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Application of self‑organizing 
maps to AFM‑based viscoelastic 
characterization of breast cancer 
cell mechanics
Andreas Weber 1, Maria dM. Vivanco 2 & José L. Toca‑Herrera 1*

Cell mechanical properties have been proposed as label free markers for diagnostic purposes in 
diseases such as cancer. Cancer cells show altered mechanical phenotypes compared to their healthy 
counterparts. Atomic Force Microscopy (AFM) is a widely utilized tool to study cell mechanics. These 
measurements often need skilful users, physical modelling of mechanical properties and expertise in 
data interpretation. Together with the need to perform many measurements for statistical significance 
and to probe wide enough areas in tissue structures, the application of machine learning and artificial 
neural network techniques to automatically classify AFM datasets has received interest recently. We 
propose the use of self‑organizing maps (SOMs) as unsupervised artificial neural network applied to 
mechanical measurements performed via AFM on epithelial breast cancer cells treated with different 
substances that affect estrogen receptor signalling. We show changes in mechanical properties due 
to treatments, as estrogen softened the cells, while resveratrol led to an increase in cell stiffness and 
viscosity. These data were then used as input for SOMs. Our approach was able to distinguish between 
estrogen treated, control and resveratrol treated cells in an unsupervised manner. In addition, the 
maps enabled investigation of the relationship of the input variables.

Mechanical forces are important for cell migration, interaction of cells with their environment, tissue morpho-
genesis and in various forms of  disease1–6. In cancer, due to deposition of aligned extracellular matrix proteins 
solid, stiff tumours can be recognized on the macroscale by palpation and similar  techniques7. Interestingly, on 
the single cell scale, cancer cells have been found to exhibit a softer, more fluid like  phenotype8. This change is 
conserved over many types of cancer tissue origin, ranging from breast, brain, prostate, kidney to lung cancer. 
Besides other biochemical alterations in cancer cell metabolism, they are thought to have a distinctly reorganized 
cytoskeletal network which contributes to their mechanical  phenotype9. This includes altered actin cytoskel-
eton dynamics such as large lamellar protrusions and actin-rich micro-spikes, or altered microtubule dynamics 
leading to amoeboid like increased cell motility. In addition, the softening of cells appears to correlate with the 
level of aggressiveness, as well as changes in the adhesive and motile properties of these  cells10–12. Therefore, the 
mechanical phenotype of cancer cells is thought to be a promising, label-free  biomarker13–16. Different studies 
have provided evidence for the softening of cancer cells and tissue, as well as enabled the differentiation of cancer 
progression in tissue  sections11,17,18.

Breast cancer is the most commonly diagnosed cancer and the first cause of death from cancer in women 
 worldwide19. A common therapeutic approach in hormone-dependent breast cancer, the most common type of 
breast cancer, is to target estrogen receptor (ER) signalling with drugs such as tamoxifen or aromatase inhibitors. 
ER signalling is widely recognized in playing active roles in cytoskeleton, motility and adhesion protein expres-
sion with multiple downstream  targets20,21. A softening of breast cancer cells with increased aggressiveness has 
been shown in recent  works18,22–24. The alterations in the mechanical phenotypes of breast cancer cells treated 
with drugs that either inhibit or activate ER were studied in vitro25,26.

Mechanical properties of cells and tissue can be measured either by active or passive  methods27,28. The first 
include methods such as parallel plate  rheometry29, optical and magnetic  tweezers30,31, micropipette  aspiration32, 
optical  stretcher33, magnetic twisting  cytometry34 and  AFM35, while the latter include particle tracking, and 
spectroscopic  methods27. AFM is a widely applied technique, enabling imaging with nanometric precision while 
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measuring mechanical properties at a wide set of forces, strains, and frequencies. In AFM measurements, the 
probe (e.g., a micrometric particle or a nanometric tip) is brought into contact with the sample and the bend-
ing of the cantilever is measured. The bending in relation to the position and stiffness of the cantilever can be 
converted to determine the deformation of a sample under a given force (force-distance-curves). In addition, 
force and deformation can be monitored over time (force-time-curves). The mechanical properties of the sample 
can then be determined by fitting various mechanical models of different complexity to the  data36. There is the 
notion that AFM based single cell and tissue mechanics could be applied in clinical settings to support medical 
professionals in classification of samples such as cancer progression through evaluation of  biopsies18,37.

Recently, machine learning (ML) and neural network algorithms have been applied to surface probe micros-
copy  data38, including image  segmentation39, automatic data  processing40–43, cancer cell classification and progres-
sion grade  evaluation44–48. These approaches were performed in a supervised way, with manual classification of a 
data set to train the ML algorithms that were applied to classify data. In this work, we apply self-organizing maps 
(SOMs, also called Kohonen maps) as an artificial neural network approach to analyse mechanical measure-
ments of breast cancer  cells49–52. SOMs are unsupervised artificial neural networks that enable 2D visualization 
of multidimensional data space while still conserving the topology of the dataset. They have been widely applied 
in data  science51, speech and document  processing53, and recently also in life sciences and  chemometrics54. One 
result of SOMs are U-matrix plots that show the similarity/dissimilarity between neurons, enabling post hoc 
cluster  analysis51.

In this work we have used epithelial breast cancer (MCF-7) cells as model for breast cancer cell mechanics and 
performed stress relaxation measurements in the nuclear regions of cells via AFM using sharp pyramidal tips. We 
then applied a viscoelastic model to derive mechanical parameters that were used as input layer for a SOM, which 
was followed by cluster analysis. We show the principal ability of SOMs to differentiate between control, estrogen 
and resveratrol treated cells, while the SOMs placed control and tamoxifen treated cells in close neighbourhood.

Results
Estrogen receptor interacting drugs change breast cancer viscoelastic properties. Table  1 
shows the values derived from the 5-element Maxwell model fitting for the stress relaxation segments of the cells 
measured via AFM after the three different treatments (plus the carrier DMSO, as control). Control cells showed 
moduli in the range of a few hundred Pa and relaxation times of 0.2 and 3.1 s respectively. Treatment with estro-
gen led to significant softening and less viscous mechanical phenotype, comparable to other published results 
(reduction of moduli of around 50%)26,55. The treatment with tamoxifen did not lead to significant changes in the 
mechanical properties of the cells, according to this analysis (increase of 10 to 15 % in moduli and viscosities). 
Finally, treatment with resveratrol led to a stark increase of moduli of up to 6 times, slightly longer relaxation 
times and threefold increased viscosities. These data overall agree well with published  literature25. Note that 
some of the parameters showed strong correlations, as moduli reflect overall the elastic properties of the samples 
and are inverse proportional to indentations, while in the used model, viscosities are proportional to relaxation 
times and moduli.

Training self‑organized maps with viscoelastic cell properties. Self-organizing maps were trained 
with the scaled cell viscoelastic properties (centred and divided by the standard deviation) obtained after the 
different  treatments56. The performance of both iterative and batch algorithms was compared using a wide range 
of map parameters (iteration steps, size and shape of map, learning rates, and distance functions). These calcula-
tions were repeated multiple times to account for randomness in the initialisation and training. The maps shown 
from here on are the results of a batch trained map with 11 times 18 hexagonal nodes, a toroidal topography, a 
gaussian neighbourhood function, learning rates of (0.05, 0.01), Euclidean distance functions and 1000 iteration 
steps (map with smallest quantization and topographic error). Figure 1 shows the results of the SOM training.

Table 1.  Viscoelastic properties of the different groups of treated cells (control (CTL), estrogen (E2), 
tamoxifen (TAM) and resveratrol (RESV)) derived from the stress relaxation measurements. The values show 
mean value ± standard error of mean. δ is indentation, E∞ the equilibrium modulus, E1 and E2 the moduli of 
the springs in Maxwell arms, Einst the instantaneous modulus, τ1 and τ2 the relaxation times of the dashpots 
and the viscosities are η1 and η2 . N is 412 for CTL, 224 for E2, 229 for TAM and 171 for RESV.

Control E2 (100 nM) TAM (5 µM) RESV (50 µM)

δ[µm] 2.11 ± 0.05 2.82 ± 0.05 2.04 ± 0.04 1.32 ± 0.05

E∞[Pa] 444 ± 23 187 ± 11 510 ± 25 2959 ± 235

E1[Pa] 299 ± 14 150 ± 7 346 ± 16 1046 ± 77

E2[Pa] 289 ± 14 142 ± 7 320 ± 17 1024 ± 70

Einst [Pa] 1031 ± 47 479 ± 23 1175 ± 54 5029 ± 367

τ 1[s] 0.19 ± 0.01 0.19 ± 0.01 0.17 ± 0.01 0.19 ± 0.01

τ 2[s] 3.13 ± 0.14 2.93 ± 0.10 3.15 ± 0.15 3.23 ± 0.16

η1[Pas] 56 ± 3 27 ± 1 58 ± 3 187 ± 14

η2[Pas] 885 ± 55 403 ± 22 1052 ± 80 3198 ± 253
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In Fig. 1A the unified distance matrix of the SOM can be seen. The colour scale indicates the Euclidean dis-
tance between nodes, blue tones indicate small distances, while red tones indicate large ones. A distinct region 
with high dissimilarity can be observed at the bottom right of the map (visible as cluster). Note that the map is 
toroidal, thus reducing edge effects. The dark black lines indicate the post hoc clustering of the nodes. Figure 1B 
shows the distributions of the single codebook vectors and the determined clusters in greyscales. This analysis 
can be used to analyse the distribution of the single input variables. Even for the low number of input variables, 
this analysis can be quite overwhelming, as only regions with significant differences can be seen easily. As an 

Figure 1.  Results of training the self-organizing map using a batch algorithm. (A) Unified distance matrix plot. 
The colour scale corresponds to Euclidean distance between nodes. The post hoc clustering was performed 
using kmeans clustering with 4 centroids. (B) Fan-diagram showing the spatial distribution of the nine different 
variables on the 2D map. δ is indentation, E∞ the equilibrium modulus, E1 and E2 the moduli of the springs in 
Maxwell arms, Einst the instantaneous modulus, τ1 and τ2 the relaxation times of the dashpots and the viscosities 
are η1 and η2 . (C) Counts plot of the number of observations per node. In grey nodes, zero observations are 
placed. (D) Mapping of the treatment as input factors. Cluster 1 includes 227 measurements, Cluster 2 69, 
Cluster 3 195 and Cluster 4 545.
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example, the nodes that showed high dissimilarity in Fig. 1A on the right bottom side of the map showed large 
values of all moduli (large green and cyan fans), while only possessing small indentations of around 1 μm (small 
dark blue bars) and small relaxation times (red and orange bars) in the fan diagram in Fig. 1B. Measurements 
with high indentation values (2.5–3 μm) appeared to be placed in vicinity on the top left-hand side of the map. 
Figure 1C shows the number of measurements that were placed in each node. Finally, Fig. 1D uses the treatment 
factor (as these are known from the input data) and visualizes where measurements of respectively treated cells 
were placed on the map. The cluster on the bottom right side of the map is made up solely of resveratrol treated 
cells, while a large amount of estrogen treated cell measurements are located at the top left side of the map. Note 
that the number of clusters was defined as 4 to reflect the different treatments.

Resveratrol and estrogen treated cells can be distinguished by unsupervised SOMs. Tables 2 
and 3 show a further analysis of the four clusters. Cluster 1 was predominantly (80%) made of cells from the 
control group (104) and tamoxifen treated cells (77). Cluster 2 only included resveratrol treated cells. Cluster 
3 was a mixture of all cell types, mostly control and tamoxifen treated ones (50% control, 7% E2, 16% RESV 
and 27% TAM). Finally, cluster 4 was made up mostly of control and estrogen treated cells (39% control, 37% 
E2, 6% RESV and 18% TAM). With respect to mechanics, cells placed in cluster 1 and 3 showed intermediate 
stiffnesses and indentations. Cluster 3 represented higher relaxation times than all other clusters. Resveratrol 
treated cells, located in Cluster 2, presented high stiffness, low indentations, high viscosities, and intermedi-
ate relaxation times. The characteristics of cluster 4 were very soft cells, with large indentations, low moduli, 
intermediate relaxation times and low viscosities. The cluster analysis shows that resveratrol treated cells can 
be readily distinguished from the other groups, while estrogen treated cells could mostly be found in a cluster 
together with control and tamoxifen treated cells. Control cells and tamoxifen treated cells co-localised on the 
maps and the SOMs were not able to distinguish between them. This was expected, as the mechanical properties 
were very similar and the only used input for the neural network. Additional input parameters would be needed 
to distinguish between these treatments.

SOMs for exploration of mechanical property interconnectivity. One strength of self-organizing 
maps is that they allow exploration of interconnectivity of different input variables. Figure 2 shows the compo-
nent maps of the 9 input variables after training. In addition, the cluster analysis was superimposed on the maps. 
Note that the moduli and viscosities were plotted in logarithmic scale to allow for better comparison.

A correlation between all moduli and the viscosities was observed. In addition, the six parameters E∞ , E1 , E2 , 
Einst , η1 and η2 were negatively correlated with the indentation (red colour tones indicating high values while the 
indentation shows blue colour tones indicating low values). This fits together with the mechanical model, as cells 
that are softer should show lower moduli, higher fluidity (lower viscosity) and larger deformations. Two distinct 
regions of deformation can be seen in the component maps: On the left top, a region with high indentation and 
low stiffness as well as viscosity was found, which corresponded mostly to estrogen treated cells (comparison of 
Figs. 2 and 1D). On the other hand, an island of low indentation, large moduli and large viscosities was detected 
on the bottom right part of the maps, which mostly displayed measurements made on resveratrol treated cells. 
Regarding the relaxation times, a large patch of small relaxation times was identified in the vertical middle region 

Table 2.  Analysis of the four cluster with respect to kind of treatment.

Cluster N N (CTL) N (E2) N (RESV) N (TAM)

1 227 104 7 39 77

2 69 0 0 69 0

3 195 98 13 32 52

4 545 210 204 31 100

Table 3.  Analysis of the four cluster with respect to the determined viscoelastic properties. The values shown 
are mean values ± the standard error.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

δ[µm] 1.60 ± 0.02 0.84 ± 0.02 2.04 ± 0.04 2.52 ± 0.05

E∞[Pa] 987 ± 69 5348 ± 207 537 ± 45 275 ± 13

E1[Pa] 510 ± 19 1850 ± 68 352 ± 15 188 ± 7

E2[Pa] 498 ± 19 1773 ± 55 351 ± 20 175 ± 8

Einst [Pa] 1996 ± 95 8971 ± 294 1240 ± 74 638 ± 26

τ 1[s] 0.13 ± 0.01 0.18 ± 0.01 0.27 ± 0.01 0.17 ± 0.01

τ 2[s] 2.21 ± 0.08 3.13 ± 0.13 5.27 ± 0.14 2.71 ± 0.09

η1[Pas] 71 ± 4 322 ± 14 94 ± 4 32 ± 2

η2[Pas] 1124 ± 60 5291 ± 232 1859 ± 133 477 ± 27
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of the maps. Interestingly, these values appeared to correspond to intermediate deformation, moduli and viscos-
ity values. A small patch of long relaxation times was noticed at the bottom left of the maps, which represented 
intermediate stiffness and deformation values.

Figure 2.  Component maps of the nine input parameters after training the SOMs. The colour coding indicates 
the magnitude of the nodes. The moduli and viscosities are logarithmically scaled to allow for comparison. The 
black lines show the borders of the four calculated clusters. Grey nodes have no measurements placed in them.
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Discussion
In this work we apply self-organizing maps to viscoelastic data of breast cancer cells derived from stress relaxa-
tion atomic force microscopy measurements after treatment with different ER interacting drugs. We employ 
an unsupervised approach and use the output layer of this artificial neural network for cluster analysis. We 
show that resveratrol treatment leads to stiffening and higher viscosities, estrogen treatment to a softening and 
fluidization, while tamoxifen treatment does not appear to significantly affect these mechanical properties. We 
then provide evidence that this type of analysis can potentially be used to classify cells according to treatment 
in an unsupervised manner.

Cancer cells show altered mechanical phenotypes compared to non-malignant  counterparts16. This results 
among other factors from changes in the mechanics of the environment, tumour hypoxia and aberrant gene 
expression, altering signalling pathways that affect cell metabolism, motility, and adhesion. Targeting the mechan-
ical adaptation programme of cancer as part of therapy has been proposed, although its wide implications in 
cell function may lead to undesired side effects. Potential targets include disruption of actin filament assembly 
and dynamics, inhibition of myosin or targeting Rho/ROCK pathways, among others. Different drugs used as 
therapy such as paclitaxel, cisplatin, doxorubicin, and 5-fluorouracil, have been investigated for their effects on 
mechanical properties of cells from various origins. These treatments mostly led to cell stiffening, which con-
tributed to altered cytoskeletal dynamics resembling a reversal of the epithelial to mesenchymal  transition57–59. 
Such changes are believed to lead to reduced cell migration, partly inhibiting cancer growth. We provide further 
evidence that resveratrol leads to stiffening of cells, with novel data regarding the viscoelastic properties, while 
estrogen leads to a softening and fluidization of the cells. Interestingly, tamoxifen does not appear to significantly 
alter the mechanics of MCF-7 cells on solid substrates. A more thorough analysis regarding cytoskeletal arrange-
ments and protein expression patterns resulting from such treatments is needed.

In the present approach we have used viscoelastic data derived from stress relaxation measurements using a 
five-element Maxwell model fitting. We have omitted the use of any further characteristics of force spectroscopy 
curves on cells (such as hysteresis, work of adhesion, tethers, tension). In addition, we have decided to ignore 
the measurement data itself, but rather evaluate derived mechanical properties. A critical parameter to con-
sider is the computational time the analysis takes. While the computation of the self-organizing map approach 
chosen is relatively straightforward, the data processing steps to calculate the viscoelastic properties from raw 
force-distance-curves is the time intensive step of this analysis (the used framework takes around 5 s for curve 
processing, fitting, and property calculation per curve). Using simpler models (such as only elastic properties, 
indentations at a given force, hysteresis, adhesion properties) one can probably reduce the computational costs. 
In addition, we show that most of the variables used as inputs are correlated. Therefore, a priori reduction of 
data dimensionality using principal component analysis followed by statistically relevant principal components 
as input for the SOMs, will also speed up the analysis.

Most of the neural network or machine learning approaches that have been applied to AFM force spectroscopy 
data on biological materials are based on supervised methods. Recently, three different approaches have been 
provided in the literature: Using machine learning to classify the quality of  curves41, training a machine learning 
algorithm with curve  shapes44, or using curve characteristic properties as inputs for supervised  training43,45,60. 
Such approaches have shown promising results in correctly classifying cancer cells from healthy cells, as well as 
cancerous tissue. Compared to these approaches, SOMs arguably show strengths in data exploration, enabling 
the simplification of a multidimensional data space to 2D representations. In addition, SOMs can also be per-
formed supervised. With respect to the ability of this SOM approach to identify the treatment of breast cancer 
cells, we report mixed results. The addition of further independent variables, including more measurements, and 
morphological characteristics of the cells will probably help in training a SOM algorithm to successfully classify 
the different types of cells unsupervised.

Materials and methods
Figure 3 shows the overall methodology performed in this study. Briefly, in step 1, cell mechanical properties 
were quantified using stress relaxation measurements via AFM. A scheme of such analysis can be seen in Fig. 3B. 
A 5-element Maxwell model was fitted to the stress relaxation curves, resulting in 9 fitting parameters (Fig. 3C). 
These mechanical parameters were used to train SOMs (Fig. 3D). Finally, these SOMs were used to visualize the 
result of the artificial neural network. To test the ability of the trained aNNs to distinguish between cells with 
different mechanical properties, MCF-7 breast cancer cells were treated with different substances used in breast 
cancer therapy that are known to influence cell mechanical properties.

Cell mechanical measurements. MCF-7 cells were obtained from the American Type Culture Collec-
tion (ATCC) and grown as previously  described61. Cells were seeded at a concentration of 200,000 cells/mL 
on plasma-treated glass slides in DMEM medium supplemented with 10% fetal bovine serum (FBS) and 1% 
penicillin/streptomycin at 37 °C in 5%  CO2. Cells were either treated for 48 hours with DMSO (0.05 %), 100 
nM estrogen (E2), 50 µM resveratrol (RESV) or 5 µM tamoxifen (TAM). For mechanical measurements, a JPK 
Nanowizard III with a CellHesion extension was used. Pyramidal cantilevers (DNP-S, B, Bruker), with nominal 
stiffness of 0.12 N/m, a resonance frequency of 23 kHz in air, an opening angle of 22° and a nominal tip radius of 
10 nm were used. Calibration by thermal noise making use of the equipartition theorem was performed for each 
 cantilever62. Measurements were done with a constant approach and retract rate of 5 µm/s, a maximum load of 1 
nN, curve lengths of 50 µm, a constant deformation 10 s pause segment at an initial load of 1 nN and a sampling 
rate of 1024 Hz. Measurements were done in L15 medium at 37 °C and performed in the central region of the 
cell above the nucleus.
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Data evaluation. Data was extracted using the JPKSPM software (JPK, Bruker), and all further steps were 
performed in R. Data pre-processing was done making use of the R afmToolkit, a package for AFM force-distance 
and force-time analysis developed by our  group63–65. Briefly, contact and detachment points were calculated, the 
curves were corrected for their baselines and the sample deformation (δ) was determined. In the present analysis, 
only the stress relaxation segments were considered. Those were fitted with a five-element Maxwell model as

Where E(t) is the relaxation modulus, E∞ the equilibrium modulus, E1 and E2 the moduli of the springs in 
Maxwell arms and τ1 and τ2 the relaxation times of the dashpots. The viscosity ηi of the dashpots is defined as

Self‑organizing maps. Self-organizing maps were first introduced by Kohonen and have since received 
more and more attention in wider fields of statistics, chemometrics and life sciences. Their major use is found in 
data exploration and visualization, as they enable the breakdown of complex data matrices and the interaction of 
components via 2D similarity representations. In addition, the representation keeps the topological information 
of the input data. Here we describe the principles of the classical iterative and the batch algorithms. Any reader 
is referred to the extensive reviews on the theoretical backgrounds, application and usage of SOMs in statisti-
cal analysis, life sciences and  industry51,52,66. Such applications are wide ranged, including analysis of spectros-
copy  data67,68, automated feature extraction from microscopy  images69, segmentation and grading of tumours or 
application to omics  data70,71.

SOMs are artificial neural networks that use unsupervised training procedures (competition, cooperation, 
and adaptation). In principle, a (mostly) 2D network of neurons (nodes, codebooks) is set up that is trained to 
represent the distance structure of the input data as closely as possible (see Fig. 3D). In the case of SOMs, nodes 
are defined by codebook vectors (weights) that encompass all variables of the input data. Prior to training, the 
network is initialized either randomly or linearly. One needs to a priori define network properties such as topol-
ogy (hexagonal or rectangular), architecture of the grid (dimensions, shape, repetitiveness, dynamically growing 
SOMs), number of neurons (depends on input data, approach, and analysis route). Depending on the type of 
distance measure applied, input data needs to be normalized to account for different scaling.

In the original iterative approach, the following training steps are performed:

E(t) = E∞ + E1e
−
t
/τ1 + E2e

−
t
/τ2 ,

ηi = Eiτi

Figure 3.  Methodology of the present study. (A) Cell viscoelastic properties are measured using stress 
relaxation experiments with AFM. (B) and (C). The resulting stress relaxation segment (force decay over time 
while keeping the deformation constant) is fitted using a five-element Maxwell model. This results in 9 input 
variables. (D) A self-organizing map is trained unsupervised. (E). The complex interconnectivity of the data can 
be represented in 2D maps, allowing for data exploration.
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1. Randomly select an input vector.
2. Calculate the distance between the input and all neurons in the network (using Euclidean distance after 

normalization works for most cases).
3. Determine the best matching unit (BMU) with the lowest distance to the input vector (competition).
4. Calculate the neighbouring neurons that will also be updated according to the chosen neighbourhood func-

tion (gaussian, bubble) (cooperation).
5. Update the BMU and the neighbours applying learning rates, by moving them closer to the input vector 

(adaptation).
6. Repeat steps 1 to 6 until a given number of iterations is reached or the system converges to stability.

Both the neighbourhood distance and the learning rate are decreasing monotonically with each iteration. 
The learning rate is adjusted depending on the proximity of the neuron to the BMU. The learning phase is split 
in two main segments, first with a high learning rate (ordering phase) and then with a lower one (convergence 
phase). In batch SOMs, a similar approach is performed but rather all neurons are compared with all input data.

Application of SOMs to breast cancer viscoelastic properties. As input data, we used the 9 proper-
ties ( δ,E∞,E1,E2,Einst , τ1, τ2, η1, η2) derived from the fitting of the stress relaxation segments. Outliers were 
removed and data was normalized by mean value and standard deviation. For SOM calculations, the R package 
Kohonen was  used56. Rectangular, toroidal maps with hexagonal nodes were used. The x-y-ratio of the maps was 
determined from the relationship of the eigenvalues of the first two principal components of the data. A Gauss-
ian neighbourhood function and Euclidean distance functions were utilized. The learning rate was set to 0.05 
in the beginning and decreased to 0.01. The neighbourhood function was defined as exponential decay starting 
with a value that covered 2/3 of all unit-to-unit distances. For the classical, iterative approaches, 50,000 iterations 
were performed, the calculations were repeated 50 times and the map with the lowest quantization error was 
chosen. Similarly, batch SOMs were performed with 1000 iterations and repeated 50 times. The results shown in 
this manuscript correspond to the batch SOM with the lowest quantization error.

Data availability
Data is available per request from the corresponding author.
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