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A maximum entropy approach 
for the modelling of car‑sharing 
parking dynamics
Simone Daniotti 1,2*, Bernardo Monechi 3 & Enrico Ubaldi 3,4

The science of cities is a relatively new and interdisciplinary topic aimed at studying and characterizing 
the collective processes that shape the growth and dynamics of urban populations. Amongst 
other open problems, the forecast of mobility trends in urban spaces is a lively research topic that 
aims at assisting the design and implementation of efficient transportation policies and inclusive 
urban planning. To this end, many Machine‑Learning models have been put forward to predict 
mobility patterns. However, most of them are not interpretable ‑as they build on complex hidden 
representations of the system configurations‑ or do not allow for model inspection, thus limiting 
our understanding of the underlying mechanisms driving the citizen’s daily routines. Here, we 
tackle this problem by building a fully interpretable statistical model that, incorporating only the 
minimum number of constraints, can predict different phenomena arising in the city. Using data on 
the movements of car‑sharing vehicles in several Italian cities, we infer a model using the Maximum 
Entropy (MaxEnt) principle. The model allows for an accurate spatio‑temporal prediction of car‑sharing 
vehicles’ presence in different city areas and, thanks to its simple yet general formulation, to precisely 
perform anomaly detection (e.g., detect strikes and bad weather conditions from car‑sharing data 
only). We compare the forecasting capabilities of our model with different state‑of‑the‑art models 
explicitly made for time‑series forecasting: SARIMA models and Deep Learning Models. We find that 
MaxEnt models are highly predictive, outperforming SARIMAs while having similar performances of 
deep Neural Networks ‑ but with advantages of being more interpretable, more flexibile—i.e., they 
can be applied to different tasks‑ and being computationally efficient. Our results show that statistical 
inference might play a fundamental role in building robust and general models describing urban 
systems phenomena.

In recent years, pressing societal and environmental problems, such as population growth, migration, and climate 
change, have boosted research on the Science of Cities and the related study of mobility. The parallel growth in the 
availability of extensive and detailed datasets covering the mobility of individuals at different granular levels has 
contributed to an increase in the interest of researchers in this  field1,2. Being multi-disciplinary, Science of Cities 
studies embrace diverse areas of research. For example, scientists have applied statistical methods to city  growth3, 
multi-layer networks to urban  resilience4, and spatial networks to describe and characterize the structure and 
the evolution of the phenomena that arise from  them5. On the modelling side, co-evolution  models6, and agent-
based  simulations7 have been used to model stylized facts, taking policy-making into account. Moreover, other 
frameworks, such as ranking  dynamics8, have been used to study urban environments and their universal laws.

The interplay of different mechanisms, such as the daily routine of individuals and environmental constraints, 
determines the mobility patterns of individuals diffusing in an urban environment. These, in turn, are regulated 
by even more fundamental and interrelated phenomena, like wealth, trends, socio-economic disparities, and 
cultural  movements9–11. Urban environments are complex  systems12, and describing their growth and relation 
with surrounding cities has yet to be fully understood by the scientific  community13. For instance, when focusing 
on daily human movement, research has shown that a superposition of decision-making processes working at 
diverse  scales14 drives people’s commuting at the intra- and inter-urban level. To capture this complexity, many 
analytical tools and models have been put in place to understand the patterns of  mobility15–18.

When trying to characterize human mobility, one open problem is the development of accurate forecast-
ing tools to predict human movement in time and space, a crucial ingredient in urban planning. Indeed, such 
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models would unlock the possibility to compute the optimal capacity of the mobility infrastructure, to correctly 
assess segregation’s social drivers, or to better design policies aimed at reducing the environmental impact, air 
pollution, while improving the sustainability of public transport  services19.

To forecast these kind of aggregated multi-variate time series, different techniques and models have been 
proposed, from Autoregressive Integrated Moving Average (ARIMA)20, Multi-variate non-linear forecasting 
 techniques21, Markov  Models22, up to Deep Learning  models23–25. However, all these models share a limited 
capacity to interpret the results; it is difficult to establish the impact of each parameter and each observable on the 
forecast and to distinguish the relevant signal from irrelevant noise. Therefore, to build a powerful, general, and 
robust statistical model, we need to understand the critical variables that play a central role in the phenomenon 
we want to model. To this end, we study urban mobility patterns exploiting the Maximum Entropy (MaxEnt) 
principle.

The latter builds on information-theoretical grounds to state that the model generating an empirical dataset is 
the one featuring the most general probability distribution that reproduces the statistically significant observables 
(e.g., the average value or the standard deviation of a variable). In other words, the MaxEnt modelling framework 
is a Statistical Inference technique that infers the model’s parameters in a data-driven fashion by maximizing 
the entropy of its probability distribution, setting a few constraints driven by data observations. The MaxEnt 
model has already proved to be successful in a wide array of interdisciplinary  applications26, from  biology27 to 
melodic  styles28.

Here, we propose a Statistical Inference (Maximum Entropy) approach to study and predict urban mobility 
patterns. To solve it, we need to analyze the dataset we want to study, identify the essential dynamic properties 
and then model it solving the problem of optimizing the resulting entropy.

The data used in this work represent the 30−minute − binned count of cars parked in each district of a 
city. The cars we focus on are those offered by the major car-sharing service in Italy. The data consist of a multi-
variate time series of the activity (i.e., the number of parked cars seen in a given area during a given time bin) 
in different zones inside the city.

To evaluate our model performance in time-series forecasting, we benchmark it with two state-of-the-art 
models exploiting statistical and non-linear  properties29,30, that is, (i) Seasonal  Arima31, and, (ii) Deep Learning 
 Techniques32.

We use MaxEnt inference to obtain the parameters (using gradient ascent algorithm) and reproduce lag-
correlations of definite positive time series. We derive a highly predictive model, at least as sophisticated as 
models that consider non-linear correlations and have more parameters. We also use the obtained statistical 
model to find extreme events (outliers, such as strikes and bad weather days). As a result, we find the dynamics of 
cars’ presence in urban areas to be vibrant and complex. We infer the couplings parameters between the activity 
profiles of different areas and use them to project the cars’ locations in time efficiently.

Since urban systems are notoriously complex and the fundamental causes of the observed mobility patterns 
are various and interrelated, our methodology is novel in the field since it delivers the most general model 
under the constraint of reproducing the observed correlations. Moreover, the model reveals to be light in terms 
of the number of parameters to be trained. It also highlights the importance of linear correlations as compared 
to non-linear ones.

We organize the rest of this paper as follows. In the "Results" Section, we introduce the data used and the 
only formalism needed to present the results. We introduce Maximum Entropy models and their formalism, 
and the optimization algorithm used. Following this, we introduce the formulas to compute an approximated 
Log-Likelihood. Then, we present the result for multi-variate forecasting of the activity in zones and forecasting 
of outlier events. Subsequently, the "Discussion" Section will follow. In the Methods section, we describe the data 
and the variables in use. To determine the essential variables we represent, we carry out a historical analysis and 
observe the dynamics of contraction and dilation of the time-shifted correlations between different zones. With 
this, we identify relevant observables, and finally, we define and derive the formulae for the ME model describing 
our data. In Supplementary Information we add similar results found for the cities of Rome, Florence, and Turin.

Results
In this section, we introduce the data we analyzed, and our modelling choices. We also test the model forecast 
and the capacity to detect anomalies, comparing them to state-of-the-art time series algorithms. More in-depth 
descriptions of the technical details are in the "Methods" section.

Data description. The dataset contains the position of the vehicles of a major Italian car-sharing service in 
four Italian cities in 2017 (Turin, Milan, Florence, and Rome). Data were obtained by constantly querying the 
web APIs of the service provider and record the parking location of each car. This information allows us to estab-
lish the origin and destination of each trip. In the "Methods" section, we present the preprocessing procedure 
we used to wrangle the data and to obtain the time series, which are the input of our models. The preprocessing 
output is a series of parking events with a location (latitude and longitude) and a starting and ending timestamp. 
We aggregated these events based on the census tessellation, i.e., the municipality zones inside a city. In the fol-
lowing, we show the case of Milan, which will be our reference city, while we present the remaining cities in the 
Supplementary Information section. Finally, we count the xa(t) number of cars parked within area a at time t for 
each working day. We normalize xa(t) (see the "Methods" section for details) and obtain the multivariate time 
series logging the parking activity of the different municipalities of the city. In Fig. 1, we show an example of the 
activity in two areas of our dataset covering the Metropolitan City of Milan.



3

Vol.:(0123456789)

Scientific Reports |         (2023) 13:2993  | https://doi.org/10.1038/s41598-023-30134-9

www.nature.com/scientificreports/

Maximum entropy principle. The principle of maximum entropy states that the probability distribution 
best representing the current state of knowledge is the one with the largest entropy, in the context of precisely 
stated prior data. According to this principle, the distribution with maximal information entropy is the best 
choice. The principle was first shown by E. T. Jaynes in two papers published in the late fifties; he emphasized a 
natural correspondence between statistical mechanics and information  theory33,34.

In particular, Jaynes offered a new and very general rationale to explain why the Gibbsian method of statisti-
cal mechanics works. He showed that statistical mechanics, particularly Ensemble Theory, can be seen simply 
as a particular application of information theory. Hence there is a strict correspondence between the entropy of 
statistical mechanics and the Shannon information entropy.

Maximum Entropy models have unveiled interesting results over the years for a large variety of systems, like 
flocking  birds27,  proteins35, the  brain36 and social  systems37.

We will then implement this approach to define the model of our real-world system in the following sections. 
A more general introduction to the maximum entropy formalism is out of our scope here, and we refer to the 
existing literature for  details38–42.

The probability distribution with Maximum Entropy PME results from the extreme condition of the so-called 
Lagrangian Function:

where

is the Shannon Entropy of the probability distribution P(X) . The maximum of the Lagrangian Function is the 
maximum of the entropy of the model when it is subject to constraints. Computing the functional-derivative 
(1) with respect to P(X) and equating to zero results in:

where
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Figure 1.  Time series parking activity data for the city center of Milan (a) and one of the suburbs (b) for a 
whole week. We can observe that the shapes of the curves and periodicities are different. All the maps have been 
generated using the python contextily library version 1.2.0.
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is the normalization (making a parallel with statistical physics, can be called Partition Function). Z(θ) is written 
as a sum if � is discrete. Hence, the maximum entropy probability distribution is a Boltzmann distribution in 
the canonical ensemble with Boltzmann constant KB = 1 , and effective Hamiltonian H(X) = −

∑K
k=1 θkOk(X).

Note that the minimization of the Lagrangian Function is equivalent to the maximization of the experimental 
average of the likelihood:

In other words, the θk are chosen by imposing the experimental constraints on entropy or, equivalently, by maxi-
mizing the global, experimental likelihood according to a model with the constraints cited above.

Maximum Entropy is the method resulting in the optimal distribution; instead, Maximum Likelihood is the 
optimization for a parametric model. The optimal parameters of θ (called effective couplings) can be obtained 
through Maximum Likelihood, but only once one has assumed (by the principle of Maximum Entropy) that the 
most probable distribution has the form of PME.

Given the generative model probability distribution of configurations P(X | θ) and its corresponding partition 
function by logZ(θ) , the estimator of θ can be found by maximizing the log-likelihood:

Having chosen the log-likelihood as our cost function, we still need to specify a procedure to maximize it with 
respect to the parameters.

One common choice widely employed when training energy-based models are Gradient  Descent42 or its 
variations: optimization is taken with reference to the gradient direction. Once one has chosen the appropriate 
cost function L , the algorithm calculates the gradient of the cost function concerning the model parameters. 
The update equation is:

Typically, the difficulty in this kind of problem is to evaluate logZ(θ) and its derivatives. The reason for this is 
that the partition function is rarely an exact integral; it can be calculated exactly only in a few cases. However, 
finding ways to approximate it and compute approximated gradients is still possible.

Pseudo‑log‑likelihood (PLL) maximization. Pseudo-likelihood is an alternative method compared to 
the likelihood function and leads to the exact inference of model parameters within the limit of an infinite num-
ber of  samples43,44. Let us consider the log-likelihood function L (θ) = �log P(X | θ)�data . In some cases, we 
cannot compute the partition function Z(θ) . However, it is possible to derive exactly the conditional probability 
of one component of X  with respect to the others, i.e. P(Xj|X−j , θ) where X−j  indicates the vector X  without the 
j-th component.

In this case, we can write an approximated likelihood called Pseudo-log-likelihood, which takes the form:

The model we will introduce in this work does not have an explicit form for the partition function, but Eq. (8) 
and its derivatives can be exactly derived. Thus, the Pseudo-log-likelihood is a convenient cost function for our 
problem.

Definition of MaxEnt model. We have seen that the Maximum Entropy inference scheme requires the 
definition of some observables that are supposed to be relevant to the system under study. Being that the aim is 
to predict the evolution of the different xi(t) , the most straightforward choice is to consider their correlations.

As a preliminary analysis, we study the correlation between the activity xi(t) of the most central zone within 
the city (highlighted in red) and all the other zones with a shift in time (i.e. we correlate xi(t) with xj(t − δ) for 
al j  = i and some δ > 0 ). The measure of correlation between two vectors u and v represented is u·v

||u||2||v||2
 , where 

||.||2 measures the euclidean norm defined in Rn as �x�2 :=
√

x21 + · · · + x2n . We see that the areas with significant 
correlations vary with δ so that they cluster around the central area for small values and they become peripherals 
when δ ∼ 31 . When δ ∼ 48 , they cluster around the central area again. Peripheral zones show instead the opposite 
behavior. We perform a historical analysis of time-shifted correlations, observing contraction and dilation with 
reference to different zones in a one-day periodicity. Due to the correlation dependency on the time shift, we 
have to include it in the observables used to describe the system. Hence, we chose as observables all the shifted 
correlations between all the couples of zones defined as,

for i, j = 1, ....,N (with N as the number of zones we took into consideration) and δ = 0, ....,� . Another com-
mon choice is to fix the average value of all the system variables. We took �xi�data = 1
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From these, we obtain the equation for the probability:

where ai is the i-th component’s standard deviation, hi is its mean and Jδij are the time shifted interactions.
Writing vi(t) = hi +

∑

δ J
δ
ijxj(t − δ) one can obtain:

Time series forecasting. We trained the model for 100000 steps using several hyperparamenters 
( � = {24, 36, 48, 72} and the regularization factor � = {0.001, 0.004, 0.005, 0.006, 0.01} , see Table 1), defined in 
24. For more detail about the parameters, we refer to the "Methods" section.

To quantify the predictive capabilities of our models, we used the Mean Absolute Error (MAE), the Mean 
Squared Error (MSE) and the Coefficient of Determination, also known as R245.

We typically find good predictive capabilities on the test set ( as in Fig. 2, and the exact values for each 
predictor are found in Fig 1). For � = 48 (exactly the day-periodicity) and � = 0.005 , we find our model’s best 
performance, so we will use these values, training the model for 3,00,000 steps.

To assess the predictive power of our approach against more complex models, we compared it with standard 
statistical inference and Machine Learning methods. In particular: 

1. a SARIMA  model31: we performed a grid search over the parameters using AIC46 as metrics; the best predic-
tive model is, referring to standard literature on the topic, {p = 2, d = 0, q = 1,P = 2,D = 1,Q = 2,m = 48} . 
In Table R1 in Supplementary Information, we show the table of the grid search.

2. NN and LSTM: each is composed of Nlayers hidden layers with a number of nodes Nnodes = {64, 128, 256, 512} . 
Between the layers, we performed dropout techniques and standard non-linear activation functions (ReLU). 
A linear layer is added at the end of the LSTM layers. Performing a grid search over the other Machine 
Learning hyperparameters, the models with Nlayers = 3, 4 and Nnodes = 128, 256 have been selected, giving 
similar results in terms of forecasting ability. The other hyperparameters tuned are learning rate (grid values: 
{

0.001, 0.0005, 0.0001, 0.0001, 0.00005
}

 , set to 0.0001), the maximum number of epochs during the training 
process (grid values: 

{

30000, 20000, 10000, 5000
}

 , set to 10000), percentage of dropout between the layers 
(grid values: 

{

0.4, 0.3, 0.2, 0.1
}

 , set to 0.2 or 0.3), lambda values in regularization techniques (for our case, 
using either drop out or regularization gave the same results).
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Table 1.  R2 values over the test set w.r.t. � 9 and � 24 values, resulting from 100000 steps of training. Values for 
the best model are in bold.

� � R
2

24 0.001 0.855316

24 0.004 0.854723

24 0.005 0.860069

24 0.006 0.853689

24 0.01 0.832542

36 0.001 0.854458

36 0.004 0.85442

36 0.005 0.853946

36 0.006 0.853447

36 0.01 0.832672

48 0.001 0.860072

48 0.004 0.861741

48 0.005 0.869466

48 0.006 0.861626

48 0.01 0.833099

72 0.001 0.85655

72 0.004 0.859633

72 0.005 0.867582

72 0.006 0.859632

72 0.01 0.858497
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Figure 3 shows that our model outperforms SARIMA and performs as well as the Machine Learning models. 
Since the LSTM model always performs slightly better than the FeedForward, we will use the first as a reference. 
Figure 4 shows this in more detail: SARIMA fails to reproduce variations, and it is mostly focused on seasonal-
ity. Regarding the LSTM model, we observe in Fig. 4 that it completely fails in catching the different behavior of 
the activity signal of the selected area on Friday, whereas the MaxEnt prediction correctly catches the different 
pattern.

Our model works as well as Neural Networks but with orders of magnitude of fewer parameters. In Sup-
plementary Information we present the plot of the number of parameters for the best model for each technique 
(Fig. R3, page 4).

In Fig. R2 we show data and results for the cities of Rome, Florence, and Turin (Supplementary Information, 
page 3). In Fig. R4, we show the results in a multiple-horizon framework: we don’t focus on short-range predic-
tions; instead, we predict multiple steps of the time series (Supplementary Information, page 4).

Extreme events prediction. As already pointed out, prediction is a possible application of our proce-
dure, and we compared the results with state-of-the-art forecasting techniques. Another possible application is 
the detection of outliers in the data. We see from Fig. 1 that our car-sharing data exhibits regular patterns on 
different days. These patterns can be disturbed by many different external events, influencing the demand for 

Figure 2.  R2 MaxEnt prediction over the test set. To have R2
= 1 , the point should align on the bisector line, 

having a perfect predictor.

Figure 3.  Model comparison using different metrics. On the x-axis, the different metrics used to evaluate the 
models. On the y-axis, their respective values. For each metric, low values indicate good model predictions of 
the activity. We see similar results between the MaxEnt and Deep Learning models.
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car-sharing vehicles and the city’s traffic patterns. Suppose we compute the log-likelihood from equation (17), 
restricted to one of the disturbed days. In that case, we expect it to be particularly low, implying that the model 
has lower predictive power than usual. Hence, we can use the log-likelihood L from equation (17) as a score in 
a binary classification task. After training the model with a specific parameter choice, we consider a set of days 
in the test dataset, d1 . . . dD . Each one is a set of consecutive time steps: di = [tdi1 , tdi2 ] with tdi1 < tdi2  . The log-
likelihood of a single day is just

We can now assign a label L(di) = 0 if di as a standard day and L(di) = 1 if it is a day where a specific external 
event occurred. We considered two types of external events: 

1. Weather conditions: on that day, there was fog, a storm, or it was raining.
2. Strikes: that day, there was a strike in the city that could affect car traffic. We considered taxis, public trans-

port, and general strikes involving all working categories.

We had 50% of days labelled as 1 among the days in the test dataset. In Fig. 5, we show the ROC curve for the 
classification of such days, using the log-likelihood trained with the parameters {� = 48, � = 0.006} . The area 

(12)Lpseudo(di) =
1

tdi2 − tdi1 −�

t
di
2

∑

t=t
di
1 −�

logP(x(t)|x(t − 1), . . . , x(t −�)).

Figure 4.  Comparison of the parking activity data (blue) with the prediction of the three models. We can 
observe that SARIMA models are good predictors of periodicity, but the other models perform better when the 
change between one period and another is high.

Figure 5.  ROC curve for the detection of outliers, i.e. bad weather conditions and strikes, for � = 0.006 and 
� = 48.
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under the ROC curve (AuROC) is 0.81, indicating that L is a good indicator of whether an external event 
occurred on a specific day.

Discussion
In this work, we have addressed the problem of building statistical and machine learning models to predict mobil-
ity patterns within the Milan Metropolitan Area. We focused on predicting how many car-sharing vehicles are 
parked within a specific area at different times. To do this, we analyzed a longitudinal dataset of parking events 
collected from the APIs of the Italian car-sharing company Enjoy. The processed data consisted of a collection 
of time series representing the number of parked vehicles in a given area at a given time.

To predict the evolution of these time series, we leveraged the Maximum Entropy (ME) modelling framework, 
which requires the identification of relevant observables from the data and the use of these observables to define 
probability density functions depending on some parameters.

Maximum Entropy modelling has proven to be very effective at studying and determining the activity pat-
terns inside the city (Fig. 3).

We compared our model with other models built explicitly for time series forecasting. In particular, we used 
a SARIMA model, a Feed-Forward Neural Network, and a Long Short-Term Memory Neural Network.

Maximum Entropy models outperformed SARIMA models with reference to all the metrics used in the evalu-
ation. Our model is as predictive as LSTMs Neural Networks but uses two orders of magnitude fewer parameters, 
and it is possible to use our model to perform different kinds of predictions.

Finally, we also used the statistical model to identify extreme events affecting urban traffic, such as bad 
weather conditions or strikes.

In conclusion, we contribute to the literature on aggregated data human mobility studies in different ways. 
We present a new statistical model that outperforms state-of-the-art techniques used in aggregated time-series 
forecasting tasks. Its predictive ability is comparable only to massive LSTM models. However, LSTM models need 
to be trained on a hyperparameter space that is orders of magnitudes larger than our MaxEnt model and lacks 
a clear interpretation. In fact, the parameters of LSTM models can no longer be interpreted as effective interac-
tions between different zones. Our model can select the observables that are important for car-sharing mobility.

For example, having defined that time-lagged correlations are essential observables, we add them to the model 
and find out that they are sufficient to explain time variations and extreme events.

Our finding that linear correlations are a key ingredient to predict mobility patterns is an important result 
that requires additional investigations.

Moreover, the benchmarked models are built ad hoc for forecasting tasks. However, as we showed above, our 
trained model can be applied to other problems like extreme event prediction and multiple-horizon forecasting. 
In the case of methodologies other than ours, new models have to be trained to deal with new tasks, thus losing 
generality and increasing computational costs.

In this article, we compare not only predictive abilities but also computational  costs47 and interpretability.
In Supplementary information, we show the prediction ability for three additional cities: Rome, Florence, 

and Turin, showing also that our approach is general.
Given our results, several research directions could be taken to improve and extend the results:

• A more extensive study on the effects of seasonality could help in building better models. Season-dependent 
models could be built by taking into account larger datasets.

• Evaluate how the prediction ability of the Maximum Entropy models is dependent upon the city’s structure 
or the resolution of the time series.

• Entangling mobility patterns with other city indicators, such as socio-political disparities and economic 
indicators, can lead to a better model that depicts human distribution.

• The inclusion of non-linear interaction in the ME models could be difficult if made by defining standard 
observables. Instead, hidden variables approaches could be taken into account, e.g. Restricted Boltzmann 
 Machines48.

• The ME models could be adapted to perform other anomaly detection tasks, i.e. identifying parts of the time 
series which are not standard fluctuations of the  system49,50.

• Its prediction ability could be benchmarked with more  models30, highlighting the pros and cons of the dif-
ferent techniques.

• The possibility of multiple horizon forecasting could be expanded and benchmarked with models bulti for 
long-range predictions.

Methods
Dataset. The dataset used in this work is a log of the locations of cars belonging to Enjoy, a famous Italian 
car-sharing service. We report all the details about collecting and handling data in the section Data Availability.

We collected the data recording all the movements of Enjoy cars within the cities of Milan, Florence, Turin, 
and Rome in 2017. In the rest of this article, we will focus mainly on parking events, but our methods and analy-
ses could also be applied to study the volume of travel events. One aim of the work was to predict the number 
of vehicles parked at a given time in each city district. To this end, we divided the service area into the different 
municipalities (we will call them zones). We considered different tessellation strategies (e.g., using hexagons 
with a 900m side), but the municipality division provides more statistically stable training data, and thus more 
precise models.
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For each type of event (parked car) we collected, we defined the activity of a zone as the number of events 
(i.e., cars parked) occurring there in a certain fixed amount of time δt . Indicating each zone with the index i, 
we obtained for each of them a discrete time series xi(t) representing the activity of the zone i in the time frame 
[t, t + δt] . We will indicate with t = T the last time frame observed in the data. In the following, we will use a 
δt = 1800 s, corresponding to 30 minutes. We chose this time bin width to have a stable average activity 〈xi(t)〉 
and a stable variance σ 2(xi(t)) over all the zones. Indeed, narrower or larger time bins feature unstable mean 
or variance in time: the 30−minutes binning is significantly stable throughout the observation period. This 
characteristic helps the model generalize and predict better as the distributions of the modelled quantities do 
not change too much in time.

The model we propose in this work is defined for real-valued time series. Having a real-valued model is not a 
trivial choice since it allows us to derive an exact analytical expression for its log-likelihood. However, the xi(t) 
activity we have defined so far belongs to N by definition. For this reason, we defined another kind of variable 
dividing the activity by the standard deviation:

where x is the original activity data, and σ is the standard deviation of the activity in time. In this case, for the 
population, we consider the typical day: the std is computed for the same time bin for every day. So, Eq. (13) 
gets into:

where tδt = t mod (δt) is the integer division of t by the δt time bin width, µi(tδt) is the average over all the activ-
ities of the zone i at times with the same value of t mod δt , and σi(tδt) is their standard deviation. To keep the 
notation formalism, we will indicate zi(t) with xi(t) , keeping in mind that x now refers to a normalized activity.

From now on, we will work on the normalized xi(t) : these indicate how much a given area is more “active”—
i.e., has more cars parked - concerning the average volume of that time bin t (typical day activity) by weighting 
this fluctuation with the standard deviation observed for that zone-hour volume. In this way, we can compare 
the signal of areas with high fluctuations and high activities with less frequented areas around the city.

The final step when processing data for inference and Machine Learning is to divide the data into a train set 
and a test set. Taking the time series representing all the Zones’ activity in a working year, we split the dataset, 80% 
of it for the train and 20% for the test set. We trained the models using the first dataset and tested their precision 
on the second one to check their ability to generalize to unseen data.

As a final remark, we indicate with t the time bin of activity, i.e. xi(t) indicate the activity of the zone i in a 
time range [tδt, (t + 1)δt].

Pseudo‑log‑likelihood maximization. The Boltzmann probability is defined over the whole time series 
of all the zones, i.e.

From this, it is straightforward to define the conditional probability of one-time step x(t) concerning all the 
previous ones:

Using equation (8), we can define the Pseudo-Log-Likelihood as:

Here, using Eq. (16) and substituting the functional form of the two total probabilities, we obtain

with

Substituting in eq. (17), we get:

(13)z =
x

σ
,

(14)zi(t) =
xi(t)

σi(tδt)
,

(15)P
(

x(t), x(t − 1), ..., x(t −�)

)

∝ exp
(

H(x(t), x(t − 1), ..., x(t −�))

)

.

(16)P(x(t) | x(t − 1), ..., x(t −�)) =
P
(

x(t), x(t − 1), ..., x(t −�)

)

P
(

x(t − 1), ..., x(t −�)

) .

(17)Lpseudo =
1

T −�

T
∑

t=�

logP(x(t)|x(t − 1), . . . , x(t −�)).

(18)P(x(t)|x(t − 1), . . . , x(t −�)) =
∏

i

1

Zi(t)
exp(−aix

2
i (t)+ xi(t)vi(t)),

(19)

Zi(t) =
1

√
ai

exp

(

vi(t)
2

4ai

)
∫ vi(t)/2

√
ai

−∞
dze−z2 =

1
√
ai

exp

(

vi(t)
2

4ai

)

I

(

vi(t)

2
√
ai

)

,

vi(t) =
d

∑

n=1

∑

δ

(Jδnx
n(t − δ))i + hi .



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:2993  | https://doi.org/10.1038/s41598-023-30134-9

www.nature.com/scientificreports/

and we can calculate the gradients of the Lpseudo with reference to the parameters:

where

and

Since we can compute exactly the gradients and the cost function, the parameters’ inference is relatively easy 
and does not need an approximation.

Once the parameters of the model have been inferred with some optimisation method, it is possible to use it 
to predict the temporal evolution of the normalized activities of the system. Given some specific state of the 
system unit time t − 1 , i.e. (x(t − 1), . . . x(t −�)) (past time steps further than � from t are not relevant), we 
can use equation (18) to predict the next step x(t). Since the probability in (18) is a normal distribution whose 
average is entirely defined by (x(t − 1), . . . x(t −�)) , the best prediction of xi(t) is the average of the distribution 
�xi(t)� = 1

2ai

(

vi(t)+ 1
Zi(t)

)

.
In other words, we are using the generative model to make a discrimination task. In this way, it is possible 

to compare this model with standard machine learning ones by checking their precision in predicting the time 
series. To avoid over-fitting, we used L1-regularization51,52. An in-depth description of the technique can be 
found in the references. In practice, the cost function that has to be optimized is:

The first term of this sum is the Log-likelihood; instead, the second term is the regularization term.
Performing the gradient, we obtain the following:

where sign is the sign function.
The training curves show no sign of overfitting, as the log-likelihood asymptotically stabilizes for the valida-

tion and train sets (see Fig. R1 in Supplementary Information).

Data availability
The data has been collected via the Enjoy APIs, scraping the information through a client account. We obtained 
information about the area of service (i.e., the limit where people can start and end their ride), the location of 
vehicles, and the points of interest (POIs) related to the service (such as fuel stations and reserved parking) from 
the API endpoints. The endpoints used have base URL https://enjoy.eni.com/ajax/ and the following endpoints: 
retrieve_areas for the area, retrieve_vehicles for cars, and retrieve_pois for points of interests. Through the scrap-
ing procedure, we collected a series of events that are divided into two categories: parking events and travel events 
of each Enjoy car we could observe. Each event comes with information such as the car’s number plate, the time 
at which the event occurred (with the precision of seconds), and the latitude and longitude of the parking spot in 
the case of parking events. Starting and arrival points in the case of travel events are also recorded. We included 
the activity for Milan in Supplementary Information files: the dataframe format shows the 30−min binning for 
each zone ( ZONE_IDX ) for each working week ( WORKING_WEEK ). We also included the shapefiles for the 
municipalities and files for weather conditions and strikes. The datasets for the other cities used and analyzed 
during the current study are available from the corresponding author upon reasonable request.
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∂Lpseudo
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√
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−
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(24)C(θ) = log P(θ |X) = log P(X|θ)− �
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i

|θi| + cost.

(25)
∂C(θ)
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∂ log P(X|θ)
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