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A new method for analyzing 
non‑uniform guiding structures
Negar Yasi 1, Mahdi Boozari 2, Mohammad G. H. Alijani 2* & Mohammad H. Neshati 2

This paper presents a new technique for analyzing a non‑uniform transmission line (NUTL). This 
method expands the differential equations of voltage and current as the slope functions. Then, 
differential equations are solved using the explicit Runge–Kutta technique with the fourth‑order 
method with four stages. It is shown that the proposed method can be used not only for analyzing the 
NUTL but also for analyzing the no‑uniform waveguides (NUWG). Additionally, it is shown that the 
sensitivity of the proposed method concerning the discretization error is suitable. Several theoretical 
and practical NUTLs and NUWG are investigated to verify the proposed method’s accuracy and 
advantages. The performance of the proposed method is compared with those obtained by the other 
popular techniques, such as uniform cascaded sections (UCS).

The non-uniform Transmission lines are widely used in numerous applications such as electrical  resonators1, 
hybrid  amplifiers2, frequency  synthesizers3, pulse shaping  circuits4, antenna array beamforming  networks5, and 
coupled microstrip  lines6. Transmission lines made of the non-uniform profile are classified into two groups. The 
first category in which the applied lines are not parallel consists of power transmission lines, which are crossed 
over the valleys or are parts of complicated structures such as metallic towers. The second category consists of 
parallel lines, but generally, the profile of the conductors is not uniform. These include planar impedance match-
ing networks with exponential profiles and stepped-impedance microwave filters and etc.7–9.

A few analytical methods are presented for the study of non-uniform TLs made by a particular profile, such as 
the TLs with the  exponential10, linearly  tapered11, and power-law12 profiles. One classical method for analyzing a 
NUTL is segmenting the structure into a cascade of uniform  sections13,14.  In15, an iterative perturbation technique 
is introduced for the analysis of NUTLs. Furthermore, a few numerical techniques are developed for analyzing the 
non-uniform TLs. However, most of them suffer from high computational costs and a slow convergence  rate16.

Due to the mentioned importance of non-uniform structures in several microwave, antenna, and electro-
magnetic compatibility applications, their investigation still remains an active field of research in electrical engi-
neering. Hence, in this paper, the explicit Runge–Kutta based technique is introduced to analyze non-uniform 
TLs and waveguides.

In this method, using the discretization technique and expanding the slope functions from differential equa-
tions describing voltage and current waves, a system of equations is derived. By solving the obtained system of 
equations, the magnitude and phase of the voltage and current propagating along the structure are computed. 
The accuracy of this method is dependent on the per-unit-length impedance and admittance. It is demonstrated 
that knowing the profile function allows one to easily calculate the per-unit-length parameters for most practical 
structures. The proposed method’s performance is verified by examining several practical test cases. Also, it is 
shown that the computational cost of the introduced method is low. The proposed method can be only applied 
to a single non-uniform structure. So, this can be considered as a drawback of it. Probably, it can be developed 
for a coupled NUTL. However, this work in the present form is focused on a single NUTL.

Theoretical formulation
Figure 1 shows a non-uniform TL, which conveys TEM or quasi-TEM modes. It should be noted that the term 
“non-uniform” refers to a guiding structure with any arbitrary shape along the propagation direction. According 
to Fig. 1, the under-studying structure with length L is divided into N sections (N + 1 points). The voltage and 
current of any arbitrary point xn (n = 1, …, N + 1) are depicted by Vn and In, respectively.

Inspired by the explicit Runge–Kutta (RK)  method18, voltage and current waves of the line are expressed by 
Eqs. (1a) and (1b), in which voltage and current at the point xn are depicted by Vn and In, respectively. As shown 
in Fig. 1, the voltage and current of each point is expressed by the following equations.
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The parameters h, S, bs, as, ks and ls are non-negative real constants called the step length of the method, the 
number of stages, weight of the voltage, weight of the current, the slope coefficients of the voltage, and the slope 
coefficients of the current, respectively. The above equations are a discrete expansion of the coupled version of 
the voltage and current differential equations of a non-uniform TL as  follows17.

In the above equations, V(x) and I(x) are voltage and current waves, which propagate along the line with the 
length of L. Z(x) and Y(x) are per unit length impedance and per unit length admittance of the lines. Since both 
Z(x) and Y(x) are functions of x, an analytical solution for these waves is not found easily. It should be noted that 
for a TL, the voltage and current is a function of position x in the phasor domain; because it is assumed that the 
waves are propagating along the x-axis. So, the propagating waves only depends on x.

Selecting a proper value of the number of stages S is important to obtain a solution with reasonable accuracy. 
Selecting the higher values of S increases the accuracy and computational cost, simultaneously. So, there is a 
trade-off between the accuracy of the final response and the computational cost.  In18, it is shown that S = 4 is a 
suitable value for balancing the accuracy and computational cost. The mathematical proof of accuracy, stability, 
and convergence rate for S = 4 can be found  in18. It should be noted that the mathematical proof of the mentioned 
items is long and out of the scope of this work. In this case, the local truncation error and the total accumulated 
error are on the order of O(h5) and O(h4), respectively. By this assumption, Eqs. (2a) and (2b) can be rewritten 
by Eqs. (3a) and (3b)18.

in which the following equations have to be satisfied.
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Figure 1.  A non-uniform TL with general profile.
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Another critical parameter is the step length h. Obviously, by reducing h, the computational accuracy is 
increased. Moreover, reducing h may increase the round-off  error19. There are three suggestions for step size, 
including the significant one h = λ/10, the middle step h = λ/20, and the minor step h = λ/40, in which λ is the 
wavelength corresponding to the highest  frequency19. Although h = λ/40 produces the minimum truncation error 
compared to that of the other ones, the round-off error and, accordingly, the computational cost are increased. 
Our studies show that h = λ/20 is a proper choice for the most practical applications. So, the step length h is very 
smaller than the TL length L. In this case, the following approximation is acceptable.

So Eqs. (6a) and (6b) express voltage and current along the line.

in which αi’s are given by Eqs. (7a), (7b), (7c) and (7d).

In the above equations, the following relations have to be satisfied.

According to Fig. 1 and Eqs. (1a), (1b) and (2a), (2b), two boundary conditions can be considered as follows.
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In above equations, V(0), I(0), V(L), and I(L) are the same as V1, I1, VN+1, IN+1 in the discrete form, respectively. 
Then, the following linear system of equations is established using boundary conditions Eqs. (9a) and (9b).

The coefficient matrix A is constructed using four blocks given by Eqs. (11a), (11b), (11c) and (11d). It should 
be noted that these blocks are a function of n. So, the elements of them need to be updated for each n.

Finally, for an invertible matrix A, the unique solution of the system of equations is obtained by Eq. (12). It 
should be noted that there is no guarantee that this condition will be met. However, our studies show that for 
many practical applications, the coefficient matrix A is invertible.

As stated  in18, the essential advantages of the Runge–Kutta method are its higher stability, mainly when it is 
applied to a practical system.

The conversion from voltages/currents to S-parameters is relatively standard and can be found  in17. It is 
helpful to note that for symmetrical and reciprocal structures, S11 = S22, S12 = S21, and based on the conservation 
of power principle, |S11|2 +|S21|2 =  117. According to Eqs. (10a), (10b), (10c), (10d), (10e) and (10f), the accuracy 
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of the proposed method is also dependent on per-unit-length parameters. If there is no closed-form expression 
for Z(x) or Y(x) of the structure under study, a numerical technique has to be  employed13. To this end, the per-
unit-length parameters can be computed by the scalar potential φ(x) given by Eqs. (13) and (14)20.

in which μ(x), ε(x), and σ(x) are permeability, permittivity and conductivity of the applied substrate, 
respectively.

Extension to non‑uniform waveguide
As shown  in21, Eqs. (1a) and (1b) can also be used for a non-uniform waveguide, operating at its dominant mode. 
In this case, electric and magnetic fields along the waveguide can be equated by scalar voltage and current func-
tions, which satisfy TL equations given by Eqs. (15a) and (15b).

in which

β is phase constant of the propagation wave. For a non-uniform waveguide, Z(x) and Y(x) have to be known. For 
example, per-unit-length impedance and admittance of a rectangular waveguide with height b and non-uniform 
width w(x) at its dominant  TE10 mode is found using Eqs. (17a) and (17c)11.

in which γ is the propagating constant, and k is the free space wavenumber. For the other types of waveguides, 
similar formulas can be used.

Results and discussion
In order to confirm the accuracy of the suggested method, some practical non-uniform TL structures are exam-
ined, and their results are compared to those obtained by measurement, simulation and UCS  technique13. The 
simulation results are obtained by using High Frequency Structure Simulator (HFSS).

Catenary transmission line. Catenary shaped-transmission lines are widely used in electrical engineer-
ing, especially in power systems. Determining voltage and current waves in a catenary TL is a challenging prob-
lem in these systems. The function y(x) describing the profile of a catenary TL is given by Eq. (18), in which q is 
the constant of the catenary  line22.

The per-unit-length longitudinal impedance and the per-unit-length transversal admittance of a catenary TL 
are calculated by Eqs. (19a) and (19b)22.

In the above equations, l and r0 are the line length and radius of the conductor, respectively. In the first exam-
ple, a catenary TL with q = 3, l = 5 m, r0 = 5 mm, VS = 1 V, ZL = 75 Ω and ZS = 50 Ω is considered. The analytical 
solution of the catenary TL is not available. However, the catenary TL can be analyzed using the Transfer Matrix 
Method (TMM)23 or UCS technique with excellent accuracy. The magnitude and phase of the calculated V(x) 
and I(x) using the proposed and TMM/UCS method are shown in Fig. 2 in contour format. In this figure, the 
variation of both magnitude and phase of V(x) and I(x) are plotted versus frequency and position simultaneously. 
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A very excellent agreement can be seen between the results of the proposed and TMM/UCS methods over the 
operating range of 0 ≤ x ≤ 5 m and 0 ≤ f ≤ 30 MHz.

Non‑uniform microstrip filter. Microstrip filters made with a non-uniform profile are widely used in 
microwave systems due to their low profile and low cost. A stop band filter based on a non-uniform microstrip 
line is proposed  in24. The relative permittivity constant (εr) and the thickness of the substrate (H) are 3.5 and 
0.768 mm, respectively. The length of the non-uniform section is about 10 cm. The designed filter is connected 
to a 50 Ω impedance at two ports. The width (W) of the filter is varied as x. The function describing the profile of 
the filter is shown in Fig. 3. The picture of the fabrication filter is depicted in Fig. 4. At any arbitrary point x, the 
effective dielectric constant is calculated  as17.

The characteristic impedance can be calculated as a function of x using the introduced equations  in17. After 
that, the per unit length capacitance C(x) and per unit length inductance L(x) are estimated as  follows17.

Finally, an approximation of the per unit length parameters can be determined as Z(x) = jωL(x), Y(x) = jωC(x). 
Figure 5 depicts the frequency response of the non-uniform filter. Over the frequency range 0 ≤ f ≤ 10 GHz, the 
accuracy of all results is approximately matched. At other frequencies, the results of the proposed method are 
similar to the simulation data. In general, the accuracy of the proposed method is acceptable over the wide fre-
quency range of 0 ≤ f ≤ 10 GHz. It should be noted that the reflection coefficient is not reported  in24.

Non‑uniform TL with sharp discontinuities. In some structures, there are several discontinuities in the 
profile of NUTL, such as the stepped-impedance microstrip filters. The third example considers a microstrip 

(20)εeff (x) =
εr + 1

2
+

εr − 1

2

1
√
1+ 12H/W(x)

(21)







C(x) =
�

µε0εeff (x)
�

ZC(x)

L(x) = µε0εeff (x)
�

C(x)

Figure 2.  The calculated V(x) and I(x) of a catenary TL using the proposed and TMM, UCS techniques; (a) 
magnitude of V, (b) magnitude of I, (c) phase of V, (d) phase of I.
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line with six sharp discontinuities in its profile. The relative permittivity constant, tangent loss and the thickness 
of the substrate are 4.4, 0.02, and 1.6 mm, respectively. This structure is terminated to 50 Ω impedances at two 
ports. The minimum and maximum width of the steps are 0.4080 mm and 11.1 mm, respectively. The per unit 
length parameters are determined using the introduced procedure for the previous example. Figure 6 shows 
the fabricated  structure25. The scattering parameters of the under-studying structure are shown in Fig. 7 and 8. 
Similar to the previous example, these figures include the simulation and measurement  data25 and the result of 
the UCS method. As seen in Fig. 7, the difference between the proposed and UCS results is high at the lower 
frequencies. It is probably due to the connector effect, which is not included in the calculating procedure. Also, 
for this structure, around the discontinuities locations, there would be higher-order modes, which are ignored 
in both proposed and UCS methods. In turn, at a higher frequency, the proposed and UCS methods’ accuracy 

Figure 3.  The profile of stop-band filter.

Figure 4.  The picture of fabricated stop-band  filter24.

Figure 5.  The frequency response of the non-uniform stop-band filter.
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is acceptable. The accuracy of the proposed method is superior to the UCS method at all frequencies, as shown 
in Fig. 8.

Non‑uniform substrate integrated waveguide. A SIW structure with a non-uniform profile is investi-
gated as the last example to verify the application of the proposed method in analyzing the NUWGs. The picture 
of fabricated double slope linearly-tapered SIW is displayed in Fig. 911. The geometrical and physical param-
eters of this structure are εr = 3.66, tanδ = 0.0037, h = 0.254 mm, l = 44 mm, ZS = ZL = 50 Ω, d = 1 mm, S = 2 mm, 
Wmin = 10 mm, and Wmax = 20 mm. In a SIW structure with a width of W, the width of its equivalent rectangular 
waveguide is approximated by Eqs. (22a), (22b), (22c) and (22d)11.

Figure 6.  The picture of fabricated stepped-impedance filter (unit: mm)25.

Figure 7.  Magnitude of S11 of the stepped-impedance filter.

Figure 8.  Magnitude of S21 of the stepped-impedance filter.
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By specifying the equivalent width, per-unit-length impedance and admittance are calculated using (17). The 
characteristic impedance of a SIW structure can be calculated using the closed-form formulas introduced  in26. 
The calculated scattering parameters are shown in Figs. 10 and 11. As expected, the accuracy of the UCS method 
is not good since this method cannot be applied to a NUWG. A slight frequency shift, about 0.2 GHz, is seen 
between the results of the proposed method and measurement/simulation data. The peak magnitude deviation is 
about 4 dB for both S11 and S21 only at resonance frequencies. This is probably due to the transition between the 
SIW and SMA connectors and the fabrication imperfections, which are not addressed in the proposed method. 
However, the accuracy of the obtained results is acceptable over the wide frequency range of 14 GHz ≤ f ≤ 18 GHz.

Table 1 shows the required time t, number of segments N and frequency samples FS (to assess the efficiency), 
and condition number of the coefficient matrix τ. The condition number depends on the frequency. So, the worst 
case values are reported. It is helpful to note that the condition number is used to measure the sensitivity of the 
proposed method concerning the discretization error. More details about the acceptable range of the condition 
number can be found  in27,28. For all examples, the condition number of the coefficient matrix is in an accept-
able range, which means the low sensitivity of our proposed technique. The introduced method is implemented 
using a MATLAB-based program that runs on a PC with CPU core i5 @2.3 GHz & 4G RAM memory. The 
required running time of the proposed method is higher than the UCS technique. However, the accuracy of the 
introduced method is better than the UCS technique. Additionally, the proposed method shows robustness to 
different non-uniform guiding structures.

(22a)Weff = W

(

a1 +
a2

S
/

d +
(

(a1 + a2 − a3)
/

(a3 − a1)
)

)

(22b)a1 = 1.0198+
0.3465

W
/

S − 1.0684

(22c)a2 = −0.1183+
1.2729

W
/

S − 1.2010

(22d)a3 = 1.0082+
0.9163

W
/

S + 0.2152

Figure 9.  The picture of fabricated linearly-tapered  SIW11.

Figure 10.  Magnitude of S11 of the linearly-tapered SIW.
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Conclusion
In this paper, the explicit Runge–Kutta technique is employed for analyzing the NUTLs and NUWGs. For this 
purpose, a system of equations is established based on TL modeling and its solution provides the magnitude 
and phase of the voltage and current propagating along the structure. Moreover, it is shown that the sensitivity 
of the proposed technique is suitable. Several theoretical and practical NUTLs and NUWG verify the proposed 
method’s performance, and the results are compared with those obtained by other popular techniques such as 
the UCS approach. The method turns out to be simple in implementation. Examining the proposed method for 
a few structures shows that the introduced technique is accurate and stable.

Data availability
The datasets used and/or analyzed during the current study available from the corresponding author on reason-
able request.
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