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Strategies for single‑shot 
discrimination of process matrices
Paulina Lewandowska *, Łukasz Pawela  & Zbigniew Puchała 

The topic of causality has recently gained traction quantum information research. This work examines 
the problem of single-shot discrimination between process matrices which are an universal method 
defining a causal structure. We provide an exact expression for the optimal probability of correct 
distinction. In addition, we present an alternative way to achieve this expression by using the convex 
cone structure theory. We also express the discrimination task as semidefinite programming. Due to 
that, we have created the SDP calculating the distance between process matrices and we quantify 
it in terms of the trace norm. As a valuable by-product, the program finds an optimal realization 
of the discrimination task. We also find two classes of process matrices which can be distinguished 
perfectly. Our main result, however, is a consideration of the discrimination task for process matrices 
corresponding to quantum combs. We study which strategy, adaptive or non-signalling, should 
be used during the discrimination task. We proved that no matter which strategy you choose, the 
probability of distinguishing two process matrices being a quantum comb is the same.

The topic of causality has remained a staple in quantum physics and quantum information theory for recent 
years. The idea of a causal influence in quantum physics is best illustrated by considering two characters, Alice 
and Bob, preparing experiments in two separate laboratories. Each of them receives a physical system and 
performs an operation on it. After that, they send their respective system out of the laboratory. In a causally 
ordered framework, there are three possibilities: Bob cannot signal to Alice, which means the choice of Bob’s 
action cannot influence the statistics Alice records (denoted by A ≺ B ), Alice cannot signal to Bob ( B ≺ A ), or 
neither party can influence the other (A||B). A causally neutral formulation of quantum theory is described in 
terms of quantum combs1.

One may wonder if Alice’s and Bob’s action can influence each other. It might seem impossible, except in a 
world with closed time-like curves (CTCs)2. But the existence of CTCs implies some logical paradoxes, such as 
the grandfather paradox3. Possible solutions have been proposed in which quantum mechanics and CTCs can 
exist and such paradoxes are avoided, but modifying quantum theory into a nonlinear one4. A natural question 
arises: is it possible to keep the framework of linear quantum theory and still go beyond definite causal structures?

One such framework was proposed by Oreshkov, Costa and Brukner 5. They introduced a new resource called 
a process matrix—a generalization of the notion of quantum state. This new approach has provided a consistent 
representation of correlations in casually and non-causally related experiments. Most interestingly, they have 
described a situation that two actions are neither causally ordered and one cannot say which action influences 
the second one. Thanks to that, the term of causally non-separable (CNS) structures started to correspond to 
superpositions of situations in which, roughly speaking, Alice can signal to Bob, and Bob can signal to Alice, 
jointly. A general overview of causal connection theory is described in Ref.6.

The indefinite causal structures could make a new aspect of quantum information processing. This more 
general model of computation can outperform causal quantum computers in specific tasks, such as learning or 
discriminating between two quantum channels7–9. The problem of discriminating quantum operations is of the 
utmost importance in modern quantum information science. Imagine we have an unknown operation hidden 
in a black box. We only have information that it is one of two operations. The goal is to determine an optimal 
strategy for this process that achieves the highest possible probability of discrimination. For the case of a single-
shot discrimination scenario, researchers have used different approaches, with the possibility of using entangle-
ment in order to perform an optimal protocol. In Ref.10, Authors have shown that in the task of discrimination 
of unitary channels, the entanglement is not necessary, whereas for quantum measurements11–13, we need to use 
entanglement. Considering multiple-shot discrimination scenarios, researchers have utilized parallel or adap-
tive approaches. In the parallel case, we establish that the discrimination between operations does not require 
pre-processing and post-processing. One example of such an approach is distinguishing unitary channels10, or 
von Neumann measurements14. The case when the black box can be used multiple times in an adaptive way was 
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investigated by the authors of Refs.15,16, who have proven that the use of adaptive strategy and a general notion 
of quantum combs can improve discrimination. It is worth noting that the problem of discrimination between 
process matrices is a direct analogy to the discrimination task of quantum states or channels. In general, the dis-
crimination task of quantum objects helps study the geometry of sets of these objects by inducing the trace norm 
(for quantum states) or the diamond norm (for quantum channels and measurements). These norms constitute 
the basis for quantum capacity theory17, quantum error correction18 or quantum cryptography19.

In this work, we study the problem of discriminating process matrices in a single-shot scenario. We obtain 
that the probability of correct distinction process matrices is strictly related to the Holevo–Helstrom theorem 
for quantum channels. Additionally, we write this result as a semidefinite program (SDP) which is numerically 
efficient. The SDP program allows us to find an optimal discrimination strategy. We compare the effectiveness 
of the obtained strategy with the previously mentioned strategies. The problem gets more complex in the case 
when we consider the non-causally ordered framework. In this case, we consider the discrimination task between 
two process matrices having different causal orders.

This paper is organized as follows. In “Mathematical preliminaries” section we introduce necessary mathemat-
ical framework. “Process matrices” section is dedicated to the concept of process matrices. “Discrimination task” 
section presents the discrimination task between pairs of process matrices and calculate the exact probability of 
distinguishing them. Some examples of discrimination between different classes of process matrices are presented 
in “Discrimination between different classes of process matrices” section. In “Free process matrices” section, 
we consider the discrimination task between free process matrices, whereas in “Process matrices representing 
quantum combs” section we consider the discrimination task between process matrices being quantum combs. 
In “Process matrices of the form WA≺B and WB≺A” section, we show a particular class of process matrices having 
opposite causal structures which can be distinguished perfectly. Finally, “SDP program for calculating the optimal 
probability of process matrices discrimination” and “Distance between process matrices” sections are devoted to 
semidefinite programming, thanks to which, among other things, we obtain an optimal discrimination strategy. 
In “Convex cone structure theory” section, we analyze an alternative way to achieve this expression using the 
convex cone structure theory. Concluding remarks are presented in the final “Conclusion and discussion” section. 
In the Supplementary Materials, we provide technical details about the convex cone structure.

Mathematical preliminaries
Let us introduce the following notation. Consider two complex Euclidean spaces and denote them by X ,Y . 
By L(X ,Y) we denote the collection of all linear mappings of the form A : X → Y  . As a shorthand put 
L(X ) := L(X ,X ). By Herm(X ) we denote the set of Hermitian operators while the subset of Herm(X ) consist-
ing of positive semidefinite operators will be denoted by Pos(X ) . The set of quantum states, that is positive sem-
idefinite operators ρ such that tr ρ = 1 , will be denoted by �(X ) . An operator U ∈ L(X ) is unitary if it satisfies 
the equation UU† = U†U = 1X . The notation U(X ) will be used to denote the set of all unitary operators. We 
will also need a linear mapping of the form � : L(X ) → L(Y) transforming L(X ) into L(Y) . The set of all linear 
mappings is denoted M(X ,Y) . There exists a bijection between set M(X ,Y) and the set of operators L(Y ⊗ X ) 
known as the Choi20 and Jamiołkowski21 isomorphism. For a given linear mapping �M : L(X ) → L(Y) cor-
responding Choi matrix M ∈ L(Y ⊗ X ) can be explicitly written as

We will denote linear mappings by �M ,�N ,�R etc., whereas the corresponding Choi matrices as plain 
symbols: M, N, R etc. Let us consider a composition of mappings �R = �N ◦�M where �N : L(Z) → L(Y) 
and �M : L(X ) → L(Z) with Choi matrices N ∈ L(Z ⊗ Y) and M ∈ L(X ⊗ Z) , respectively. Then, the Choi 
matrix of �R is given by22

where MTZ denotes the partial transposition of M on the subspace Z . The above result can be expressed by 
introducing the notation of the link product of the operators N and M as

Finally, we introduce a special subset of all mappings � , called quantum channels, which are completely positive 
and trace preserving (CPTP). In other words, the first condition reads

for all X ∈ Pos(X ⊗ Z) and IZ is an identity channel acts on L(Z) for any Z , while the second condition reads

for all X ∈ L(X ).
In this work we will consider a special class of quantum channels called non-signaling channels (or causal 

channels)23,24. We say that �N : L(XI ⊗ YI ) → L(XO ⊗ YO) is a non-signaling channel if its Choi operator 
satisfies the following conditions

(1)M :=
dim(X )−1∑

i,j=0

�M(|i��j|)⊗ |i��j|.

(2)R = trZ

[(
1Y ⊗MTZ

)
(N ⊗ 1X )

]
,

(3)N ∗M := trZ

[(
1Y ⊗MTZ

)
(N ⊗ 1X )

]
.

(4)(�⊗ IZ )(X) ∈ Pos(Y ⊗ Z),

(5)tr (�(X)) = tr (X)
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It can be shown25 that each non-signaling channel is an affine combination of product channels. More pre-
cisely, any non-signaling channel �N : L(XI ⊗ YI ) → L(XO ⊗ YO) can be written as

where �Si : L(XI ) → L(XO) and �Ti : L(YI ) → L(YO) are quantum channels, �i ∈ R such that 
∑

i �i = 1 . For 
the rest of this paper, by NS(XI ⊗ XO ⊗ YI ⊗ YO) we will denote the set of Choi matrices of non-signaling 
channels.

The most general quantum operations are represented by quantum instruments26,27, that is, collections of 
completely positive (CP) maps 

{
�Mi

}
i
 associated to all measurement outcomes, characterized by the property 

that 
∑

i �Mi is a quantum channel.
We will also consider the concept of quantum network and tester1,28. We say that �R(N) is a deterministic 

quantum network (or quantum comb) if it is a concatenation of N quantum channels and R(N) ∈ L
(⊗2N−1

i=0 Xi

)
 

fulfills the following conditions

where R(k−1) ∈ L
(⊗2k−3

i=0 Xi

)
 is the Choi matrix of the reduced quantum comb with concatenation of k − 1 

quantum channels, k = 2, . . . ,N . We remind that a probabilistic quantum network �S(N) is equivalent to a con-
catenation of N completely positive trace non increasing linear maps. Then, the Choi operator S(N) of �S(N) satis-
fies 0 ≤ S(N) ≤ R(N) , where R(N) is Choi matrix of a quantum comb. Finally, we recall the definition of a quantum 
tester. A quantum tester is a collection of probabilistic quantum networks 

{
R
(N)
i

}
i
 whose sum is a quantum 

comb, that is 
∑

i R
(N)
i = R(N) , and additionally dim(X0) = dim(X2N−1) = 1.

We will also use the Moore–Penrose pseudo–inverse by abusing notation X−1 ∈ L(Y ,X ) for an operator 
X ∈ L(X ,Y) . Moreover, we introduce the vectorization operation of X defined by |X�� =

∑dim(X )−1
i=0 (X|i�)⊗ |i�.

Process matrices
This section introduces the formal definition of the process matrix with its characterization and intuition. Next, 
we present some classes of process matrices considered in this paper.

Let us define the operator XY  as

for every Y ∈ L(X ⊗ Z) , where Z is an arbitrary complex Euclidean space. We will also need the following 
projection operator

where W ∈ Herm(AI ⊗AO ⊗ BI ⊗ BO).

Definition 1  We say that W ∈ Herm(AI ⊗AO ⊗ BI ⊗ BO) is a process matrix if it fulfills the following 
conditions

where the projection operator LV is defined by Eq. (10).

The set of all process matrices will be denoted by WPROC . In the upcoming considerations, it will be more 
convenient to work with the equivalent characterization of process matrices which can be found in Ref.29.

Definition 2  We say that W ∈ W
PROC is a process matrix if it fulfills the following conditions

(6)
trXO (N) =

1XI

dim(XI )
⊗ trXOX1(N),

trYO (N) =
1YI

dim(YI )
⊗ trYOY1(N).

(7)�N =
∑

i

�i�Si ⊗�Ti ,

(8)
R(N) ≥ 0,

trX2k−1

(
R(k)

)
= 1X2k−2

⊗ R(k−1),

(9)XY =
1X

dim(X )
⊗ trXY ,

(10)LV (W) =AO
W +BO

W −AOBO
W −BIBO

W +AOBIBO
W −AIAO

W +AOAIBO
W ,

(11)W ≥ 0, W = LV (W), tr (W) = dim(AO) · dim(BO),

(12)

W ≥0,

AIAO
W =AOAIBO

W ,

BIBO
W =AOBIBO

W ,W =BO
W +AO

W −AOBO
W ,

tr (W) = dim(AO) · dim(BO).
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The concept of process matrix can be best illustrated by considering two characters, Alice and Bob, perform-
ing experiments in two separate laboratories. Each party acts in a local laboratory, which can be identified by an 
input space AI and an output space AO for Alice, and analogously BI and BO for Bob. In general, a label i, denot-
ing Alice’s measurement outcome, is associated with the CP map �MA

i
 obtained from the instrument 

{
�MA

i

}
i
 . 

Analogously, the Bob’s measurement outcome j is associated with the map �MB
j
 from the instrument 

{
�MB

j

}
j
 . 

Finally, the joint probability for a pair of outcomes i and j can be expressed as

where W ∈ W
PROC is a process matrix that describes the causal structure outside of the laboratories. The valid 

process matrix is defined by the requirement that probabilities are well defined, that is, they must be non-negative 
and sum up to one. These requirements give us the conditions present in Definitions 1 and 2.

In the general case, the Alice’s and Bob’s strategies can be more complex than the product strategy MA
i ⊗MB

j  
which defines the probability pij given by Eq. (13). If their action is somehow correlated, we can write the associ-
ated instrument in the following form 

{
�NAB

ij

}
 . It was observed in Ref.29 that this instrument describes a valid 

strategy, that is

for all process matrix W ∈ W
PROC if and only if

In this paper, we will consider different classes of process matrices. Initially, we define the subset of process 
matrices known as free objects in the resource theory of causal connection30. Such process matrices will be 
defined as follows.

Definition 3  We say that WA||B ∈ W
PROC is a free process matrix if it satisfies the following condition

where ρAIBI ∈ �(AI ⊗ BI ) is an arbitrary quantum state and 1AOBO ∈ L(AO ⊗ BO) . The set of all process 
matrices of this form will be denoted by WA||B.

We often consider process matrices corresponding to quantum combs22. For example, a quantum comb A ≺ B 
(see in Fig. 1) shows that Alice’s and Bob’s operations are performed in causal order. This means that Bob can-
not signal to Alice and the choice of Bob’s instrument cannot influence the statistics Alice records. Such process 
matrices are formally defined in the following way.

Definition 4  We say that WA≺B ∈ W
PROC is a process matrix representing a quantum comb A ≺ B if it satisfies 

the following conditions

The set of all process matrices of this form will be denoted by WA≺B.

(13)pij = tr
[
W

(
MA

i ⊗MB
j

)]
,

(14)tr


W

�

ij

NAB
ij


 = 1,

(15)
∑

ij

NAB
ij ∈ NS(AI ⊗AO ⊗ BI ⊗ BO).

(16)WA||B = ρAIBI ⊗ 1AOBO ,

(17)
WA≺B = W ′

AIAOBI
⊗ 1BO ,

trBIW
′
AIAOBI

= W ′′
AI

⊗ 1AO .

Figure 1.   A schematic representation of a process matrix WA≺B representing a quantum comb A ≺ B.



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3046  | https://doi.org/10.1038/s41598-023-30191-0

www.nature.com/scientificreports/

One can easily observe that the set WA||B is an intersection of the sets WA≺B and WB≺A . Finally, the definition 
of the set WA≺B , together with WB≺A allow us to provide their convex hull which is called as causally separable 
process matrices.

Definition 5  We say that WSEP ∈ W
PROC is a causally separable process matrix if it is of the form

where WA≺B ∈ W
A≺B , WB≺A ∈ W

B≺A for some parameter p ∈ [0, 1] . The set of all causally separable process 
matrices will be denoted by WSEP.

There are however process matrices that do not correspond to a causally separable process and such process 
matrices are known as causally non-separable (CNS). The examples of such matrices were provided in Ref.5,31. 
The set of all causally non-separable process matrices will be denoted by WCNS . In Fig. 2 we present a schematic 
plot of the sets of process matrices.

Discrimination task
This section presents the concept of discrimination between pairs of process matrices. It is worth empha-
sizing that the definition of a process matrix is a generalization of the concept of quantum states, channels, 
superchannels32 and even generalized supermaps33,34. The task of discrimination between process matrices poses 
a natural extension of discrimination of quantum states35, channels36 or measurements13. The process matrices 
discrimination task can be described by the following scenario.

Let us consider two process matrices W0,W1 ∈ W
PROC . The classical description of process matrices W0,W1 

is assumed to be known to the participating parties. We know that one of the process matrices, W0 or W1 , 
describes the actual correlation between Alice’s and Bob’s laboratories, but we do not know which one. Our aim 
is to determine, with the highest possible probability, which process matrix describes this correlation. For this 
purpose, we construct a discrimination strategy S. In the general approach, such a strategy S is described by an 
instrument S = {S0, S1} . Due to the requirement given by Eq. (14), the instrument S must fulfill the condition 
S0 + S1 ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) . The result of composing a process matrix W with the discrimination strat-
egy S results in a classical label which can take values zero or one. If the label zero occurs, we decide to choose 
that the correlation is given by W0 . Otherwise, we decide to choose W1 . In this setting the maximum success 
probability psucc(W0,W1) of correct discrimination between two process matrices W0 and W1 can be expressed by

The following theorem provides the optimal probability of process matrices discrimination as a direct ana-
logue of the Holevo–Helstrom theorem for quantum states and channels.

Theorem 1  Let W0,W1 ∈ W
PROC be two process matrices. For every choice of discrimination strategy S = {S0, S1} , 

it holds that

(18)WSEP = pWA≺B + (1− p)WB≺A,

(19)psucc(W0,W1) =
1

2
max

S={S0,S1}
[ tr (W0S0)+ tr (W1S1)].

Figure 2.   A schematic representation of the sets of process matrices WPROC.
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where NS(AI ⊗AO ⊗ BI ⊗ BO) is the set of Choi matrices of non-signaling channels. Moreover, there exists a 
discrimination strategy S, which saturates the inequality Eq. (20).

Proof  Let us define the sets

and

We prove the equality between sets A and B . To show B ⊆ A , it is suffices to observe that √
NQ0

√
N +

√
NQ1

√
N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) . To prove A ⊆ B let us take N := S0 + S1 . It implies that

L e t  u s  f i x  Q̃0 :=
√
N

−1
S0
√
N

−1  a n d  Q̃1 :=
√
N

−1
S1
√
N

−1  .  T h e n ,  w e  h a v e 
1AIAOBIBO = 1AIAOBIBO −�im(N) +�im(N) = 1AIAOBIBO −�im(N) + Q̃0 + Q̃1 . Finally, it is suffices to take

and Q1 := Q̃1 . It implies that A = B . In conclusion, we obtain

Moreover, from Holevo–Helstrom theorem36 there exists a projective binary measurement Q = {Q0,Q1} such 
that the last inequality is saturated, which completes the proof. 	�  �

Corollary 1  The maximum probability psucc(W0,W1) of correct discrimination between two process matrices W0 
and W1 is given by

As a valuable by-product of Theorem 1, we receive a realization of process matrices discrimination scheme. 
The schematic representation of this setup is presented in Fig. 3. To distinguish the process matrices W0 and W1 , 
Alice and Bob prepare the strategy S = {S0, S1} such that S0 + S1 ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) . To implement it, 
let us introduce complex Euclidean spaces X1, . . . ,X4 such that dim

(⊗4
i=1 Xi

)
= dim(AI ⊗AO ⊗ BI ⊗ BO) . 

Alice and Bob prepare the quantum channel �K : L(AI ⊗ BI ) → L(AO ⊗ BO ⊗ X1 ⊗ X2 ⊗ X3 ⊗ X4) with the 
Choi matrix K given by

where |1�� ∈ L(X1 ⊗ X2 ⊗ X3 ⊗ X4 ⊗AI ⊗AO ⊗ BI ⊗ BO) and N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) maximizes 
the trace norm �

√
N(W0 −W1)

√
N�1 . It is worth noting that the quantum channel �K is correctly defined 

due to the fact that trX1,2,3,4K ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) . Afterwards, they perform the binary measurement 
Q = {Q0,Q1} , where the effect Q0 ∈ L(X1 ⊗ X2 ⊗ X3 ⊗ X4) is defined by Eq. (24). Next, they decide which 
process matrix was used during the calculation assuming W0 if the measurement label is 0. Otherwise, they 
assume W1.

(20)

1

2
tr (S0W0)+

1

2
tr (S1W1) ≤

1

2
+

1

4
max

{
�
√
N(W0 −W1)

√
N�1 : N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO)

}
,

(21)A := {(S0, S1) : S0 + S1 ∈ NS(AI ⊗AO ⊗ BI ⊗ BO), S0, S1 ≥ 0},

(22)
B := {(

√
NQ0

√
N ,

√
NQ1

√
N) :N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO),

Q0, Q1 ≥ 0,

Q0 + Q1 = 1AIAOBIBO }.

(23)�im(N) =
√
N

−1
N
√
N

−1 =
√
N

−1
S0
√
N

−1 +
√
N

−1
S1
√
N

−1
.

(24)Q0 := 1AIAOBIBO −�im(N) + Q̃0,

(25)

1

2
tr (S0W0)+

1

2
tr (S1W1)

=
1

2
tr
(√

NQ0

√
NW0

)
+

1

2
tr
(√

NQ1

√
NW1

)

=
1

2
tr
(
Q0

√
NW0

√
N
)
+

1

2
tr
(
Q1

√
NW1

√
N
)

≤
1

2
+

1

4
max

{
||
√
N(W0 −W1)

√
N ||1 : N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO)

}
.

(26)
psucc(W0,W1) =
1

2
+

1

4
max

{
�
√
N(W0 −W1)

√
N�1 : N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO)

}
.

(27)K =
(
1X1,2,3,4 ⊗

√
N
)
(|1����1|)

(
1X1,2,3,4 ⊗

√
N
)
,
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Discrimination between different classes of process matrices
This section presents some examples of discrimination between different classes of process matrices. We begin 
our consideration with the problem of discrimination between two free process matrices WA||B . Next, we will 
consider various cases of process matrices discrimination representing a quantum comb. First, we calculate 
exact probability of correct discrimination between two process matrices come from the same class WA≺B . 
Next, we study the discrimination task assuming that one of the process matrices is of the form WA≺B and the 
other one is of the form WB≺A . Finally, we construct a particular class of process matrices which can be perfectly 
distinguished.

Free process matrices.  The following consideration confirms an intuition that the task of discrimination 
between free process matrices reduces to the problem of discrimination between quantum states.

From definition of psucc(W0,W1) we have

Let W0 and W1 be two process matrices of the form W0 = ρ ⊗ 1AOBO and W1 = σ ⊗ 1AOBO , where 
ρ, σ ∈ �(AI ⊗ BI ) . Then, psucc is exactly equal to

Let us observe trAOBOS0 + trAOBOS1 = 1AIBI . So, { trAOBOS0, trAOBOS1} is a binary measurement and 
therefore, from Holevo–Helstrom theorem for quantum states, we have

(28)psucc(W0,W1) =
1

2
max

S={S0,S1}
[ tr (W0S0)+ tr (W1S1)].

(29)

max
S={S0,S1}

[
1

2
tr (W0S0)+

1

2
tr (W1S1)

]

= max
S={S0,S1}

[
1

2
tr ((ρ ⊗ 1)S0)+

1

2
tr ((σ ⊗ 1)S1)

]

= max
S={S0,S1}

[
1

2
tr
(
ρ trAOBOS0

)
+

1

2
tr
(
σ trAOBOS1

)]
.

Figure 3.   A schematic representation of the setup for distinguishing between process 
matrices W0 and W1 . The discrimination strategy is constructed by using the quantum channel 
�K : L(AI ⊗ BI ) → L(AO ⊗ BO ⊗ X1 ⊗ X2 ⊗ X3 ⊗ X4) and the binary measurement Q = {Q0,Q1} defined 
in the proof of Theorem 1.
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Now, assume that E = {E0,E1} is the Holevo–Helstrom measurement (by taking E0 and E1 as positive and 
negative part of ρ − σ , respectively). Hence, we obtain

Observe, it is suffices to take S0 := E0 ⊗ |0��0| ⊗ |0��0| and S1 := E1 ⊗ |0��0| ⊗ |0��0| . Note that 
S0 + S1 = 1AIBI ⊗ |0��0| ⊗ |0��0| is non-signaling channel. Therefore, we have

which completes the consideration.
Due to the above consideration, we obtain the following corollary.

Corollary 2  Let ρ, σ ∈ �(AI ⊗ BI ) be quantum states and let W0,W1 ∈ W
A||B be two free process matrices of the 

form W0 = ρ ⊗ 1 and W1 = σ ⊗ 1 . Then,

Process matrices representing quantum combs.  Here, we will compare the probability of correct dis-
crimination between two process matrices being quantum combs of the form WA≺B

0 ,WA≺B
1 ∈ W

A≺B by using 
non-signalling strategy S = {S0, S1} described by Eq. (54) or an adaptive strategy.

Before that, we will discuss the issue of adaptive strategy. The most general strategy of quantum operations 
discrimination is known as an adaptive strategy22,37. An adaptive strategy is realized by a quantum tester1. A 
schematic representation of this setup is presented in Fig. 4.

Let us consider a quantum tester {L0, L1} which is a two-element collection of probabilistic quantum net-
works L0 and L1 whose sum is a quantum comb, and additionally Li ∗W ∈ R , i = 0, 1 for any process matrix 
W ∈ W

A≺B . The probability of correct discrimination between WA≺B
0  and WA≺B

1  by using an adaptive strategy 
is defined by equation

It turns out that we do not need adaptation in order to obtain the optimal probability os distinction. This is 
stated formally in the following theorem.

Theorem 2  Let WA≺B
0 ,WA≺B

1 ∈ W
A≺B be two process matrices representing quantum combs A ≺ B . Then,

(30)max
S={S0,S1}

[
1

2
tr
(
ρ trAOBOS0

)
+

1

2
tr
(
σ trAOBOS1

)]
≤

1

2
+

1

4
�ρ − σ�1.

(31)max
E={E0,E1}

[
1

2
tr (ρE0)+

1

2
tr (σE1)

]
=

1

2
+

1

4
�ρ − σ�1.

(32)psucc(W0,W1) =
1

2
+

1

4
�ρ − σ�1,

(33)psucc(W0,W1) =
1

2
+

1

4
�ρ − σ�1.

(34)padapt
(
WA≺B

0 ,WA≺B
1

)
:=

1

2
max
{L0,L1}

L0 ∗W0 + L1 ∗W1.

Figure 4.   A schematic representation of an adaptive strategy discriminating two process matrices 
W0,W1 ∈ WA≺B by using a quantum tester {L0, L1}.
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Proof  For simplicity, we will omit superscripts ( A ≺ B and B ≺ A ). The inequality psucc(W0,W1) ≤ padapt(W0,W1) 
is trivial by observing that we calculate maximum value over a larger set.

To show psucc(W0,W1) ≥ padapt(W0,W1) , let us consider the quantum tester {L0, L1} which maximizes 
Eq. (34), that means

Hence, from definition of WA≺B we have

and then we obtain

Observe that trBO (L0 + L1) = 1BI ⊗ J , where J is a Choi matrix of a channel �J : L(AI ) → L(AO) . Let us 
define a strategy S = {S0, S1} such that

It easy to observe that S ∈ NS(AO ⊗AI ⊗ BO ⊗ BI ) . Then, we have

It implies that

which completes the proof. 	�  �

Process matrices of the form WA≺B and WB≺A.  Now, we present some results for discrimination task 
assuming the one of the process matrices if of the form WA≺B and the other one is of the form WB≺A . We will 
construct a particular class of such process matrices for which the perfect discrimination is possible.

Let us define a process matrix of the form

where ρ ∈ �(AI ), |U����U | is the Choi matrix of a unitary channel AdU⊤ : L(AO) → L(BI ) of the form 
AdU⊤(X) = U⊤X Ū  and 1 ∈ L(BO) . A schematic representation of this process matrix we can see in Fig. 5.

Proposition 1  Let WA≺B be a process matrix given by Eq. (42). Let us define a process matrix WB≺A of the form

where Pπ is the swap operator replacing the systems AI → BI and AO → BO . Then, the process matrix WA≺B is 
perfectly distinguishable from WB≺A.

(35)psucc
(
WA≺B

0 ,WA≺B
1

)
= padapt

(
WA≺B

0 ,WA≺B
1

)
.

(36)padapt(W0,W1) =
1

2
(L0 ∗W0 + L1 ∗W1).

(37)WA≺B = W ′ ⊗ 1BO ,

(38)
1

2
(L0 ∗W0 + L1 ∗W1) =

1

2
tr
(
W ′

0 trBOL0 +W ′
1 trBOL1

)
.

(39)

S0 = trBOL0 ⊗
1BO

dim(BO)
,

S1 = trBOL1 ⊗
1BO

dim(BO)
,

S = S0 + S1.

(40)
1

2
(S0 ∗W0 + S1 ∗W1) =

1

2

(
tr
(
W ′

0 trBOL0 +W ′
1 trBOL1

))
.

(41)psucc(W0,W1) ≥ padapt(W0,W1),

(42)WA≺B = ρ ⊗ |U����U | ⊗ 1,

(43)WB≺A = PπW
A≺BPπ ,

Figure 5.   A schematic representation of process matrix WA≺B given by Eq. (42).
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Proof  Let us consider the process matrix given by Eq. (42) described by Fig. 5. W.l.o.g. let d be a dimension of 
each of the systems. Let ρ =

∑d−1
i=0 �i|xi��xi| , where �i ≥ 0 such that 

∑
i �i = 1 . Based on the spectral decom-

position of ρ we create the unitary matrix V by taking i-th eigenvector of ρ , and the measurement �V (in basis 
of ρ ) given by

Let us also define the permutation matrix Pσ =
∑d−1

i=0 |xi+1 mod d��xi| corresponding to the permutation 
σ = (0, 1, . . . , d − 1).

Alice and Bob prepare theirs discrimination strategy. Alice performs the local channel (see Fig. 6) given by

Meanwhile, Bob performs his local channel (see Fig. 7) given by

	�
�

Let us consider the case A ≺ B . The output after Alice’s action is described by

Next, we apply the quantum channel AdU⊤ (see Fig. 5), and hence we have

In the next step, Bob applies his channel as follows

Finally, we apply partial trace operation on the subspace BO (see Fig. 5), that means

So, the quantum state obtained after the discrimination scenario in the case A ≺ B is given by

It implies that if Alice measures her system, she obtains the label i with probability �i whereas Bob obtains the 
label (i + 1) mod d with the same probability. On the other hand, considering the case B ≺ A , then the state 
obtained after the discrimination scenario is given by

(44)�V (X) =
d−1∑

i=0

�xi|X|xi�|i��i| ⊗ |xi��xi|.

(45)�A(ρ) =
((
I ⊗ AdŪ

)
◦�V

)
(ρ.

(46)�B(ρ) =
((
I ⊗ AdŪ

)
◦�V ◦ AdPσ

)
(ρ).

(47)�A(ρ) =
∑

i

�i|i��i| ⊗ Ū |xi��xi|U⊤.

(48)(I ⊗ AdU⊤) ◦�A(ρ) =
∑

i

�i|i��i| ⊗ |xi��xi|.

(49)(I ⊗�B) ◦ (I ⊗ AdU⊤) ◦�A(ρ) =
∑

i

�i|i��i| ⊗ |i + 1��i + 1| ⊗ |xi+1��xi+1|.

(50)trBO

(
∑

i

�i|i��i| ⊗ |i + 1��i + 1| ⊗ |xi+1��xi+1|

)
=

∑

i

�i|i��i| ⊗ |i + 1��i + 1|.

(51)σA≺B =
∑

i

�i|i��i| ⊗ |i + 1��i + 1|.

Figure 6.   A schematic representation of Alice’s discrimination strategy described by Eq. (45).

Figure 7.   A schematic representation of Bobs’ discrimination strategy described by Eq. (46).
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So, Bob and Alice obtain the same label (i + 1) mod d with probability �i . Then, the quantum channel �K 
(realizing the discrimination strategy S) is created as a tensor product of Alice’s and Bob’s local channels, that 
means �K = �A ⊗�B . Due to that they perform the binary measurement Q = {Q0,Q1} , where the effect Q1 is 
given by Q1 =

∑d−1
i=0 |i��i| ⊗ |i��i| . Hence, we have

In summary, the process matrices WA≺B and WB≺A are perfectly distinguishable by Alice and Bob which 
completes the proof. �

SDP program for calculating the optimal probability of process matrices 
discrimination
In the standard approach, we would need to compute the probability of correct discrimination between two 
process matrices W0 and W1 . For this purpose, we use the semidefinite programming (SDP). This section presents 
the SDP program for calculating the optimal probability of discrimination between W0 and W1.

Recall that the maximum value of such a probability can be noticed by

with requirement that the optimal strategy S = {S0, S1} is a quantum instrument such that 
S0 + S1 ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) . Hence, we arrive at the primal and dual problems presented in the 
Program 1.

To optimize this problem we used the Julia programming language along with quantum package Quan-
tumInformation.jl38 and SDP optimization via SCS solver39,40 with absolute convergence tolerance 10−5 . 
The code is available on GitHub41.

It may happen that the values of primal and dual programs are equal. This situation is called strong duality. 
Slater’s theorem provides the set of conditions which guarantee strong duality36. It can be shown that Program 1 
fulfills conditions of Slater’s theorem (it is suffices to take Y0,Y1 = 0 and α > 1

2 max{�max(W0),�
max(W1)} , 

where �max(X) is the maximum eigenvalue of X). Therefore, we can consider the primal and the dual problem 
equivalently.

Program 1 Semidefinite program for maximizing the probability of correct discrimination between two process matrices 
W0 and W1

SDP program for calculating the optimal probability of discrimination between W0 and W1

Primal problem

maximize: 1
2
Tr (W0S0)+ 1

2
Tr (W1S1)

subject to: trAO
(S0 + S1) =

1AI

dim(AI )
⊗ trAOAI

(S0 + S1),

trBO
(S0 + S1) =

1BI

dim(BI )
⊗ trBOBI

(S0 + S1),

tr (S0 + S1) = dim(AI ) dim(BI ),

S0 ∈ Pos(AI ⊗AO ⊗BI ⊗BO),

S1 ∈ Pos(AI ⊗AO ⊗BI ⊗BO).

Dual problem

minimize: α · dim(AI ) dim(BI )

subject to:    1AO
⊗ Y0 −

1AIAO

dim(AI )
⊗ trAI

(Y0)+ 1BO
⊗ Y1+

−
1BIBO

dim(BI )
⊗ trBI

Y1 + α · 1AIAOBIBO
≥ 1

2
W0,

1AO
⊗ Y0 −

1AIAO

dim(AI )
⊗ trAI

(Y0)+ 1BO
⊗ Y1+

−
1BIBO

dim(BI )
⊗ trBI

Y1 + α · 1AIAOBIBO
≥ 1

2
W1,

Y0 ∈ Herm(AI ⊗BI ⊗BO),

Y1 ∈ Herm(AI ⊗AO ⊗BI ),

α ∈ R.

We can observe a connection between Program 1 and the semidefinite program calculating the maximal 
probability of successful discrimination of two qubit-qubit quantum channels using two copies under different 
strategies 7. Thanks to their idea, we obtain the following SDP program.

(52)σB≺A =
∑

i

�i|i + 1��i + 1| ⊗ |i + 1��i + 1|.

(53)psucc

(
WA≺B,WB≺A

)
=

1

2
tr
(
σA≺BQ0

)
+

1

2
tr
(
σB≺AQ1

)
= 1.

(54)psucc(W0,W1) =
1

2
max

S={S0,S1}
[ tr (W0S0)+ tr (W1S1)],
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Primal problem

given:    W0,W1 ∈ W
PROC

maximize:    1
2
Tr (W0S0)+ 1

2
Tr (W1S1)

subject to:    {S0, S1} is a tester such that

S0 + S1 ∈ NS(AI ⊗AO ⊗BI ⊗BO).

Dual problem

given:    W0,W1 ∈ W
PROC

minimize:    α

subject to:    1
2
Wi ≤ α · X, where X ∈ ÑS(AI ⊗AO ⊗BI ⊗BO),

and ÑS(AI ⊗AO ⊗BI ⊗BO) lies in the dual affine

space of the set NS(AI ⊗AO ⊗BI ⊗BO) and 
i ∈ {0, 1}.

It can be shown, eg. in7 that ÑS(AI ⊗AO ⊗ BI ⊗ BO) creates the set of all process matrices WPROC . Hence, 
the constrains 12Wi ≤ αX, where X ∈ W

PROC , can be explicitly written as in Program 1.
The SDP Program 1 is defined on the tensor product of four Hilbert spaces with local dimensions equal d. 

The number of variables of the primal and dual problem scales as �
(
d8
)
 and �

(
d6
)
 , respectively, therefore, the 

standard SDP solvers can take a long time to find the solution for large d. One approach to deal with this problem 
is to use a simplified SDP programming approach like it was done for computing the diamond norm42. Another 
method is to exploit an iterative method based on the fixed point and the Complementary Slackness criterion, 
like in Ref.43 for the fidelity function. We leave this problem for future research.

Distance between process matrices
In this section we present the semidefinite programs for calculating the distance in trace norm between a given 
process matrix W ∈ W

PROC and different subsets of process matrices, such that WA||B , WA≺B , WB≺A or WSEP.
For example, let us consider the case WA||B . Theoretically, the distance between a process matrix W and the 

set of free process matrices WA||B can be expressed by

Analogously, for the sets WA≺B,WB≺A and WSEP with the minimization condition minW̃∈WA≺B , minW̃∈WB≺A , 
minW̃∈WSEP , respectively. Due to the results obtained from the previous section (see Program 1) and Slater 
theorem we are able to note the Eq. (55) to SDP problem presented in the Program 2. We use the SDP optimiza-
tion via SCS solver39,40 with absolute convergence tolerance 10−8 and relative convergence tolerance 10−8 . The 
implementations of SDPs in the Julia language are available on GitHub41.

Semidefinite program for computation the distance between a process matrix W and ϒ , which can be one of the set 
W

A||B,WA≺B,WB≺A or WSEP . Depending on the selected set we include additional constrains to SDP described by 
Eq. (16) for WA||B , Eq. (17) for WA≺B and WB≺A or Eq. (18) for WSEP

SDP calculating the distance between a process matrix W and the set ϒ.

minimize:    4 dim(AI ) dim(BI )α − 2

subject to:    1AO
⊗ Y0 −

1AIAO

dim(AI )
⊗ trAI

(Y0)+ 1BO
⊗ Y1+

- 
1BIBO

dim(BI )
⊗ trBI

Y1 + α · 1AIAOBIBO
≥ 1

2
W ,

1AO
⊗ Y0 −

1AIAO

dim(AI )
⊗ trAI

(Y0)+ 1BO
⊗ Y1+

- 
1BIBO

dim(BI )
⊗ trBI

Y1 + α · 1AIAOBIBO
≥ 1

2
W

∗ ,

W∗ ∈ ϒ ,

Y0 ∈ Herm(AI ⊗BI ⊗BO),

Y1 ∈ Herm(AI ⊗AO ⊗BI ),

α ∈ R.

Example.  Let AI = AO = BI = BO = C2 . Let us consider a causally non-separable process matrix comes 
from Ref.5 of the form

(55)
dist

(
W ,WA||B

)
=

min
W̃∈WA||B

max
{
�
√
N(W − W̃)

√
N�1 : N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO)

}
.

(56)WCNS =
1

4

[
1AIAOBIBO +

1
√
2

(
σAO
z σBI

z ⊗ 1AIBO + σAI
z σBI

x σBO
z ⊗ 1AO

)]
,
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where σX
x , σX

z  are Pauli matrices on space L(X ) . We have calculated the distance in trace norm between WCNS 
and different subset of process matrices. Finally, we obtain

The numerical computations give us some intuition about the geometry of the set of process matrices. Those 
results are presented in Fig. 8. Moreover, by using WCNS given by Eq. (56) it can be shown that the set of all 
causally non-separable process matrices is not convex. To show this fact, it suffices to observe that for every 
σi , σj , σk , σl ∈ {σx , σy , σz ,1} the following equation holds

Simultaneously, the average of the process matrices of the form Eq. (61) distributed uniformly states 141C16 , 
however 141C16  ∈ W

CNS . It implies that the set WCNS is not convex.

Convex cone structure theory
From geometrical point of view, we present an alternative way to derive of Eq. (26). It turns out that the task of 
process matrices discrimination is strictly connected with the convex cone structure theory. To keep this work 
self-consistent, the details of convex cone structure theory are presented in the Supplementary Materials.

Let V be a finite dimensional real vector space with a proper cone C ⊂ V . A base B of the proper cone C is 
a compact convex subset B ⊂ C such that each nonzero element c ∈ C has a unique representation in the form 
c = α · b , where α > 0 and b ∈ B . The corresponding base norm in V is defined by

From Ref.37, Corollary 2 the author showed that the base norm can be written as

where

(57)dist
(
WCNS,WA||B

)
≈ 1.00000001 ≈ 1,

(58)dist
(
WCNS,WA≺B

)
≈ 0.7071068 ≈

√
2

2
,

(59)dist
(
WCNS,WB≺A

)
≈ 0.7071068 ≈

√
2

2
,

(60)dist
(
WCNS,WSEP

)
≈ 0.2928932 ≈ 1−

√
2

2
.

(61)
(
σi ⊗ σj ⊗ σk ⊗ σl

)
WCNS(σi ⊗ σj ⊗ σk ⊗ σl)

† ∈ W
CNS.

(62)||x||B = {α + β , x = αb1 − βb2,α,β ≥ 0, b1, b2 ∈ B}.

(63)||x||B = sup
b̃∈B̃

||b̃1/2xb̃1/2||1,

Figure 8.   A schematic representation of the distances between WCNS defined in Eq. (56) and the sets WA||B , 
W

A≺B , WB≺A and WSEP.
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Convex cone structure of process matrices set.  Let V be a Hilbert space given by

with proper cone

Consider the linear subspace S ⊂ V given by

together with its proper cone CS . Observe that if we fix trace of W ∈ CS such that tr (W) = dim(AO) · dim(BO) , 
we achieve the set of all process matrices WPROC . And then, WPROC is a base of CS.

Proposition 2  Let WPROC be the set of process matrices. Then, the set W̃PROC is determined by

Proof  To prove this proposition, we need to show that

This equivalence, along with its proof, can be found eg. in Refs.29,44. However, to keep this work self-consistent 
we present our modified version of their reasoning.

Let us first take X ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) . Then, from Ref.25, Lemma 1, we note

where Ai ∈ NS(AI ⊗AO) , Bi ∈ NS(BI ⊗ BO) and �i ∈ R such that 
∑

i �i = 1 . From definition of process matrix 
and linearity we obtain

To prove opposite implication, let us take W = 1AO ⊗ J , where J is the Choi matrix of quantum channel 
�J : L(BI ⊗ BO) → L(AI ) . Then, we have

From Ref.45, we have

where P ∈ Pos(BI ⊗ BO) . Similarly, if we take W := 1BO ⊗ K , where K is the Choi matrix of a quantum channel 
�K : L(AI ⊗AO) → L(BI ) , we obtain

where P ∈ Pos(AI ⊗AO) . It implies that X ∈ NS(AI ⊗AO ⊗ BI ⊗ BO) , which completes the proof. � �

Due to Proposition 2, and the fact that the base norm can be also written using the trace norm, like in Eq. (63), 
we immediately obtain the following corollary.

Corollary 3  The base norm || · ||WPROC between two process matrices W1,W2 ∈ W
PROC can be expressed as

Conclusion and discussion
In this work, we studied the problem of single shot discrimination between process matrices. Our aim was to 
provide an exact expression for the optimal probability of correct distinction and quantify it in terms of the 
trace norm. This value was maximized over all Choi operators of non-signaling channels and and poses direct 
analogues to the Holevo–Helstrom theorem for quantum channels. In addition, we have presented an alternative 

(64)B̃ := {Y ∈ C : tr (XY) = 1,∀X ∈ B}.

(65)V = Herm(AI ⊗AO ⊗ BI ⊗ BO),

(66)C = {W ∈ V : W ∈ Pos(AI ⊗AO ⊗ BI ⊗ BO)}.

(67)

S = {W ∈ V :BIBOW =AOBIBO
W ,

AIAO
W =AOAIBO

W ,

AOBO
W =BO

W +AO
W −W},

(68)W̃PROC = NS(AI ⊗AO ⊗ BI ⊗ BO).

(69)tr (XW) = 1 for allW ∈ W
PROC ⇐⇒ X ∈ NS(AI ⊗AO ⊗ BI ⊗ BO).

(70)X =
∑

i

�iAi ⊗ Bi ,

(71)tr (XW) = tr

(
∑

i

�i(Ai ⊗ Bi)W

)
=

∑

i

�i tr ((Ai ⊗ Bi)W) =
∑

i

�i = 1.

(72)1 = tr (WX) = tr
(
(1AO ⊗ J)X

)
= tr

(
J trAOX

)
.

(73)trAOX = 1AI ⊗ P,

(74)trBOX = 1BI ⊗ P,

(75)||W1 −W2||WPROC = max{||
√
N(W1 −W2)

√
N ||1 : N ∈ NS(AI ⊗AO ⊗ BI ⊗ BO)}.
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way to achieve this expression by using the convex cone structure theory. As a valuable by-product, we have also 
found the optimal realization of the discrimination task for process matrices that use such non-signalling chan-
nels. Additionally, we expressed the discrimination task as semidefinite programming (SDP). Due to that, we have 
created SDP calculating the distance between process matrices and we expressed it in terms of the trace norm. 
Moreover, we found an analytical result for discrimination of free process matrices. It turns out that the task of 
discrimination between free process matrices can be reduced to the task of discrimination between quantum 
states. Next, we consider the problem of discrimination for process matrices corresponding to quantum combs. 
We have studied which strategy, adaptive or non-signalling, should be used during the discrimination task. We 
proved that no matter which strategy you choose, the optimal probability of distinguishing two process matri-
ces being a quantum comb is the same. So, it turned out that we do not need to use some unknown additional 
processing in this case. Finally, we discovered a particular class of process matrices having opposite causal order, 
which can be distinguished perfectly. This work paves the way toward a complete description of necessary and 
sufficient criterion for perfect discrimination between process matrices. Moreover, it poses a starting point to 
fully describe the geometry of the set of process matrices, particularly causally non-separable process matrices.

Data availability
The code used to generate numerical results analyzed during the current study is available in the Github reposi-
tory, https://​github.​com/​iitis/​strat​egies_​for_​single_​shot_​discr​imina​tion_​of_​proce​ss_​matri​ces.
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