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Clinical validation of a contactless 
respiration rate monitor
Bartosz Bujan 1*, Tobit Fischer 2, Sarah Dietz‑Terjung 2, Aribert Bauerfeind 3, Piotr Jedrysiak 4, 
Martina Große Sundrup 2, Janne Hamann 3 & Christoph Schöbel 2

Respiratory rate (RR) is an often underestimated and underreported vital sign with tremendous 
clinical value. As a predictor of cardiopulmonary arrest, chronic obstructive pulmonary disease (COPD) 
exacerbation or indicator of health state for example in COVID‑19 patients, respiratory rate could 
be especially valuable in remote long‑term patient monitoring, which is challenging to implement. 
Contactless devices for home use aim to overcome these challenges. In this study, the contactless 
Sleepiz One+ respiration monitor for home use during sleep was validated against the thoracic effort 
belt. The agreement of instantaneous breathing rate and breathing rate statistics between the 
Sleepiz One+ device and the thoracic effort belt was initially evaluated during a 20‑min sleep window 
under controlled conditions (no body movement) on a cohort of 19 participants and secondly in a 
more natural setting (uncontrolled for body movement) during a whole night on a cohort of 139 
participants. Excellent agreement was shown for instantaneous breathing rate to be within 3 breaths 
per minute (Brpm) compared to thoracic effort band with an accuracy of 100% and mean absolute 
error (MAE) of 0.39 Brpm for the setting controlled for movement, and an accuracy of 99.5% with 
a MAE of 0.48 Brpm for the whole night measurement, respectively. Excellent agreement was also 
achieved for the respiratory rate statistics over the whole night with absolute errors of 0.43, 0.39 and 
0.67 Brpm for the 10th, 50th and 90th percentiles, respectively. Based on these results we conclude 
that the Sleepiz One+ can estimate instantaneous respiratory rate and its summary statistics at high 
accuracy in a clinical setting. Further studies are required to evaluate the performance in the home 
environment, however, it is expected that the performance is at similar level, as the measurement 
conditions for the Sleepiz One+ device are better at home than in a clinical setting.

Abbreviations
AE  Absolute error
Brpm  Breaths per minute
COPD  Chronic obstructive pulmonary disease
HF  Heart failure
LoA   Limit of agreement
MAE  Mean absolute error
PSG  Polysomnography
RR  Respiratory rate
HR   Heart rate
TREB  Thoracic respiratory effort belt

Chronic diseases represent a remarkable health burden. Non-communicable diseases accounted for 74% of 
deaths globally in 2019, with ischemic heart disease (IHD), stroke, and chronic obstructive pulmonary disease 
(COPD) being the top 3 leading  causes1.

Due to their morbidity and mortality, these conditions induce an increasing economic and social burden in 
a growing and aging population with the demand for innovative approaches to disease management.

Changes in respiratory rate (RR) is a known indicator of serious conditions in lung diseases like cystic fibrosis 
(CF) or COPD. Recent studies reported that a high RR was the most important predictor of cardiopulmonary 
arrest in  hospitals2.
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In 2017, COPD was estimated to affect ~ 300 million people worldwide, with a relative increase of 5.9% 
between 1990 and  20173. It is a preventable disease, characterized by persistent respiratory symptoms. A substan-
tial part of COPD management is the prevention of exacerbations, defined as an acute worsening of symptoms 
resulting in additional  therapy4. Within the past decade, it has been—and is still—of great interest to find strate-
gies to diagnose COPD exacerbations earlier and/or prevent them completely, as they impact disease progression 
negatively. Studies suggest that long-term RR monitoring at home could be a valid tool to predict  exacerbations5–7, 
but more investigation is needed to confirm these results and to find an easy-to-use solution for most patients.

With at least 26 million people affected in 2017, heart failure (HF) is another main cause of morbidity in 
elderly  patients8. Recently, ambient sensor technology was used in a pilot approach to detect early signs of HF 
decompensation—among others, an increase in RR, heart rate (HR) and body movement in bed could be detected 
weeks before  decompensation9. Even in the prediction of adverse events in IHD itself, RR monitoring is proved 
to be an integral part of the assessment of cardiac arrest  prediction10.

Most recently, the COVID-19 pandemic highlighted the importance of RR monitoring, revealing the need 
for alternative medical solutions, including remote patient  monitoring11.

Despite the clinical relevance and importance, long-term monitoring of RR faces some difficulties. For 
instance, just the fact that RR is measured can affect the patients breathing and change results. Moreover, RR is 
sensitive to various stressors, such as cognitive load, emotional stress, heat, cold, and physical  effort12.

Non-contact biomotion sensing offers multiple advantages. Sensors can be deployed in a home setting, prefer-
ably during nighttime, which can help to eradicate the difficulties mentioned above. Due to their non-intrusive 
design and no action needed from patients’ side (given the device is placed correctly once), this technology can 
provide instantaneous RR for several hours in a natural setting. This might be the basis for trend analyses and 
novel monitoring approaches, combined with other parameters, to constantly advance disease management.

Various contactless approaches have been adopted. Mainly, the technologies can be grouped in four different 
categories; radiofrequency (RF) based systems and pressure sensor-based systems are already far in develop-
ment, while audio and visual-based systems are in a more experimental stage. The latter mainly rely on advanced 
algorithms to extract relevant parameters from either audio  signals13 or different visual  signals14–18. Most pressure 
sensor-based systems use piezoelectric or electromechanical film pressure sensors and consist of a pad that is 
either placed on or below the mattress of the user during  sleep19–23.

Finally, various devices and research projects use radiofrequency-based technology.
Doppler radar technology has attracted attention in the medical field as it can detect small amplitude vibration 

motions caused by breathing excursion and cardiac movement thus can be used for vital sign detection and sleep 
 monitoring24. Recent advancements in radar systems have demonstrated their ability to capture physiological 
signals such as respiration frequency, heart rate and body movement in a contactless  fashion25–28. Electromagnetic 
waves travel to the surface of the chest cavity and reflect from it. The antenna receives the reflected waveform 
containing information on the chest displacement. When the body is at rest, this movement is mainly caused 
by respiration and heart contractions. With an advanced digital signal processing pipeline, from respiration 
and heart contraction motions, respiration and heart rate can be estimated in nearly real-time, with very high 
accuracy. However, to date none of these systems is classified as a medical-grade diagnostic tool, mostly due to 
the lack of a proper clinical validation.

In this study, we aim to validate a novel contactless breathing monitoring solution based on the Doppler radar 
technology and advanced signal processing, developed to measure precise movements of the thorax caused by 
breathing effort and extract RR and breathing patterns for sleep monitoring and diagnosis (Sleepiz One+, Sleepiz 
AG, Switzerland). The performance of the device in detecting RR was benchmarked in a clinical setting against 
the thoracic effort belt.

Methods
Study design. This paper covers studies validating RR with a contactless sleep monitor (CSM) against the 
thoracic effort belt (TREB) of the polysomnography (PSG) setup, in two different clinics (Klinik Lengg, Switzer-
land and Ruhrlandklinik, Germany).

In a monocentric, prospective, open-label non-randomized validation study at Klinik Lengg, the CSM was 
validated against PSG over 20 min on resting participants and during sleep (Study 1).

Additionally, we analyzed a dataset obtained as part of a larger study at Ruhrlandklinik, where the participants 
underwent a single overnight recording in the sleep laboratory with a PSG setup and the Sleepiz device (Study 2).

Participants. In Study 1, patients suspected to suffer from sleep-related disorders or chronic cardiac, res-
piratory, or neuromuscular disorders were recruited from the neurorehabilitation ward of Klinik Lengg. The 
subjects included in Study 2 were patients of the Ruhrlandklinik, with a suspected or diagnosed sleep-related 
breathing disorder.

In both studies, the patients were ≥ 18 years old, and could consent to electrophysiological routine assessment 
(PSG) in writing. Exclusion criteria were previous enrolment into the current study, being a study investigator or 
one of their relatives, employees, and other dependent persons, having an implanted electrical device, pregnancy 
and inability to follow the study procedures, e.g. due to language problems or psychological disorders.

Sleepiz One+ description. The Sleepiz One+ is a contactless respiration monitor whose operating princi-
ple is continuous-wave Doppler radar. The device is placed on the bedside table or a stand beside the user’s bed 
and points at the user’s thorax from a 40–50 cm distance. From this position, it transmits a continuous electro-
magnetic signal at a fixed frequency of 24 GHz (output power < 18 dBm) which is reflected at the user’s thorax, 
while being minimally influenced by clothing or blankets. With a beam aperture of 80° in horizontal- and 34° 



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3480  | https://doi.org/10.1038/s41598-023-30171-4

www.nature.com/scientificreports/

in vertical plane, the Sleepiz One+’s field of view from the specified position covers the user’s whole thorax-
abdomen region. The reflected signal is received and pre-processed using a quadrature  receiver29, resulting in 
two output channels BI(t) and BQ(t) which contain information on the movement in the whole thorax-abdomen 
region as distance changes of the user relative to the measurement  device24,30 (Fig. 1).

The Sleepiz One+ data is transmitted to a cloud server, where it is analyzed using proprietary software which 
identifies and extracts rhythmic thorax and abdomen movements related to breathing motions to provide RR 
estimates, whose validation is the topic of this work.

The Sleepiz One+ is able to operate with two people in the same bed, but records only the respiration rate of 
the person closest to the device. Furthermore, multiple devices can operate in the same room, as long as their 
field of views do not intersect. Within this study, all participants were recorded with no other people in the bed, 
and with one device per room.

Experimental setup. Study 1. Each participant was monitored for one night simultaneously with the 
Sleepiz One+ and a full PSG setup (SOMNOtouch RESP, Somnomedics) including electrocardiogram, electro-
encephalogram, airflow (nasal cannula), respiratory effort (thorax and abdomen belts) and pulse oximetry. The 
Sleepiz One+ device was placed beside the bed at a distance of 50 cm pointing at the participant’s thorax (Fig. 2). 
The person included in the image has provided informed consent to publish the image. All enrolled participants 
underwent the same procedure.

Study 2. Each participant underwent an overnight recording in the sleep laboratory with a full PSG setup (Nox 
A1, Nox Medical), including a TREB), which was the channel used for the performance assessment. The Sleepiz 
One+ was placed beside the bed at a distance of 50 cm pointing at the participant’s thorax.

Figure 1.  Schematic of radar operation. T(t) transmitted electromagnetic signal (f = 24 GHz), R(t) reflected 
signal, BI(t) in-phase channel, received signal multiplied by transmitted signal, low-pass filtered, BQ(t) 
quadrature channel, received signal multiplied by 90° offset of transmitted channel, low-pass filtered. Figure 
provided by Sleepiz AG, Zürich, Switzerland; appeared in unpublished poster related  to47.

Figure 2.  Placement of Sleepiz One+ device.
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Statistical analysis. Data preprocessing. Data from each device, namely the TREBs of the PSG systems 
and the Sleepiz device, were exported and converted to a Python dictionary containing its raw data, measure-
ment start time, and sampling rate. Next, devices were time-synchronized with each other. Finally, quality as-
sessment was performed. The signals were visually assessed to identify artifacts, i.e. regions that are not inter-
pretable, due to the patient moving or the sensors being positioned suboptimally, leading to a signal-to-noise 
ratio insufficient for analysis. These were removed from further analysis. The criteria used to exclude participants 
for analysis are specified below.

Study 1. For each patient, the 20-min analysis window to be included for instantaneous RR performance 
assessment was selected by identifying a window of 20 min of the recording, where the person was calmly lying 
in bed, within the first 3 h after the recording setup had been completed. The window was selected based on 
the following three conditions: (1) the reference device had started recording, (2) the Sleepiz device had started 
recording, and (3) less than 10 min of total duration where either the patient was moving, as detected by the 
Sleepiz device, or there were artifacts in RR estimates from the TREB.

The purpose of these conditions was to ensure the correctness of the reference instantaneous RRs and that 
a sufficient portion of the 20 min could be used for analysis (i.e., it was movement, breath irregularities and 
artifact-free), also considering that these conditions were most likely to be met in the first 3 h of sleep.

If no analysis window fulfilling all three conditions was identified in the first three hours of the recording, as 
determined by the Sleepiz device start time, the patient was excluded from the analysis. No sleep stage informa-
tion was used for the selection of the analysis windows.

Participants were excluded from the RR statistics analysis if either the TREB or the Sleepiz data presented 
artifacts for 60% or more of the time-points between analysis start and end times. The start time would be the 
time of device which started to record later of the two and end time would the time of the device ended earlier 
of the two.

Study 2. Exclusion criteria were the same as for Study 1 for RR statistics analysis.

Computation of instantaneous respiratory rate. We define instantaneous RR as the number of breaths in a time 
window of 60 s (epoch), where consecutive time windows have an overlap of 55 s, i.e., they present a 5 s offset.

Instantaneous RR was computed for the data from the TREB through the following procedure:

• The signals were smoothed with a 7th order Butterworth low-pass filter with a cut-off frequency of 0.6 Hz. 
The filter cut-off was chosen based on the assumption of a maximum RR of 35Brpm.

• The inhalation times were identified by performing a quantile normalization and finding maxima in the 
resulting signal fulfilling properties related to the peak prominence and minimum distance between peaks. 
The identified inhalation times were visually reviewed to ensure their correctness.

• The instantaneous RR was derived by taking the inverse of the median time between inhalations.

The computed instantaneous RR from TREB inhalation times was not post-processed through any other 
means. Exhale times were not used for the RR computation due to challenges in precisely identifying the time 
of complete exhale; the exhalation curve is frequently flatter than the inhalation curve, and contains multiple 
peaks (Fig. 3, top row).

RR was computed for the Sleepiz One+ data following a similar procedure. The patient’s chest movement 
was first computed from the raw data from the Sleepiz One+, consisting of channels BI(t) and BQ(t), using an 
arctangent demodulation algorithm. The chest movement was then filtered and normalized, and the inhalation 
and exhalation times were identified from the resulting signal. This information was used to compute a prob-
ability density over RRs in the range of 5–35 Brpm. In other words, for each RR within the range of 5 to 35 Brpm, 
the probability of the patient having that particular RR, given the observed inhalation and exhalation times, 
was computed. The probability density was used to obtain a RR per epoch, as well as to estimate the prediction 
confidence, i.e., the confidence of the algorithm in the RR prediction made being correct. If the confidence in 
the prediction is below a threshold, no RR is provided. It is worth noting that times where the patient is tossing 
and turning are automatically detected by the software and removed from the analysis, as these can lead to errors 
in the computation of RR.

Computation of respiratory rate statistics. RR statistics consisted of the minimum, average, and maximum RR 
over the recording. To remove the influence of outliers on these metrics, we computed them using the data per-
centiles, i.e. through the 10%, 50%, and 90% percentiles of instantaneous RR.

Performance evaluation metrics. Instantaneous RR performance was assessed through the mean absolute error 
(MAE), and accuracy: the fraction of time-points where the estimates provided by the reference device and the 
Sleepiz device were within 3 Brpm.

The agreement between reference and Sleepiz device for RR statistics was evaluated by the absolute error (AE).

Sample size. The minimum number of participants required for statistically significant outcomes of instantane-
ous RR accuracy was calculated using Eq. (1):
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where Za determines the confidence level of the estimate (significance level), S is the sample standard deviation, 
and d is the minimal effect of interest. The significance level was set to 95%, corresponding to a value of Za to 
1.64. The sample standard deviation was set to 5.2%, based on results from a previous pilot study. Finally, the 
minimal effect of interest was set to 2%. From these, we obtain a sample size of 19 participants. We included 
more than said number of participants in each center.

Ethical approval. The authors are accountable for all aspects of the work in ensuring that questions related 
to the accuracy or integrity of any part of the work are appropriately investigated and resolved. Both included 
studies were conducted in accordance with the Declaration of Helsinki, the guidelines of Good Clinical Practice 
(GCP) issued by ICH, as well as the European Regulation on medical devices 2017/745, ISO 14155 and ISO 
14971, and the Swiss Law and Swiss regulatory authority’s requirements (Study 1) or the German Law and Ger-
man regulatory authority’s requirements (Study 2), respectively. Both studies were approved by the local ethics 
committees (Study 1: BASEC-Nr. 2020-00455, Cantonal Ethics Committee Zurich; Study 2: 19-8961-BO, Ethics 
committee of the medical faculty of the University of Duisburg-Essen) and written informed consent was taken 
from all individual participants.

(1)nmin =

(Zα)2 · S2

d2

Figure 3.  Data processing pipeline. Top row: estimation of instantaneous respiratory rate from thoracic chest 
effort band (TREB). The raw TREB data, presented in arbitrary units (a.u.) is first smoothed, inhalation times 
identified, and, from these, instantaneous respiratory rate is computed (see “Computation of instantaneous 
respiratory rate” for a detailed description). Middle row: estimation of instantaneous respiratory rate from 
Sleepiz One+ data. The raw signals (BI(t) and BQ(t)), presented in a.u. are used to compute the participant’s 
chest displacement, from which statistics are extracted and used to compute respiratory rate. Bottom row: the 
instantaneous respiratory rate for the whole night is used to compute summary statistics, i.e. the 10%, 50%, and 
90% percentiles of the respiratory rate distribution.
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Results
Participants. Subjects suspected of suffering from sleep apnea were enrolled in the study based on their 
availability at the study clinics.

Sleep apnea has a high prevalence in subjects with diagnosed COPD, Asthma, cardiovascular diseases, Dia-
betes, Parkinson etc. Therefore, these subgroups were represented in the study population.

As per the pre-defined inclusion and exclusion criteria, 24 patients were included in study 1 and, among 
those, a suitable 20-min time segment meeting the quality criteria outlined above was identified for 19 partici-
pants (Table 1). In study 2, 187 subjects were enrolled, and 139 met the quality criteria and were considered for 
analysis (Table 2).

Instantaneous respiratory rate. The standard for RR monitoring in clinical practice is visual counting of 
breaths. However, this method has been reported to have a high  error31. Moreover, counting respiration cycles is 
not feasible for overnight recordings. Thus, we opted for an automated analysis of the TREB signals. It measures 
the expansion and contraction of the participant’s chest, the same cue used for assessing respiration visually.

First, we measured instantaneous RR under controlled conditions; participants in study 1 were recorded 
during a full night in bed with a PSG setup, and a 20-min time segment where they were lying with little or no 
tossing and turning was selected for the analysis. Figure 4 shows the instantaneous RR estimated during the 
night for a participant, together with the selected 20-min time window.

The data collected in 20-min time segment for 19 participants were assessed. The agreement of instantaneous 
RR between the TREB and Sleepiz One+ is shown in Fig. 5 and Table 3. The estimates were within 3 Brpm in all 
timepoints, thus the resulting accuracy of 100%. The MAE had an average value over participants of 0.39 Brpm, 
and the 95% limits of agreement (LoA) were [− 0.52, 1.16] Brpm (Fig. 5).

The agreement between the instantaneous RR estimates from the TREB and Sleepiz One+ were assessed 
for the whole night in study 2, where participants spent a night in a sleep lab with full PSG. The results are like 
those obtained in study 1, with accuracy being 99.5%, average MAE 0.48 Brpm, and the LoA [− 0.88 1.] Brpm 
(Table 3). Subgroup analysis of instantaneous breathing rate based on the diagnosed conditions in study 2 is 
shown in Table 4.

Respiratory rate statistics. RR statistics have been shown to be predictive of health  status5–7. We bench-
marked the agreement of RR statistics between TREB and Sleepiz One+, quantified as the 10%, 50%, and 90% 
percentiles of instantaneous RR over the whole recording (Fig. 6), in study 2 for a total of 139 participants. The 
results, including a subgroup analysis based on the diagnosed conditions of the subjects, are presented in Table 4.

Table 1.  demographic information from study 1 participants. The data is segregated into three rows: one with 
the demographic information over all study 1 participants (Total), one with the demographic information of 
participants who passed the data quality assessment (Included in analysis), and one with the demographic 
information of excluded participants (Excluded from analysis). The columns “n” (participant count), 
“Parkinson”, “Stroke”, “Other” contain the number of participants with diagnosed condition, with the number 
of females in parenthesis. The columns “Age”, “BMI” (body mass index), specify the mean value, with its 
standard deviation in parenthesis.

N Age [years] BMI [kg/m2] Parkinson [n] Stroke [n] Other [n]

Total 24 (4) 68.2 (14.5) 26.7 (6.1) 5 (1) 15 (2) 4 (1)

Included 19 (3) 67.3 (14.1) 26.6 (4.8) 3 (1) 12 (1) 3 (1)

Excluded 5 (1) 71.8 (17.1) 27.2 (10.3) 2 (0) 3 (1) 1 (0)

Table 2.  Demographic information from study 2 participants. The data is segregated into three rows: one 
with the demographic information over all study participants (Total), one with the demographic information 
of participants who passed the data quality assessment (Included in analysis), and one with the demographic 
information of excluded participants (Excluded from analysis). The columns “n” (participant count), “Asthma”, 
“COPD”, “CVD” (cardiovascular diseases: arterial hypertension, coronal arterial disease, heart failure, and 
heart rhythm disorder), “Diabetes” contain the number of participants with diagnosed condition, with the 
number of females in parenthesis. The columns “Age”, “BMI” (body mass index), “AHI” (apnea–hypopnea 
index), specify the mean value, with its standard deviation in parenthesis.

n Age [years] BMI [kg/m2] AHI [events/h] Asthma [n] COPD [n] CVD [n] Diabetes [n]

Total 187 (65) 59.0 (14.1) 31.8 (6.4) 7.97 (14.0) 12 (8) 18 (10) 115 (38) 32 (9)

Included 139 (51) 57.5 (14.1) 31.0 (6.05) 5.5 (6.33) 11 (7) 12 (8) 85 (31) 23 (8)

Excluded 48 (14) 63.2 (13.2) 34.0 (6.91) 15.1 (24.2) 1 (1) 6 (2) 30 (7) 9 (1)



7

Vol.:(0123456789)

Scientific Reports |         (2023) 13:3480  | https://doi.org/10.1038/s41598-023-30171-4

www.nature.com/scientificreports/

Figure 4.  Respiratory rate estimates of a participant from Study 1. Top: instantaneous respiratory rate estimates 
over the 20-min window used to assess performance. Bottom: respiratory rate over the night, with the 20-min 
window indicated via blue shading. Estimates from the Sleepiz One+ are presented in blue, and the ones from 
the thoracic chest effort band in black.

Figure 5.  Bland–Altman plot of instantaneous respiratory rate performance. Top: results from Study 1. Bottom: 
results from Study 2. The solid blue line indicates the bias, while dashed red lines correspond to the 95% limits 
of agreement.

Table 3.  Summary of instantaneous and statistic breathing rate performance.

Accuracy (%) MAE (brpm) LOA (brpm) AE 10 (brpm) AE 50 (brpm) AE 90 (brpm)

Study 1 100% (0%) 0.39 (0.20) [− 0.52 1.16] 0.41 (0.31) 0.49 (0.26) 0.96 (0.55)

Study 2 99.5% (0.1%) 0.48 (0.14) [− 0.88 1.61] 0.43 (0.55) 0.39 (0.30) 0.67 (0.52)
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Discussion
This report evaluated the accuracy of the Sleepiz One+ in assessing RR; in two separate studies on patients with 
disturbed breathing.

In study 1, instantaneous RR was assessed in a 20-min time window where participants were lying in bed with-
out significant movement. This setting allowed the assessment of the Sleepiz One+’s performance in absence of 
abnormal respiration patterns which could confound results. In these conditions, the Sleepiz One+ estimated RR 
within 3 Brpm for all timepoints and participants included, demonstrating its efficacy in controlled conditions.

The performance of instantaneous RR throughout the night was assessed in Study 2, where patients with 
suspected or diagnosed sleep-related breathing disorders were monitored throughout the night. In this study, 
the Sleepiz One+ estimated RR within 3 Brpm in 99.5% of included timepoints.

The two studies evaluated the RR statistics throughout the night, namely the minimum, average, and maxi-
mum RR, with the ones obtained from the reference device. The three metrics had an average AE below 1 Brpm 
in Study 1 and Study 2, indicating that the Sleepiz One+ can accurately measure nightly RR statistics in uncon-
trolled conditions. This makes the device suitable for its main use scenario, i.e. long-term RR monitoring, that 
would focus on trend analysis rather than instantaneous RR.

Overall, the two studies yielded similar performance metrics (Table 3) and subgroup analysis showed that 
there is no notable performance variation between the different diagnosed medical conditions (Table 4). These 
results provide positive evidence for the accuracy of non-contact respiration monitoring throughout the night in 
subjects suspected or diagnosed with various sleep-related respiratory disorders, although no further assessment 
of the comorbidities and their severity was made.

Comparison to the state of the art. The long-term monitoring of RR in a natural setting enables health-
care professionals (HCPs) to track a patient’s health status over time, which empowers them to take decisions 
on when the patient should visit the hospital or undergo certain diagnostic procedures. There are other devices 

Table 4.  Subgroup analysis of respiratory rate performance of Study 2. Numbers in parenthesis correspond to 
standard deviation. Participants can be included in more than one subgroup, as subgroups are defined by the 
presence of a diagnosed condition, and not by the absence of all other conditions, e.g. a participant with COPD 
and diabetes is included in the two subgroups.

Subgroup n

Instantaneous respiratory 
rate MAE of respiratory rate statistics

Accuracy MAE 10% percentile 50% percentile 90% percentile

COPD 12 99.5% (0.57%) 0.49 (0.21) 0.29 (0.24) 0.29 (0.28) 0.5 (0.31)

Asthma 11 99.3% (1.11%) 0.48 (0.16) 0.4 (0.29) 0.29 (0.21) 0.63 (0.38)

CVD 85 99.5% (0.72%) 0.47 (0.14) 0.45 (0.62) 0.38 (0.32) 0.6 (0.39)

Diabetes 23 99.5% (1.05%) 0.45 (0.14) 0.36 (0.31) 0.37 (0.48) 0.48 (0.34)

Sleep disordered breathing 14 99.5% (0.43%) 0.47 (0.08) 0.45 (0.62) 0.27 (0.21) 0.78 (0.94)

Male 88 99.5% (0.81%) 0.47 (0.14) 0.44 (0.66) 0.42 (0.34) 0.72 (0.59)

Female 51 99.4% (0.83%) 0.48 (0.15) 0.41 (0.26) 0.35 (0.23) 0.57 (0.36)

Total 139 99.5% (0.82%) 0.48 (0.14) 0.43 (0.55) 0.39 (0.3) 0.67 (0.52)

Figure 6.  Scatter plot of respiratory rate statistics. Left: Study 1. Right: Study 2.
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in the clinical practice able to measure RR, such as the reference devices used in this study, i.e. TREB and nasal 
cannula. However, these are not apt for long-term monitoring. There are other certified medical devices that 
measure RR in a contactless fashion, similar to the Sleepiz One+. These are the RSpot 100 (Kai Medical), Sleep-
Minder (now S+) (Biancamed/Resmed), C100 (Circardia) andXK300 (Xandar Kardian)). The performance of 
these devices with respect to instantaneous RR estimation is comparable to the one obtained by the Sleepiz 
One+ (Table 5).

The Sleepiz One+ presents several benefits with respect to the solutions available in clinical practice. Firstly, 
the Sleepiz One+ improves patient comfort during the monitoring of respiratory parameters. Devices such as 
thoracic respiratory effort bands and nasal cannulas are intrusive and inconvenient. Secondly, the improved 
comfort, enables long-term respiration monitoring that provides HCPs a more comprehensive picture of the 
patient’s status and enables them to assess trends and changes. Thirdly, the Sleepiz One+ can be used in a natural 
setting, as opposed to when contact with the device is required. Outcomes in artificial environments may differ 
from those obtained in natural ones. Thus, the Sleepiz One+ may provide a more accurate picture of the patient’s 
status. Finally, HCPs benefit from the convenience and ease of use of the device; minimal involvement is required 
from their side, and patients can be remotely monitored.

Therefore, we assume that the Sleepiz One+ performance is sufficient for RR monitoring in patients with 
chronic lung diseases such as COPD, CF or pulmonary fibrosis. Furthermore, the presented results were obtained 
on patients with disturbed breathing, confirming the device is suitable to be used on patients with a higher 
likelihood of irregular breathing.

A study by Wilkens et al.32 demonstrated that common lung diseases have characteristic breathing patterns 
that allow early diagnosis. Their change could serve the early detection of possible exacerbations. Cloud-based 
approaches of telemedicine promise improved patient outcomes, increased physician efficiency and decreased 
 costs33. For example, long-term RR monitoring of COPD patients would be helpful as increased RR is a known 
predictor for exacerbation and  hospitalization34. Thus, intervention can be provided earlier, and hospitalization 
times reduced.

In an older study, the accuracy of the non-contact radiofrequency-based biomotion sensor SleepMinder 
(ResMed Sensor Technologies, Ireland) was investigated in 20 COPD  patients7. It was observed that SleepMinder 
estimated RR with good accuracy and therefore is suitable for long-term monitoring providing minimal patient 
effort. Furthermore, Diraco et al. analysed an ultrawideband radar sensor system for continuous in-home moni-
toring of 30 older  adults35. The authors found good overall accuracies between 86 and 96% with a strong depend-
ence on distance and body position. When patients were moving, for example turning around, the accuracy was 
low due to motion artefacts. Recently, another dual-pulse Doppler system-based approach for the estimation of 
HR and RR for 20 patients with congestive HF was  analysed36. The RR estimation median accuracy was 92%, 
with a median error of 1.2 Brpm. Using a different method, a video-based approach for RR detection relying on 
automatic region of interest detection for vital sign monitoring was  examined37. The authors created a benchmark 
dataset of 148 video sequences obtained on adults under challenging conditions and on neonates, suggesting 
that video respiratory monitoring provides an encouraging measurement option.

To date, others have proposed radar-technology for vital signs monitoring, showing that the approach yields 
good  results38–42. However, these studies are usually done on small patient  populations7,38,41,43, and how perfor-
mance varies across patient demographics is not reported.

In this work, we measure the performance of the Sleepiz One+ in a large patient population, reflective of 
the device’s intended use, and show how the performance is above to that presented in available  work39,42 and 
independent of the patients’ pre-existing conditions, such as sleep apnea severity, COPD, CVD, etc.

The results gained with the Sleepiz One+ device are in line with previous findings, indicating that this device 
is suitable for long time monitoring of RR without impeding patients’ comfort.

Limitations. The Sleepiz One+ is intended to be used at the patients’ homes, in addition to the clinic. In the 
clinic, HCPs are in charge of device setup, while at home the patient is responsible for this task. The effect this 
has on device performance should be addressed through usability studies where the target users of the device 
operate it.

Another limitation of conducting the study in a clinical environment and with a PSG as a reference is that par-
ticipants were subjected to an uncomfortable sleep environment. The Sleepiz One+ , given its contactless nature, 
allows for natural sleep. We expect device performance to be better in the latter conditions. Due to a reduced 
frequency of the patients’ movement throughout the night when they sleep in a more comfortable and familiar 

Table 5.  Performance comparison of instantaneous respiratory rate estimation among radar-based medical 
devices.

Manufacturer Device Confidence bounds (brpm) References

Sleepiz AG Sleepiz One+ [− 0.52 1.16] This report

Circardia C100 [− 2.3, 1.7] 44

Biancamed/Resmed SleepMinder/S + [− 1.04, 0.89] 45

Kai sensors Rspot 100 [− 4.5, 1.8] 46

Xandar Kardian XK300 [− 1.7, 1.8] 41
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environment. Whenever patients present significant body movement, the Sleepiz One+ is not able to estimate RR. 
Thus, at-home measurements have the potential to present a better coverage of the night when RR is available.

To reduce confounding variables, such as apnea events and movement artifacts, a 20-min sleep window 
within the first 3 h of recording, has been selected to validate the instantaneous RR in Study 1. While this analysis 
window selection was not related to the subjects’ sleep stage (sleep or awake), it indeed depended on meeting 
pre-defined inclusion criteria, established to identify 20-min of favourable conditions However, in Study 2, the 
whole night recordings were analysed to evaluate the instantaneous RR in uncontrolled conditions, which proves 
the ability of the device to monitor RR during sleep.

A limitation intrinsic to the Sleepiz One+ is its inability to report RR in the presence of significant move-
ment. This could have negative implications for the computation of RR statistics. In this study, RR statistics 
were computed for TREBs on all epochs where it presented no artifacts, independently of whether the Sleepiz 
One+ reported a RR estimate at those epochs. In patients with significantly higher variability in RR, a high pro-
portion of body movement could lead to inaccurate RR statistics as estimated by the Sleepiz One+, due to RRs 
in those epochs not being included in their computation. However, this was not observed in the present study, 
where the average absolute error of RR statistics was below 1 Brpm (Table 3). Thus, the absence of RR estimates 
in the presence of tossing and turning does not bias results.

Conclusion. The study compared the instantaneous RR and RR statistics between the Sleepiz device and TREB 
during a 20-min sleep window under controlled conditions and in a more natural setting during a whole night. 
The results provide evidence for the effectiveness of the Sleepiz device in estimating the instantaneous RR and its 
summary statistics in the clinical environment. Future studies are planned on evaluating its performance in the 
home environment and for long-term patient monitoring.

Data availability
The data that support the findings of this study are available from the corresponding author upon request.
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