted the squares of modulus of the overlappings between the wave function |ψ(t)� and the 
bra-states �n,N − n| , �m− n,N −m+ n| for different n. This result is in agreement with Eq. (7) for integer µN . 
Also, for the case of non-integer µN = m+ δµN with sufficiently small δµN , the amplitude of multi-photon 
Rabi oscillations between |n,N − n� and |m− n,N −m+ n� decreases with increasing δµN . They completely 
vanish when (α1 + α2)δµN ≫ ωR

n,m−n (see left and right panels of Fig. 5). In addition, there are corrections to 
Eq. (7) which come from the non-resonant contributions of the adjacent Fock states. They lead to the additional 
modulations of the Rabi oscillations with the amplitude ∼ g/� and become more pronounced with increasing 
n due to the dependence of the transition matrix elements and the energy differences on n. They can be seen on 
the lower panels of Fig. 5. For other panels, they are also present but not resolved on the plots.

Also, let us briefly discuss the effect of weak dissipation on the considered multi-photon Rabi oscillations. In 
the presence of dissipation, each eigenstate of the system of coupled oscillators obtains a finite lifetime having 
the same order of magnitude as the decay rates γa , γb of the individual bosonic  modes32. The condition neces-
sary to observe the Rabi oscillations between the states |n,N − n� and |m− n,N −m+ n� is that the lifetime of 
the eigenstates |ψ±

n,m−n� is much longer than the period of Rabi oscillations ωR
n,m−n , which leads to conditions 

γa,b ≪ ωR
n,m−n . The requirements to observe the multi-photon transitions between two oscillator states become 

increasingly strict with the increasing order of the multi-photon transition. Thus, in the presence of dissipation, 

(6)ε+n,m−n − ε−n,m−n = 2ωR
n,m−n + O

(

gm−2n+1
)

.

(7)|ψ(t)� =
∑

n

cne
− i

2

(

ε+n,m−n+ε−n,m−n

)

t
[

cos (ωR
n,m−nt)|n,N − n� − i sin (ωR

n,m−nt)|m− n,N −m+ n�
]

.

(a) (b)

(c) (d)
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Figure 5.  For the wave function |ψ(t)� solving the Schrodinger equation with the initial condition 
|ψ(0)� = |n,N − n� , the projections on |n,N − n� and |m− n,N −m+ n� are shown for (a,b) n = 0 , (c,d) 
n = 1 , (e,f) n = 2 , N = 10 , α2/α1 = 1 , � = µN (α1 + α2)/2− α2N ≈ −4 , g/α1 = 0.05 , µN = m+ δµN , 
m = 6 , and different δµN.
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it is realistic to observe several transitions between the states |n,N − n� and |m− n,N −m+ n� with the lowest 
values of |m− 2n|.

The independence of the anti-crossings position on the value of g can have practical applications for the 
measurements of the Kerr coefficients of the oscillators. More precisely, assume the detuning � between the 
oscillators is scanned to measure some observable. Often, the multi-photon resonances lead to peaks/dips in 
the corresponding dependencies on � . According to the above considerations, the positions of these peaks cor-
respond to the integer multiples of the total nonlinearity independently of the coupling constant. This could be 
used for the measurement of α1 + α2.

In addition, the multi-photon transitions provide a way to prepare the entangled states of two oscillators. 
For example, according to Eq. (7), the initial Fock state |n,N − n� evolves into an entangled state at the proper 
choice of the interaction time (when ωR

n,m−nt ∼ π/4).

The proof of the symmetry properties
In this section, we provide a proof (on the physical level of rigour) of the presence of many simultaneous anti-
crossings at µN ∈ Z for the model (1).

Let us consider the coupling term between the oscillators as a perturbation. As commented above, at integer 
µN = m , the unperturbed energies split into ⌊m/2⌋ pairs of degenerate levels. The perturbation leads to two 
effects: the shifts of the energy levels due to the non-resonant couplings, and the multi-photon transitions 
between the degenerate levels. The consistent analysis of both of the effects requires the usage of high-order 
perturbation theory.

Because of the degeneracies, one can not use directly the non-degenerate perturbation theory series in g 
for the system energies. However, at non-integer µN one can define the energies εn(g) which correspond to the 
eigenstates evolving from the n-th Fock state |n,N − n� after the adiabatic switching of the perturbation. These 
energies (at non-integer µN ) can be found from non-degenerate perturbation theory as power series

(The expressions for the second and fourth order corrections could be found in Supplementary Information).
To some extent, this expansion is valid for µN ∈ Z as well. Although at µN ∈ Z the states |n,N − n� and 

|m− n,N −m+ n� are degenerate, the perturbation couples them only in the order |m− 2n| . Therefore, up to 
this order of the perturbation theory, they can be treated as non-degenerate ones. Also, the perturbation theory 
coefficients ε(k)n  are rational functions of n and µN , therefore, they are well–behaved at µN ∈ Z . So, one can use 
the expansion (8) up to the order |m− 2n| in the degenerate case.

Surprisingly, the following identity is valid for the perturbation theory corrections at µN = m ∈ Z:

Therefore, the degeneracy between the levels |n,N − n� and |m− n,N − n+m� is not lifted in several lowest 
orders of the perturbation theory until the order |m− 2n| . This explains the Eq. (6) and the results of the numeri-
cal diagonalization.

Strictly speaking, the identity (9) makes sense only for the case of the integer µN = m . However, as the cor-
rections ε(k)n  are rational functions of n and µN , they can be analytically continued to the case of arbitrary real n 
and µN . We will prove (9) for these analytical continuations.

The analytical continuation of ε(k)n  for the case of non-integer n can be made in a natural way for all k. For 
that, the whole energy spectrum εn(g) should be continued to the case of non-integer n. To do this, let us assume 
that the Hamiltonian (1) acts on the space of all possible real <<numbers of quanta>> ν with formally defined 
matrix elements as

and analogously for b̂ and b̂† . As one can see, in the case of an integer ν , the definition of (10) reduces to the 
usual action of the bosonic creation and annihilation operators in the Fock space. We shall note that â and â† 
are no longer Hermitian conjugate with each other for the case of non-integer ν , so the Hamiltonian becomes 
non-Hermitian. However, one can check that the wave functions remain normalizable even for the Hamiltonian 
at the non-integer ν.

The extended Hamiltonian acts invariantly on each of the subspaces Vν = {|σ ,N − σ � : σ − ν ∈ Z} . (The 
subspace Vν consists of the ket vectors |σ � such as σ − ν ∈ Z.). Also, the subspaces of states |ν,N − ν� with nega-
tive integer ν , ν ∈ [0,N] and integer ν > N are decoupled from each other. So, the extended Hamiltonian for all 
real ν acts exactly as the original Hamiltonian (1) on the subspace of |n,N − n� , n ∈ [0,N] . We emphasize that 
the extension to the non-integer numbers of quanta should be taken as an auxiliary tool for the proof. Because, 
as we mentioned above, we are interested in the case of an integer ν which corresponds to the initial Hermitian 
Hamiltonian.

Until the end of this section, we will work in the subspace of a fixed number of quanta N. We will denote 
|ν,N − ν� as |ν� for brevity.

Let us define the action of the extended Hamiltonian on Vν as Hν,N . The operator Hν,N can be written in 
terms of the states |ν� as

(8)εn(g) = ε(0)n +
∞
∑

k=1

ε(k)n gk .

(9)ε(k)n = ε
(k)
µN−n.

(10)�ν,N − ν − 1|â|ν + 1,N − ν − 1� =
〈

ν + 1,N − ν
∣

∣â†
∣

∣ν,N − ν
〉

=
√
ν + 1,



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2997  | https://doi.org/10.1038/s41598-023-30197-8

www.nature.com/scientificreports/

To prove the symmetry of the perturbation theory corrections to the energy, we will show the exact symmetry 
of the eigenstates of the extended Hamiltonian with respect to the replacement ν → µN − ν . Namely, we will 
prove that Hν,N and HµN−ν,N have the same eigenenergies εν(g) and εµN−ν(g) respectively as a functions of g. 
For that, we will show that there exists a linear operator T such

where I is the isomorphism between the vector spaces spanned by vectors |ν� and |µN − ν� respectively.
The existence of the operator T proves that the operators Hν,N and HµN−ν,N have identical spectra at any 

g, which means that

In Supplementary Information, we explicitly construct the operator T and show that it can be expressed in 
the following form: T = UTV−1 , where

After we proved the equality of the energies (13), let us turn back to the physically meaningful case of the integer 
ν and µN = m . As we mentioned before, the energy εν(g) can be decomposed in perturbation theory series of g 
(compare with Eq. (8)):

From the equality (13) valid for all orders in g, one concludes that this holds for each term of the perturbation 
series:

From Eq. (16), the equality (9) can be derived easily. The k-th order corrections ε(k)ν  are rational functions of µN 
and ν and have no singularities at 2ν − µN ∈ Z unless k � 2|µN − 2ν| (we prove it rigorously in the next sec-
tions). Therefore, the equality (16) holds even for the case of an integer 2ν − µN , and also for ν,µN ∈ Z . This 
concludes the proof of the equality (9).

We should note that the analogous properties hold for the model of a single nonlinear mode with Kerr 
nonlinearity driven by the classical external field (recovered as a limit of the considered model at N → ∞ ). For 
this model, the equality of the perturbation theory corrections was  checked33 for several lowest orders, and the 
sketch of the proof was given  previously34.

High‑order perturbation theory for the degenerate energy levels
We have stated that non-degenerate perturbation theory corrections are symmetric with respect to replacement 
n → µN − n in all orders. However, additional arguments are needed to relate this result to the physical case of 
µN ∈ Z . On one hand, due to the presence of degeneracy in the energy spectrum, one should use the degenerate 
perturbation theory. However, on the other hand, the off-diagonal matrix elements in the secular equation occur 
only in the |m− 2n|-th order of perturbation theory. To demonstrate that until the |m− 2n|-th order one can use 
the non-degenerate perturbation theory and to calculate the multi-photon amplitude via degenerate perturba-
tion theory for higher orders than |m− 2n| , it is convenient to apply Green’s function formalism. Namely, we 
consider the operator of Green’s function defined as

If the spectrum of the problem σ(Ĥ) = {εn, |ψn�} is known, Eq. (17) can be rewritten as follows

Thus, eigenenergies are poles of Green’s function and eigenfunctions could be calculated from residues of Ĝ . The 
matrix element Gn,n for each Fock state |n� can be calculated from the Dyson equation and reads

(11)

Ĥν,N = 1

2
(α1 + α2)

∑

σ−ν∈Z
σ(σ − µN )|σ ��σ | + g

∑

σ−ν∈Z

√

σ(N − σ + 1)(|σ − 1��σ | + |σ ��σ − 1|).

(12)Ĥν,N = T IĤµN−ν,NI
−1

T
−1,

(13)εν(g) = εµN−ν(g), 2ν − µN /∈ Z.

(14)

T =
(

1− 2g

(α1 + α2)

∑

σ−ν∈Z
|σ ��σ + 1|

)−(N−µN )

,

U =
∑

σ

√

Ŵ(σ + 1)

Ŵ(N − σ + 1)
|σ ��σ |, V =

∑

σ

√

Ŵ(µN − σ + 1)

Ŵ(N − µN + σ + 1)
|σ ��σ |.

(15)εν(g) =
1

2
(α1 + α2)ν(ν − µN )+

∞
∑

k=1

ε(k)ν gk .

(16)ε(k)ν = ε
(k)
µN−ν ∀k, 2ν − µN /∈ Z.

(17)Ĝ(ω) =
[

ω − Ĥ
]−1

.

(18)Ĝ(ω) =
∑

n

|ψn��ψn|
ω − εn

.
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where �n is the self-energy term, defined as the sum of all diagrams which start and finish at n and do not con-
tain the Green’s function Gn,n . When �n is the regular function in the vicinity of ω = ε

(0)
n  , the position of the 

pole of Gn,n can be found from the equation G−1
n,n(ω) = 0 as power series in g which coincides with the result of 

usual non-degenerate perturbation theory expansion. However, if there exists another level with the same or 
close energy (this is |m− n,N −m+ n� in our case), the self-energy itself acquires a pole in the vicinity of ε(0)n  . 
The lowest-order perturbation theory term with a pole has the order 2|m− 2n| in g because the corresponding 
diagram must contain at least one Gm−n,m−n Green’s function. As the perturbation operator changes the number 
of quanta by one, at least 2|m− 2n| perturbation vertices are required.

Because of the pole in the self-energy term in the vicinity of ε(0)n  , the Green’s function poles positions cannot 
be found as simple perturbation series. For this case, it is convenient to consider the matrix Green’s function

In terms of matrix Green’s function, Dyson equation could also be written with self-energy matrix �

The solution of Eq. (21) reads

The oscillator eigenenergies are the poles of the Green’s function. They could be found from the equation 
det

(

G
−1

)

= 0 , and all their dependence on the perturbation is contained in the self-energy matrix � . The 
diagonal terms �n,n and �m−n,m−n correspond to non-resonant energy shifts and contain contributions of all even 
powers of g. In contrast, the off-diagonal term �n,m−n is proportional to gm−2n and is responsible for resonant 
multi-photon transition between the states |n,N − n� and |m− n,N −m+ n� . The leading term of its expansion 
in powers of g reads (see Supplementary Information)

Equations (21)–(23) explain the possibility to use the non-degenerate perturbation theory up to the |m− 2n|
-th order. According to Eq. (23), the off-diagonal terms in (22) (which correspond to the multi-photon reso-
nance), have the order of gm−2n . Therefore, they do not contribute to the k-th order of the perturbation theory 
when k < |m− 2n| . For k < |m− 2n| , the energies obtained from the secular equation will coincide with those 
obtained from the non-degenerate perturbation theory. To account for multi-photon transitions, one should 
consider the perturbation theory of order k � |m− 2n|.

The term �n,m−n

(

ω = ε
(0)
n

)

 can be interpreted as the multi-photon transition amplitude between |n,N − n� 
and |m− n,N −m+ n� , and 

∣

∣

∣
�n,m−n

(

ε
(0)
n

)∣

∣

∣
 equals the frequency of the multi-photon Rabi transitions ωR

n,m−n . 
Further, we will demonstrate that it can be treated as the tunneling amplitude in the quasiclassical limit.

Classical limit
Multi-photon transitions described above with help of the formalism of the perturbation theory also have a quasi-
classical interpretation as tunnelling transitions. For that, one should consider the classical limit of the studied 
model which is valid for the large number of quanta: N ≫ 1 , µN ≫ 1 , N/µN = const . To obtain the classical 
Hamiltonian of the system, one should replace the ladder operators in (1) with classical complex  amplitudes21,35. 
This results in the following complex Hamilton function

Due to the conservation of the total number of quanta N = |a|2 + |b|2 , the classical dynamics governed by this 
Hamiltonian can be described as the dynamics on the surface of the two-dimensional sphere. To show that, one 
should rewrite the classical Hamiltonian with help of the new pseudo angular momentum variables Lx , Ly , Lz 
defined as

(19)Gn,n(ω) =
1

ω − ε
(0)
n −�n(ω)

,

(20)G =
[

Gn,n Gn,m−n

Gm−n,n Gm−n,m−n

]

.

(21)

G = G
(0) + G

(0)�G ,

G
(0) =







�

ω − ε
(0)
n

�−1

0

0

�

ω − ε
(0)
m−n

�−1






, � =

�

�n,n(ω) �n,m−n(ω)

�m−n,n(ω) �m−n,m−n(ω)

�

.

(22)G =
[

(

G
(0)
)−1

−�

]−1

=
[

ω − ε
(0)
n −�n,n(ω) −�n,m−n(ω)

−�m−n,n(ω) ω − ε
(0)
m−n −�m−n,m−n(ω)

]−1

.

(23)�n,m−n(ω) = gm−2n

√

(m− n)!
n!

(N − n)!
(N − (m− n))!

1
(

ω − ε
(0)
n+1

)

. . .

(

ω − ε
(0)
m−n−1

) + O
(

gm−2n+1
)

.

(24)H = ω1|a|2 + ω2|b|2 +
α1

2
|a|4 + α2

2
|b|4 + g(a∗b+ b∗a).
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In terms of the components of L , the classical Hamiltonian (24) takes the form

The conservation of the total angular momentum L2 = L2x + L2y + L2z = N(N + 2)/4 (which is equivalent to 
the conservation of the total number of quanta in the oscillators) allows describing the classical dynamics with 
help of the classical phase portrait on the Bloch sphere (see Fig. 6): the trajectories in the Li space are defined by 
the conservation of the number of quanta and the Hamilton function (26). Due to the quantum-classical cor-
respondence, the eigenstates of the quantum Hamiltonian (1) correspond to a discrete set of classical trajectories 
on the Bloch sphere. We demonstrate this by comparing the period-averaged values of the classical momenta Lx , 
Lz with the quantum-mechanical averages over the eigenstates of (1) for non-integer µN in Fig. 7 (the average 

(25)
Lz =

1

2

(

|a|2 − |b|2
)

, L+ = a∗b, L− = ab∗,

Lx = 1

2
(L+ + L−), Ly =

1

2i
(L+ − L−).

(26)H = −�

(

Lz +
N

2

)

+ α1

2

(

Lz +
N

2

)2

+ α2

2

(

Lz −
N

2

)2

+ 2gLx + ω2N .

Figure 6.  Classical trajectories on the surface of Bloch sphere. Black dots correspond to equilibrium 
points (three stable—1, 2, 3, and one unstable—S). The red curve is a Separatrix. Here the parameters are as 
follows: N = 40 , α2/α1 = 0.5 , �/α1 = 0.25 , µN = 27 , g/α1 ≈ 0.1211 (left), and g/α1 ≈ 1.816 (right). This 
corresponds to the dimensionless coupling strength: 

√
β ≈ 0.0103 (left), and 

√
β ≈ 0.1544 (right).

Figure 7.  The average values of the pseudo angular momenta components Lx and Lz over the classical 
trajectories with the dimensionless energy ε̃ (orange dashed and green solid line) and over the eigenstates 
of the quantum Hamiltonian with the eigenenergies ε̃ (red and blue circles). The averages are calculated at 
the following values of the Hamiltonian parameters: N = 40 , α2/α1 = 0.5 , �/α1 = 0.25 , µN = 27 , and 
g/α1 ≈ 1.816.
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of Ly equals zero). As one can see from Fig. 7, the averages calculated from the classical model are close to the 
quantum averages everywhere except the vicinity of the separatrix.

Let us discuss the structure of the phase portrait in detail. At g = 0 , the Hamiltonian is a function of Lz only, 
therefore, the classical trajectories are the circles in the Lx , Ly plane. At non-zero g, the trajectories are no longer 
concentric circles. Also, a self-intersecting trajectory (separatrix) emerges which divides the phase portrait into 
three regions with a stable point inside each one (denoted as << 1 >> , << 2 >> and << 3 >> ). At a certain 
critical value of g = gcrit , a saddle-node bifurcation occurs, and one of the stable point merges with the unstable 
stationary state << S >> . At larger g, only two stable points remain. Depending on the value of the ratio N/µN , 
the unstable point << S >> can merge with the point << 1 >> or with the point << 3 >> . If N/µN > 1 , the 
point << 3 >> merges with the point << S >> , otherwise, the point << 1 >> merges with point << S >>.

The value of gcrit can be found by analysing the positions of the extrema of the Hamiltonian (26) as a function 
of Li . After casting the coupling constant to a dimensionless form β = 8g2N/(α1 + α2)

2µ3
N (the dimensionless 

coupling strength), we obtained the following expression for βcrit (see derivation in Supplementary Information):

where γ = N/µN . Also, in the limit of γ → ∞ , one recovers the result for the model of a single Kerr oscillator 
with classical driving: at γ → ∞ , βcrit → 4/2736,37.

The dependence of the positions of the stable states on the dimensionless coupling strength β is presented in 
Fig. 8. For each of the equilibrium points i ∈ {1, 2, 3, S} , the value of the polar angle ϑi = π/2− arctan(L

(i)
z /

∣

∣L
(i)
x

∣

∣) 
is plotted (see Supplementary Information for more details). At β = βcrit (vertical black dotted line), the states 
<< S >> (unstable) and << 3 >> (stable) merge. Also, both of the angles ϑ1 and ϑ2 approach π/2 at β ≫ βcrit , 
which corresponds to the diametrically opposite stationary points in the X-Y plane.

Now let us discuss how tunnelling modifies the classical picture and establish the relation between tunnelling 
and multi-photon transitions. Tunnelling transitions are possible providing that there exist classical trajectories 
with the same energies. Because of the structure of the classical phase portrait, this holds for g < gcrit . In this case, 
tunnelling transitions are possible between the classical trajectories from regions 1 and 3. At small g, the classical 
trajectories are close to the circles in the X-Y plane (see Fig. 6, left panel) and can be identified with the oscillators 
Fock states: the Fock state |n,N − n� corresponds to the circle with L2 = N2/4 , Lz = N/2− n . For this case, one 
can directly apply the results of “Multi-photon transitions between two coupled nonlinear oscillators” and “The 
proof of the symmetry properties” sections and deduce that at the integer µN , resonant tunnelling transitions 
are possible between the trajectories with Lz = N/2− n and Lz = N/2− µN + n . For larger coupling values, 
the eigenstates are no longer the Fock states, and the classical trajectories are no longer circles in the X-Y plane. 
However, we state that the condition for resonant tunnelling remains the same for all values of g ∈ [0, gcrit] . This 
is supported by the fact that the calculation of “The proof of the symmetry properties” section is performed in 
all orders of the perturbation theory. Because of that, it fully takes into account the modification of the classical 
trajectories at larger g. In addition, the numerical diagonalization of the Hamiltonian (1) demonstrates that the 
behaviour shown in Fig. 2 (simultaneous anticrossings at the integer µN ) persists for the whole range g ∈ [0, gcrit].

Conclusions
For the model of two coupled quantum oscillators with Kerr nonlinearities and linear coupling, we studied 
the multi-photon transitions between the oscillators. We showed that for certain parameters of the model, the 
resonant condition for multi-photon transitions is simultaneously satisfied for many pairs of the oscillator Fock 
states. This holds even for the moderate coupling strength between oscillators, and this is the consequence of a 
special symmetry of the oscillators Hamiltonian.

(27)βcrit =
γ

2

(

γ 2/3 − (γ − 1)2/3
)3
,

0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.2

0.4

0.6

0.8

1

1 (stable)
2 (stable)
S (unstable)
3 (stable)

Figure 8.  The angles ϑi = π/2− arctan(L
(i)
z /

∣

∣L
(i)
x

∣

∣) as a function of 
√
β for the i-th equilibrium 

point, i ∈ {1, 2, 3, S} . Black dashed line corresponds to β = βcrit . The points numbers correspond to the 
ones in Fig. 6. Here the parameters are as follows: N = 40 , α2/α1 = 0.5 , �/α1 = 2.5 , µN = 30 , and 
g =

√

β(�+ α2N)3/N(α1 + α2).
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The latter is related to the structure of the perturbation series of the model eigenenergies and was proven with 
help of analytical continuation of the Hamiltonian for non-integer numbers of quanta.

Also, in the quasi-classical limit, the phase space of the two coupled oscillators can be mapped on a sphere, 
and the multi-photon transitions can be interpreted as tunnelling transitions between the trajectories lying in 
different regions of the classical phase space. Thus, when the resonant condition is satisfied, tunnel transitions 
affect the whole region of the classical phase space.

We believe that the results obtained in this work could be relevant for the experiments involving high-quality 
oscillator modes with low occupation numbers, such as the plasmon modes of the Josephson junction arrays 
or phonon modes of trapped ions ensembles. In particular, the independence of the multi-photon resonances 
positions could be used for the measurements of the Kerr coefficients of the modes. Also, the multi-photon 
transitions provide a way to create the entangled states of two oscillators. In addition, the obtained results could 
be used for certain models of dissipative time crystals in the quantum regime, and the symmetry discovered in 
the considered model may allow obtaining new exact results in quantum-optical systems.

Data availibility
The datasets used and/or analysed during the current study available from the corresponding author on reason-
able request.
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