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Numerical solution of neutral 
delay differential equations using 
orthogonal neural network
Chavda Divyesh Vinodbhai  & Shruti Dubey *

In this paper, an efficient orthogonal neural network (ONN) approach is introduced to solve the higher-
order neutral delay differential equations (NDDEs) with variable coefficients and multiple delays. 
The method is implemented by replacing the hidden layer of the feed-forward neural network with 
the orthogonal polynomial-based functional expansion block, and the corresponding weights of the 
network are obtained using an extreme learning machine(ELM) approach. Starting with simple delay 
differential equations (DDEs), an interest has been shown in solving NDDEs and system of NDDEs. 
Interest is given to consistency and convergence analysis, and it is seen that the method can produce 
a uniform closed-form solution with an error of order 2−n , where n is the number of neurons. The 
developed neural network method is validated over various types of example problems(DDEs, NDDEs, 
and system of NDDEs) with four different types of special orthogonal polynomials.

Delay differential equation (DDE) plays a crucial role in epidemiology, population growth, and many math-
ematical modeling problems. In DDEs, the dependent variable depends not only on its current state but also 
on a specific past state. One type of DDE in which time delays are included in the state derivative is called the 
neutral delay differential equation (NDDE). Delay terms are classified into three types: discrete, continuous, and 
proportional delay. In this paper, we are focusing on proportional DDEs and NDDEs. One famous example of 
proportional delay differential equations is the pantograph differential equation which was first introduced  in1.

Generally, the exact solution of delay differential equations is complicated to find, and due to the model’s 
complexity, many DDEs do not have an exact solution. Various numerical schemes have been developed over the 
years to find the approximate solution of delay differential equations. There are several  articles2–9 that illustrate 
some exact and numerical methods for approximate solutions of DDEs and NDDEs.

Artificial neural networks(ANNs) have been utilised to produce an approximate solution of differential equa-
tions for the past 22 years. A neural network approach for several ordinary and partial differential equations 
was first proposed by Lagaris et al.  in10. The approximate solution delivered by the artificial neural networks 
has a variety of advantages: (i) The derived approximation of the solution is in closed analytic form. (ii) The 
generalization ability of an approximation is excellent. (iii) Discretization of derivatives is not required. Many 
articles on approximation artificial neural network solutions to different differential equations are available 
in the  literature11–20. As far as we know, the studies for obtaining an approximate solution to delay differential 
equations using artificial neural networks are limited. There is very little literature available for solving delay 
differential equations using ANNs. J. Fang et al. solved first-order delay differential equations with single delay 
using  ANN21.  In22, Chih-Chun Houe et al. obtained approximate solutions of proportional delay differential 
equation using ANN. All these artificial neural network approaches suffer from common problems: (1) All the 
algorithms are time-consuming and therefore they are computationally expansive numerical optimization algo-
rithms, (2) They completely depend on the trial solution, which is difficult to construct for higher dimensional 
problems. Recently  in23, Manoj and Shagun obtained an approximate solution of differential equations using an 
optimization-free neural network approach in which they trained the network weights using ELM  algorithm24. 
 In25, authors solved the first-order pantograph equation using the optimization-free ANN approach. Linear first-
order delay differential-algebraic equations have been solved using Legendre neural network  in26.

This work presents an orthogonal neural network with an extreme learning machine algorithm(ONN-ELM) 
to obtain an approximate solution for higher-order delay differential equations, neutral delay differential equa-
tions, and a system with multiple delays and variable coefficients. The ONN model is a particular functional link 
neural network(FLNN)12,27–29 case. It has the advantage of fast and very accurate learning. The entire procedure 
becomes much quicker than a traditional neural network because it removes the high-cost iteration procedure 
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and trains the network weights using the Moore-Penrose generalized inverse. The following are the benefits of 
the proposed approach:

• It is a single hidden layer neural network, we only need to train the output layer weights by randomly select-
ing the input layer weights.

• We use an unsupervised extreme learning machine algorithm to train the output weights; no optimization 
technique is used in this procedure.

• It is simple to implement, accurate compared to other numerical schemes mentioned in the literature, and 
runs quickly.

This work considers four different orthogonal polynomials-based neural networks: (i) Legendre neural net-
work, (ii) Hermite neural network, (iii) Laguerre neural network, and (iv) Chebyshev neural network with ELM 
for solving DDEs, NDDEs, and systems of NDDEs with multiple delays and variable coefficients. The interest is 
to find the orthogonal neural network among these four that can produce more accurate solution.

The layout of this paper is as follows. In “Preliminaries” section, we present some definitions and properties of 
orthogonal polynomials and a description of the considered problems. In “Orthogonal neural network” section, 
we describe the architecture of the orthogonal neural network(ONN) with an extreme learning algorithm(ELM). 
“Error analysis” section discusses the convergence analysis and error analysis. The methodology of the proposed 
method is presented in “Methodology” section. Various numerical illustrations are presented in “Numerical 
illustrations” section and a comparative study is given in “Comparative analysis” section.

Preliminaries
In this section, first, we introduce basic definitions and some properties of the orthogonal polynomials. Through-
out the paper, we will use Pn(x) to represent the orthogonal polynomial of order n.

Orthogonal polynomial. 
Definition 1 The orthogonal polynomials are special class of polynomials Pn(x) defined on [a, b] that follow 
an orthogonality relation as,

where n,m ∈ N , δm,n is Kronecker delta, g(x) is a weight function and kn =
∫ b
a g(x)[Pn(x)]

2dx.

Remark 

1. If a weight function g(x) = 1 , then the orthogonal polynomial Pn(x) is called Legendre polynomial.
2. If a weight function g(x) = (1− x2)−

1
2 , then the orthogonal polynomial Pn(x) is called Chebyshev polyno-

mial of first kind.
3. If a weight function g(x) = e−x2 , then the orthogonal polynomial Pn(x) is called Hermite polynomial.
4. If a weight function g(x) = e−x , then the orthogonal polynomial Pn(x) is called Laguerre polynomial.

Properties of orthogonal polynomials. The following are some of the remarkable properties of a set of orthogo-
nal polynomials:

• Each polynomial Pn(t) is orthogonal to any other polynomial of degree < n in a set of orthogonal polynomials 
{P0(t), . . . ,Pn(t), . . . , }.

• Any set of orthogonal polynomials has a recurrence formula that connects any three consecutive polynomi-
als in the sequence, i.e., the relation Pn+1(t) = (ant + bn)Pn(t)− cnPn−1(t) exists, with constants an, bn, cn 
depending on n.

• The zeroes of orthogonal polynomials are real numbers.
• There is always a zero of orthogonal polynomial Pn+1(t) between two zeroes of Pn(t).

Moore-Penrose generalized inverse. In this section, the Moore-Penrose generalized inverse is intro-
duced.

There can be problems in obtaining the solution of a general linear system Ax = y , where A may be a singular 
matrix or may even not be square. The Moore-Penrose generalized inverse can be used to solve such difficulties. 
The term generalized inverse is sometimes referred to as a synonym of pseudoinverse. More precisely, we define 
the Moore-Penrose generalized inverse as follows:

Definition 2 30 A matrix B of order n×m is the Moore-Penrose generalized inverse of matrix A of order m× n , 
if the following hold

∫ b

a
g(x)Pm(x)Pn(x)dx = δm,nkn,

ABA = A, BAB = B, (AB)T = AB, (BA)T = BA,
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where AT denotes the transpose of matrix A. The Moore-Penrose generalized inverse of matrix A is denoted 
by A†.

Definition 3 x0 ∈ R
n is said to be a minimum norm least-squares solution of a general linear system Ax = y 

if for any y ∈ R
m

where ‖.‖ is the Euclidean norm.

In other words, if a solution x0 has the smallest norm among all the least-squares solutions, it is considered 
to be a minimum norm least-squares solution of the general linear system Ax = y.

Theorem 1 30 Let B be a matrix with a minimum norm least-squares solution to the linear equation Ax = y . Then 
B = A†, the Moore-Penrose generalized inverse of matrix A, is both required and sufficient.

Problem definition. In this subsection, we present the general form of the pantograph equation, higher 
order delay differential equation, higher order neutral delay differential equation, and the system of higher order 
delay differential equation with variable coefficients and multiple delays.

The generalized Pantograph equation. Pantograph type equation arises as a mathematical model in the study of 
the wave motion of the overhead supply line to an electric locomotive. The following equation gives the general-
ized form of a pantograph type equation with multiple delays:

with initial conditions

where g(t), a(t), bi(t) and ci(t) is continuous function, 0 < qi , qj < 1 for some k, l ∈ N and t ∈ [t0, t1] for some, 
t0, t1 ∈ R.

Higher order DDEs and NDDEs. 

• Consider the general form of Higher-order DDEs with multiple delay 

 with initial conditions 

 where q′is ∈ (0, 1) for i =1,...,n and zk denotes the kth derivative of z(t).
• Consider the general form of Higher-order NDDEs with multiple delay 

 with initial condition 

 where all qji ∈ (0, 1) for j = 1, .., k + 1 , i = 1, . . . , nj , nj , k ∈ N and zk denotes the kth derivative of z(t).

Higher order system of DDE. Consider the general form of higher order coupled neutral delay differential equa-
tion with multiple delays as:

�x0� ≤ �x�,∀x ∈ {x : �Ax − y� ≤ �Az − y�,∀z ∈ R
n}

(1)z′(t) = a(t)z(t)+

k∑

i=1

bi(t)z(qit)+

l∑

j=1

cj(t)z
′(qjt)+ g(t),

(2)z(t0) = z0,

(3)zk(t) = f
(
t, z(t), ...zk−1(t), z(q1t), ...z(qnt)

)
,

(4)z(t0) = z0, z
′(t0) = z1, . . . , z

k−1(t0) = zk−1,

(5)
zk(t) = f (t,z(t), ...zk−1(t), z(q11t), . . . ,

z(q1n1 t), z
′(q21t), . . . , z

′(q2n2 t), . . . , z
k(qk+1

1 t), . . . , zk(qk+1
nk+1

t)),

(6)z(t0) = z0, z
′(t0) = z1, . . . , z

k−1(t0) = zk−1,

(7)

zk1 (t) = f (t, z1(t), ...z
k−1
1 (t), z2(t), ...z

k
2 (t), z1(q

1
1t), . . . , z1(q

1
n1
t), z2(p

1
1t), . . . ,

z2(p
1
m1
t), z′1(q

2
1t), . . . , z

′
1(q

2
n2
t), z′2(p

2
1t), . . . , z

′
2(p

2
m2
t), . . . , zk1 (q

k+1
1 t), . . . ,

zk1 (q
k+1
nk+1

t), zk2 (p
k+1
1 t), . . . , zk2 (p

k+1
mk+1

t)),

z1(t0) = z10 , z′1(t0) = z11 , . . . , z
k−1
1 (t0) = z1k−1,
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where nj ,mj , lj , hj ∈ N and all qji1 , p
j
i2
, r

j
i3
, s
j
i4
∈ (0, 1) for j = 1, .., k + 1 , i1 = 1, . . . , nj , i2 = 1, . . . ,mj , i3 = 1, . . . , lj , 

i4 = 1, . . . , hj.

Orthogonal neural network
In this section, we introduce the structure of a single-layered orthogonal neural network(ONN) model with an 
extreme learning machine(ELM) algorithm for training the network weights.

Structure of orthogonal neural network (ONN). Orthogonal neural network(ONN) is a single-lay-
ered feed-forward neural network, which consists of one input neuron t, one output neuron N(t, a,w) and a hid-
den layer is eliminated by the orthogonal functional expansion block. The architecture of an orthogonal neural 
network is depicted in Fig. 1.

Consider a 1-dimensional input neuron t. The enhanced pattern is obtained by orthogonal functional expan-
sion block as follows:

Here N(t, a,w) =
∑n

i=0 wiPi(ait) is the output of the orthogonal neural network, where a′is are randomly selected 
fixed weights and w′

i s are the weights to be trained.

Extreme learning machine (ELM) algorithm. For a given sample points (tj , yj) , tj ∈ R
n and yj ∈ R , 

for j = 0, 1, . . . ,m , a single-layer feed-forward neural network with (n+ 1) neurons has the following output:

where gi is the activation function of i-th neuron in a hidden layer, a′is are the randomly selected fixed weights 
between the input layer and hidden layer, and w′

i s are the weights between the hidden layer and output, which 
need to be trained.

When the neural network completely approximates the given data, i.e., the output of the neural network and 
actual data are equal, the following relation hold:

(8)

zk2 (t) = g(t, z1(t), ...z
k−1
1 (t), z2(t), ...z

k
2 (t), z1(r

1
1 t), . . . , z1(r

1
l1
t), z2(s

1
1t), . . . ,

z2(s
1
h1
t), z′1(r

2
1 t), . . . , z

′
1(r

2
l2
t), z′2(s

2
1t), . . . , z

′
2(s

2
h2
t), . . . , zk1 (r

k+1
1 t), . . . ,

zk1 (r
k+1
lk+1

t), zk2 (s
k+1
1 t), . . . , zk2 (s

k+1
hk+1

t)),

z2(t0) = z20 , z′2(t0) = z21 , . . . , z
k−1
2 (t0) = z2k−1,

[P0(a0t),P1(a1t), . . . ,Pn(ant)].

n∑

i=0

wigi(aitj), j = 0, 1, . . . ,m,

Figure 1.  The structure of orthogonal neural network.
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Equation (9) can be written in matrix form as:

where the hidden layer output matrix A is defined as follows:

and w = [w0,w1, . . . ,wn]
T , b = [y0, y1, . . . , ym]

T.
For the given training points t ′j s ∈ R

n and the weights a′is , the matrix A can be calculated and the weights w′
i s 

can be calculated by solving the linear system Aw = b.

Theorem 2 The system Aw = b is solvable in the following several cases: 

1. If A is a square matrix, then w = A
−1

b

2. If A is a rectangular matrix, then w = A
+
b, and w is the minimal least square solution of Aw = b. Here A+ 

is a pseudo inverse of A.
3. If A is a singular matrix, then w = A

+
b and A+ = AT(�I+ AA

T)−1, where � is the regularization coefficient. 
We can set a value of � according to the specific instance.

Error analysis
This section will discuss the convergence result and error analysis of the ONN-ELM method for solving the delay 
and neutral delay differential equations.

Theorem 3 24 Let single layer feed-forward orthogonal neural network N(t, a,w) be an approximate solution of one-
dimensional neutral delay differential equation, for m+ 1 arbitrary distinct sample points (tj , yj) for j = 0, 1, ...m,  
where ti , yi ∈ R, then the orthogonal expansion layer output matrix A is invertible, and �Aw − b� = 0.

Theorem 4 Let z ∈ C∞(t0, tm) , ẑn = N(t, a,w) be the orthogonal neural network with n neurons in the hidden 
layer and en be the absolute error with n hidden neurons, then �en� → 0 as n → ∞.

Proof The Taylor expansion formula gives us the following expression for z(t) on (t0, tm):

Let us define zn(t) =
∑n−1

i=0

zi(t+0 )

i! (t − t0)
i , then we get

Let L = span{P0(t),P1(t), . . . , Pn(t)} and let ẑn(t) be the best approximation of z(t) in L given as, 
ẑn(t) =

∑n−1
i=0 wiPi(ait) , where wi ’s are the weights obtained by ELM algorithm. we get

In particular, taking z̄(t) = zn(t) we have

Thus,

where, M = max�zn(c)(t − t0)
n� , for t ∈ (t0, tm).

(9)
n∑

i=0

wigi(aitj) = yj . j = 0, 1, . . . ,m.

(10)Aw = b,

(11)A =





g0(a0t0) g1(a1t0) · · · gn(ant0)
g0(a0t1) g1(a1t1) · · · gn(ant1)

.

.

.
.
.
.

. . .
.
.
.

g0(a0tm) g1(a1tm) · · · gn(antm)




,

(12)z(t) = z(t+0 )+ z′(t+0 )(t − t0)+
z′′(t+0 )

2!
(t − t0)

2 + ...+
zn(c)

n!
(t − t0)

n
, c ∈ (t0, t1).

(13)�z(t)− zn(t)� =
1

n!
�zn(c)(t − t0)

n�.

(14)�z(t)− ẑn(t)� ≤ �z(t)− z̄(t)�, ∀z̄(t) ∈ L.

(15)

�en(t)� = �z(t)− ẑn(t)�

≤ �z(t)− zn(t)�

=
1

n!
�zn(c)(t − t0)

n�

(16)
�en(t)� ≤ �

zn(c)

n!
(t − t0)

n�

≤
M

2n
,
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Moreover, from Eq. (16) we deduce that �en(t)� → 0 for large value of n. This shows that ONN has high 
representational abilities and it can approximate the exact solution with almost no error.   �

Methodology
This section explains the method to obtain an approximate solution of second-order NDDE using the ONN-
ELM algorithm. It can be easily extended to the higher-order NDDE and the higher-order DDE is a special case 
of the higher-order NDDE.

Consider the general form of linear second-order NDDE

with initial condition z(a) = z0 and z′(a) = z1 or boundary condition z(a) = z2 and z(b) = z3 , where 
z0, z1, z2, z3 ∈ R , a(t), b(t), cj(t), dk(t), el(t), f (t) are continuously differentiable function for t ∈ (a, b) and 
m1,m2,m3 ∈ N.

Using ONN-ELM with n neurons, an approximate solution of Eq. (17) is obtained in the form:

where wi ’s are the output weights that need to be trained and Pi(t) is the i-th orthogonal polynomial.
Since the approximate solution obtained by the ONN-ELM algorithm is the linear combination of the orthog-

onal polynomials, it is infinitely differentiable and we have,

Substituting Eqs. (18)–(23) into the second order neutral delay differential equation (17), we have

We can write Eq. (24) as:

where,

(17)

z′′(t)+ a(t)z′(t)+ b(t)z(t)+

m1∑

j=1

cj(t)z(αjt)+

m2∑

k=1

dk(t)z
′(βkt)

+

m3∑

l=1

el(t)z
′′(γl t) = f (t), t ∈ (a, b),

(18)ẑn(t) =

n∑

i=0

wiPi(t),

(19)ẑ′n(t) =

n∑

i=0

wiP
′
i(t),

(20)ẑ′′n (t) =

n∑

i=0

wiP
′′
i (t),

(21)
m1∑

j=1

ẑn(αjt) =

m1∑

j=1

n∑

i=0

wiPi(αjt),

(22)
m2∑

k=1

ẑ′n(βkt) =

m2∑

k=1

n∑

i=0

βkwiP
′
i(βkt),

(23)
m3∑

l=1

ẑ′′n (γl t) =

m3∑

l=1

n∑

i=0

γ 2
l wiP

′′
i (γl t).

(24)

n∑

i=0

wiP
′′
i (t)+ a(t)

n∑

i=0

wiP
′
i(t)+ b(t)

n∑

i=0

wiPi(t)+

n∑

i=0

wi

m1∑

j=1

cj(t)Pi(αjt)

+

n∑

i=0

wi

m2∑

k=1

βkdk(t)P
′
i(βkt)+

n∑

i=0

wi

m3∑

l=1

γ 2
l el(t)P

′′
i (γl t) = f (t).

(25)
n∑

i=0

wiAi(t) = f (t),
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Using the discretization of interval [a, b] as a = t0 < t1 <, · · · ,< tm = b for m ∈ N , define fm = f (tm) . At these 
discretized points, Eq. (25) is to be satisfied, that is:

Equation (26) can be written as a system of equations as:

where w = [w0,w1, . . . ,wn]
T,

and b1 = [f (t0), f (t1), . . . , f (tm)]T.
Case:1 Consider Eq. (17) with the initial conditions. Then the following linear system is obtained:

Case:2 Consider Eq. (17) with the boundary conditions. Then the following linear system for NDDE is obtained:

To calculate the weight vector w of the network, we use the extreme learning algorithm, that is:

where A† = (AT
A)−1

A
T is the least square solution of Eq. (27).

Note: Similar methodology can be used for the higher order neutral delay differential equation and the system 
of higher order neutral delay differential equations.

Ai =P′′
i (t)+ a(t)Pi(t)+ b(t)Pi(t)+

m1∑

j=1

cj(t)Pi(αjt)+

m2∑

k=1

βkdk(t)P
′
i(βkt)

+

m3∑

l=1

γ 2
l el(t)P

′′
i (γl t).

(26)
n∑

i=0

wiAi(tm) = f (tm), ∀m ∈ N.

A1w = b1,

A1 =





A0(t0) A1(t0) · · · An(t0)
A0(t1) A1(t1) · · · An(t1)

.

.

.
.
.
.

. . .
.
.
.

A0(tm) A1(tm) · · · An(tm)




,





A0(t0) A1(t0) · · · An(t0)
A0(t1) A1(t1) · · · An(t1)

.

.

.
.
.
.

. . .
.
.
.

A0(tm) A1(tm) · · · An(tm)
P0(a) P1(a) · · · Pn(a)
P′0(a) P′

1(a) · · · P′n(a)





� �� �
A





w0

w1

.

.

.

wn





� �� �
w

≈





f0
f1
.
.
.

fm
z0
z1





� �� �
b





A0(t0) A1(t0) · · · An(t0)
A0(t1) A1(t1) · · · An(t1)

.

.

.
.
.
.

. . .
.
.
.

A0(tm) A1(tm) · · · An(tm)
P0(a) P1(a) · · · Pn(a)
P0(b) P1(b) · · · Pn(b)





� �� �
A





w0

w1

.

.

.

wn





� �� �
w

≈





f0
f1
.
.
.

fm
z2
z3





� �� �
b

(27)w = A
†
b,
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Algorithm 1 Pseudocode for solution of NDDE using ONN and ELM
algorithm

Require:
Generate the set of training points tj ’s from the problem domain D.
Define the orthogonal polynomial P (n, t), where P (n, t) is orthogonal
polynomial of degree n.
Define the derivatives of the orthogonal polynomial as DP (n, t),
DDP (n, t), DDDP (n, t)... .

procedure :
for j ≤ m do � Construct a residual matrix of given NDDE as,

for i ≤ n do

A(i, j) = F (tj , P (i, tj), DP (i, tj), ..., P (i, a1tj), DP (i, a2tj), ...)

end for
end for

Add a row in the residual matrix corresponding to each initial/boundary
condition.

for j ≤ m do � Compute the force term vector of given NDDE as,

b(j) = f(tj)

end for

Add initial/boundary values in vector b(j).
Write the obtained matrix system in the form.

β ∗A = b.

where β = {β1, β2, ..., βn}.
Using the Moore-Penrose generalized inverse method, calculate the value
of β.

end procedure

 

• Steps of solving NDDEs using an ONN-ELM algorithm:

1. Discretize the domain as a = t0 < t1 < t2 < ... < tm = b.
2. Construct the approximate solution by using the orthogonal polynomial as an activation function that is, 

 where a′is are the randomly generated fixed weights.
3. At the discrete points, substitute the approximate solution and its derivatives into the differential equation 

and its boundary conditions and obtain the system of equations Aw = b.
4. Solve the system of equations Aw = b by ELM algorithm and obtain the network weights w′

i s.
5. Substitute the value of w′

i s and get an approximate solution of DDE.

Numerical illustrations
This section considers the higher order delay and neutral delay differential equations with multiple delays and 
variable coefficients. We also consider the system of delay and neutral delay differential equations. In all the 
test examples, we use the special orthogonal polynomials based neural network like Legendre neural network, 
Laguerre neural network, Chebyshev neural network, and Hermite neural network. Further, to show the reli-
ability and powerfulness of the presented method; we compare the approximate solutions with the exact solution. 
All computations are carried out using Python 3.9.7 on Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz 1.80 GHz 
and the Window 10 operating system. We calculate the relative error which is defined as follows.

Example 6.1 22 Consider the second-order boundary valued proportional delay differential equation with vari-
able coefficients

N(t,w) =

n∑

i=0

wiPi(ait),

Relative error =

∥∥∥∥
exact solution− numerical solution

exact solution

∥∥∥∥

z′′(t) = 0.5z(t)+ e0.5t z

(
t

2

)
− 2e−t

,

z(0) = 0, z(1) = e−1
.
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The exact solution of the given equation is te−t.

We employ four ONNs to obtain the approximate solution of the given second-order DDE with variable 
coefficients. We choose ten uniformly distributed points in [0, 1]. The relative errors for all ONNs are shown in 
Fig. 3. Obtained relative errors for different orthogonal neural networks are reported in Table 1, and we compare 
the approximate solutions with the exact solution in Fig. 2.

Table 1 and Fig. 3 clearly show that the Chebyshev polynomial-based ONN performs best with the maximum 
relative error 5.61× 10−8 . Table 2 shows the comparison of the maximum relative error for Example 6.1 using 
the Legendre, Laguerre, Hermite, and Chebyshev neural networks with various numbers of neurons (n = 5, 8, 
and 11) and their respective computational time. Additionally, Table 2 shows that all four neural networks sat-
isfy Theorem 4, and for n = 5 , all four orthogonal neural networks show similar accuracy. However, Chebyshev 
neural network performs better with n = 8, 11.

Table 1.  The relative error for Example 6.1 with different orthogonal neural networks.

t Legendre neural network Hermite neural network Laguerre neural network Chebyshev neural network

0.1 1.56e−08 2.26e−08 1.39e−08 5.61e−08

0.2 6.20e−08 5.89e−08 6.49e−08 4.54e−08

0.3 4.57e−08 4.39e−08 4.89e−08 4.12e−08

0.4 1.07e−08 9.71e−09 1.40e−08 2.09e−08

0.5 1.94e−08 1.88e−08 2.26e−08 4.57e−08

0.6 5.66e−08 5.64e−08 5.98e−08 1.06e−08

0.7 6.84e−08 6.86e−08 7.17e−08 2.73e−08

0.8 5.09e−08 5.14e−08 5.42e−08 1.32e−08

0.9 6.99e−08 7.08e−08 7.34e−08 1.79e−08

1 7.08e−10 4.55e−10 2.93e−09 4.63e−09

Figure 2.  Comparison of the exact solution with the obtained approximate solutions of Example 6.1.
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Example 6.2 2 Consider the second-order neutral delay differential equation with multiple delays

where f (t) = −t2 − t + 1 , t ∈ (0, 1).

The exact solution of the given equation is z(t) = t2.
This equation is solved using four ONNs architecture with ten uniformly distributed training points and with 

6,8, and 9 neurons in the hidden layer. Relative errors for the different ONNs with 6,8, and 9 neurons as activa-
tion functions are reported in Table 3. Figure 4 shows an error graph of different orthogonal neural networks, 
and a comparison of approximate solutions with the exact solution is shown in Fig. 5.

From Table 4 and Fig. 4 we conclude that for the given second-order neutral delay differential equation, 
Chebyshev polynomial-based ONN performs best with the maximum relative error 7.19× 10−14 . Additionally, 
Table 3 shows that all four neural networks satisfy Theorem 4.

Example 6.3 2 Consider the second-order neutral delay differential equation with variable coefficients

The exact solution of the given equation is z(t) = t2 + 1.

z′′(t) =
3

4
z(t)+ z

(
t

2

)
+ z′

(
t

2

)
+ 0.5z′′

(
t

2

)
+ f (t),

z(0) = 0, z′(0) = 0,

z′′(t) = z′
(
t

2

)
−

t

2
z′′
(
t

2

)
+ 2, t ∈ (0, 1)

z(0) = 1, z′(0) = 0.

Figure 3.  Error graph for different orthogonal neural networks with different numbers of neurons for Example 
6.1.

Table 2.  Comparision of maximum relative error for Example 6.1 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

5 0.004 0.0049 0.009 0.0049 0.002 0.0049 0.008 0.0049

8 0.012 7.07e−08 0.011 6.97e−08 0.003 7.07e−08 0.043 7.07e−08

11 0.019 1.82e−11 0.011 7.74e−06 0.003 6.81e−10 0.043 3.93e−12

Table 3.  Comparision of maximum relative error for Example 6.2 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

6 0.007 8.25e−14 0.004 2.06e−12 0.002 2.87e−13 0.001 3.17e−14

8 0.009 4.94e−08 0.004 7.29e−09 0.004 7.73e−13 0.002 7.19e−14

9 0.019 2.22e−14 0.069 1.57e−08 0.017 6.13e−13 0.022 6.77e−15
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Figure 4.  Error graph for different orthogonal neural networks with different numbers of neurons for Example 
6.2.

Figure 5.  Comparison of the exact solution with the obtained approximate solutions of Example 6.2.

Table 4.  The relative error for Example 6.2 with different orthogonal neural networks.

t Legendre neural network Hermite neural network Laguerre neural network Chebyshev neural network

0.1 4.94e−08 7.73e−13 7.29e−09 7.19e−14

0.2 1.19e−08 1.90e−13 1.32e−09 1.00e−14

0.3 5.05e−09 7.61e−14 3.83e−10 9.25e−15

0.5 1.49e−09 1.26e−14 8.31e−12 5.55e−15

0.6 8.88e−10 3.08e−16 3.37e−11 6.32e−15

0.7 5.20e−10 7.81e−15 5.12e−11 7.13e−15

0.8 2.81e−10 1.37e−14 5.75e−11 8.15e−15

0.9 1.17e−10 1.80e−14 5.85e−11 9.45e−15

1 2.66e−15 2.17e−14 5.68e−11 1.11e−14
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To obtain the approximate solution of the given equation, we use four ONNs with ten uniformly distributed 
training points in [0,1] and with 8,9, and 11 neurons as activation functions in the hidden layer. Relative errors 
for the different ONNs and with different numbers of neurons are reported in Table 6. The exact and approximate 
solutions are compared in Fig. 7. Figures 6,  7 shows the absolute relative error of four special ONNs.

From Table 5 and Fig. 6, we conclude that for the given second-order neutral delay differential equation, 
Chebyshev polynomial-based ONN provides the best accurate solution with the maximum relative error 
2.29× 10−15 . Additionally, Table 6 shows that all four neural networks satisfy Theorem 4.

Example 6.4 31 Consider the third-order pantograph equation

The exact solution of the given equation is z(t) = cos(t).

z′′′(t) = tz′′(2t)− z′(t)− z

(
t

2

)
+ tcos(2t)+ cos

(
t

2

)
, t ∈ (0, 1)

z(0) = 1, z′(0) = 0, z′′(0) = −1.

Figure 6.  Error graph for different orthogonal neural networks with different numbers of neurons for Example 
6.3.

Figure 7.  Comparison of the exact solution with the obtained approximate solutions of Example 6.3.
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To obtain the approximate solution of the given equation, we use four ONNs with ten uniformly distributed 
training points in [0,1] and with 8,11,13 neurons as activation functions in the hidden layer. Relative errors for 
the different ONNs with different numbers of neurons as activation functions are reported in Table 7. The exact 
and approximate solutions are compared in Fig. 8. Figure 9 shows the maximum relative error of four special 
ONNs with different numbers of neurons.

From Table 8 and Fig. 9, we conclude that for the given third-order neutral delay differential equation, Cheby-
shev polynomial-based ONN provides the best accurate solution with the maximum relative error 3.77× 10−10 . 
Additionally, Table 7 shows that all four orthogonal neural networks satisfy Theorem 4.

Comparative analysis
This section describes a comparative study of the proposed approach to the 1st-order pantograph equation and 
system of pantograph equations with other neural network approaches.

Example 7.1 25 Consider the pantograph equation with variable coefficients and multiple delays

where, g(t) = 1
8
e−t(12sin(t)+ 4et sin( t

2
)− 8cos(t)+ 3te

2t
3 sin( t

3
)).

The exact solution of the given equation is z(t) = sin(t)e−t.

z′(t) = 0.5z(t)+ 0.5e0.5t z

(
t

2

)
+

3

8
tz

(
t

3

)
+ g(t),

z(0) = 0,

Table 5.  The relative error for Example−6.3 with different orthogonal neural networks.

t Legendre neural network Hermite neural network Laguerre neural network Chebyshev neural network

0.0 3.50e−09 1.17e−13 1.52e−10 7.77e−16

0.1 3.46e−09 1.14e−13 8.90e−11 0.0

0.2 3.34e−09 1.01e−13 4.18e−11 1.06e−15

0.3 3.16e−09 8.06e−14 1.01e−11 1.83e−15

0.4 2.94e−09 5.28e−14 8.50e−12 2.29e−15

0.5 2.70e−09 1.98e−14 1.72e−11 2.13e−15

0.6 2.44e−09 1.58e−14 1.90e−11 1.63e−15

0.7 2.18e−09 5.27e−14 1.66e−11 1.04e−15

0.8 1.93e−09 8.93e−14 1.21e−11 2.70e−16

0.9 1.70e−09 1.24e−13 7.09e−12 4.90e−16

1.0 1.50e−09 1.52e−13 2.35e−12 8.88e−16

Table 6.  Comparision of maximum relative error for Example 6.3 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

8 0.007 3.50e−09 0.004 1.52e−10 0.002 1.52e−13 0.001 2.29e−15

9 0.009 3.07e−13 0.004 8.80e−11 0.004 1.69e−05 0.002 2.29e−15

11 0.019 3.07e−13 0.069 3.16e−11 0.017 1.80e−05 0.022 1.32e−15

Table 7.  Comparision of maximum relative error for Example 6.4 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

8 0.007 1.11e−05 0.004 1.11e−05 0.002 1.11e−05 0.001 1.11e−05

11 0.019 3.86e−08 0.004 6.56e−08 0.004 6.06e−08 0.004 3.86e−08

13 0.019 1.12e−09 0.069 3.11e−09 0.017 1.20e−06 0.022 3.77e−10
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We employ four ONNs to obtain the approximate solution of a given pantograph equation with multiple 
delays. We choose eight uniformly distributed points in [0, 1] with 5,8 and 11 neurons in the hidden layer. The 
relative errors with all four ONNs with different numbers of neurons are shown in Fig. 11. Obtained relative 
errors for the different orthogonal neural networks are reported in Table 9, and we compare the approximate 
solutions with the exact solution in Fig. 10.

Table 9 and Fig. 11 clearly show that the Chebyshev polynomial-based ONN performs best with the maximum 
relative error 3.40× 10−11.

The maximum relative error of a simple feed-forward neural network(FNN) method  in25 is 4.05× 10−10 and 
the maximum relative error of the proposed FLNN-based ONN method is 3.40× 10−11 . This comparison shows 
that the ONN method can obtain a better accuracy solution than simple FNN. Additionally, Table 9 shows that 
all four orthogonal neural networks satisfy Theorem 4.

Example 7.2 25 Consider the system of pantograph equation

Figure 8.  Comparison of the exact solution with the obtained approximate solutions of Example 6.4.

Figure 9.  Error graph for different orthogonal neural networks with different numbers of neurons for Example 
6.4.
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Table 8.  The relative error for Example 6.4 with different orthogonal neural networks.

t Legendre neural network Hermite neural network Laguerre neural network Chebyshev neural network

0 3.79e−10 7.39e−07 5.91e−10 1.00e−11

0.1 3.82e−10 5.75e−07 6.05e−10 6.11e−12

0.2 3.89e−10 3.94e−07 6.33e−10 5.81e−12

0.3 4.02e−10 2.05e−07 6.75e−10 2.65e−11

0.4 4.21e−10 1.32e−08 7.33e−10 5.73e−11

0.5 4.49e−10 1.79e−07 8.11e−10 9.98e−11

0.6 4.88e−10 3.71e−07 9.22e−10 1.54e−10

0.7 5.49e−10 5.65e−07 1.10e−09 2.20e−10

0.8 6.49e−10 7.63e−07 1.41e−09 2.92e−10

0.9 8.21e−10 9.72e−07 2.00e−09 3.54e−10

1 1.12e−09 1.20e−06 3.11e−09 3.77e−10

Table 9.  Comparision of maximum relative error for Example 7.1 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

5 0.007 0.0014 0.004 0.0014 0.002 0.0014 0.001 0.0014

8 0.019 7.02e−08 0.004 6.56e−08 0.004 7.02e−08 0.004 7.02e−08

11 0.019 4.75e−11 0.069 1.06e−06 0.017 2.63e−09 0.022 3.40e−11

Figure 10.  Comparison of the exact solution with the obtained approximate solutions of Example 7.1.
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The exact solutions of the given system of pantograph equation is z1(t) = et and z2(t) = e−t.

To obtain the approximate solutions of the given system of DDEs, we use four ONNs with twelve uniformly 
distributed training points in [0,1] and with 5,7, and 10 neurons in an orthogonal functional expansion block as 
activation functions. Relative errors for the different ONNs with 5,7, and 10 neurons as activation functions are 
reported in Tables 10 and 11. Comparison between the exact solution and approximate solutions are presented 
in Figs. 14 and 15. Figures 12, 13, 14 and 15 show the absolute relative error between four special ONNs and 
exact solutions.

From Tables 10 and 11, we conclude that for the given system of delay differential equation, Chebyshev 
polynomial-based ONN provides the best accurate solution for z1(t) and z2(t) with the maximum relative errors 
1.60× 10−9 and 5.11× 10−11 , respectively.

The maximum relative error of a simple feed-forward neural network(FNN) method  in25 for z1(t) and z2(t) 
with twelve training points are 1.93× 10−9 and 2.42× 10−9 respectively and the maximum relative error of 
the proposed FLNN-based ONN method for z1(t) and z2(t) with twelve training points are 1.60× 10−9 and 
5.11× 10−10 respectively. This comparison shows that the ONN method can obtain a better accuracy solution 
than simple FNN. Additionally, Tables 10 and 11 show that all four orthogonal neural networks satisfy Theorem 4.

Example 7.3 25 Consider the system of pantograph equation

z′1(t) = z1(t)− z2(t)+ z1

(
t

2

)
− e0.5t + et ,

z′2(t) = −z1(t)− z2(t)− z2

(
t

2

)
+ e−0.5t + et ,

z1(0) = 1, z2(0) = 1.

Figure 11.  Error graph for different orthogonal neural networks with different numbers of neurons for 
Example 7.1.

Table 10.  Comparision of maximum relative error of z1(t) for Example 7.2 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

5 0.005 0.06 0.004 0.0004 0.002 0.0004 0.001 0.0004

7 0.019 0.067 0.004 1.72e−06 0.004 1.93e−07 0.004 1.93e−07

10 0.019 3.23e−10 0.069 1.71e−06 0.017 1.81e−09 0.022 1.60e−10

Table 11.  Comparision of maximum relative error of z2(t) for Example 7.2 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

5 0.005 0.312 0.004 0.0006 0.002 0.0006 0.001 0.0006

7 0.019 0.02 0.004 1.94e−06 0.004 2.00e−07 0.004 6.47e−09

10 0.019 1.42e−08 0.069 2.20e−08 0.017 5.91e−06 0.022 5.11e−10
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where, f1(t) = cos(0.3t)− sin(0.2t)− sin(t)+ e0.3t − e0.5t,

f2(t) = −cos(0.3t)+ cos(0.5t)− 3sin(0.5t)+ cos(t)− e0.7t + et,

f3(t) = −cos(0.8t)+ sin(0.2t)− 3cos(t)− 2sin(t)+ e0.8t − 2et.

The exact solutions of the given system of pantograph equation are z1(t) = sin(t) , z2(t) = cos(t) , and 
z3(t) = et.

To obtain the approximate solution of the given system of DDEs, we use four ONNs with ten uniformly 
distributed training points in [0,1] and with 7,10, and 13 neurons in an orthogonal functional expansion block 
as activation functions. Relative errors for the different ONNs with 7,10, and 13 neurons as activation functions 
are reported in Tables 12, 13, and 14. Comparison between the exact solution and approximate solutions are 
presented in Figs. 16, 17, 18, and 19. Figures 16, 20, and 21 show the absolute relative error between four special 
ONNs and exact solutions.

From Tables 12, 13 and 14, we conclude that for the given system of delay differential equation, Chebyshev 
polynomial-based ONN provides the best accurate solutions of z1(t),z2(t) and z3(t) with the maximum relative 
errors 1.98× 10−10 , 3.11× 10−10 and 5.74× 10−9 respectively.

The maximum relative error of a simple feed-forward neural network(FNN) method  in25 for z1(t) , z2(t) 
and z3(t) with ten training points are 8.78× 10−8 , 1.42× 10−8 and 1.93× 10−7 respectively and the maximum 
relative error of the proposed FLNN-based ONN method for z1(t) , z2(t) and z3(t) with ten training points are 

z′1(t)+ z′2(t)− 2z′3(t) = z1(0.2t)+ z2(t)− z2(0.3t)

− 2z3(t)− z3(0.3t)+ z3(0.5)+ f1(t),

z′1(t)− z′2(t) = z1(t)− z3(t)+ 3z1(0.5t)

− z2(0.5t)+ z2(0.3t)+ z3(0.7t)+ f2(t),

z′2(t)− 2z′3(t) = z1(t)− z3(0.8t)+ 3z2(t)

− z1(0.2t)+ z3(0.8t)+ f3(t),

z1(0) = 0, z2(0) = 1, z3(0) = 1,

Figure 12.  Comparison of the exact solution z1(t) with the obtained approximate solutions of Example 7.2.
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1.98× 10−10 , 3.11× 10−10 and 5.74× 10−9 respectively. This comparison shows that the ONN method can obtain 
a better accuracy solution than simple FNN. Additionally, Tables 12, 13 and 14 show that all four orthogonal 
neural networks satisfy Theorem 4.

Conclusion
In this paper, we obtained approximate solutions of higher order NDDEs, as well as a system of DDEs with 
multiple delays and variable coefficients, using four single-layer orthogonal polynomial-based neural networks: 
(i) Legendre neural network, (ii) Chebyshev neural network, (iii) Hermite neural network, and (iv) Laguerre 
neural network. For training the network weights, the ELM algorithm is used. It is proved that the relative error 
between the exact solution and approximate solutions obtained by ONNs is  of order 2−n , where n is the number 
of neurons. Further, it is shown that each orthogonal polynomial-based neural networks provide an approximate 
solution, that are in good agreement with the exact solution. However, it is observed that, among these four 
ONNs, the Chebyshev neural network provides the most accurate result.

Figure 13.  Comparison of the exact solution z2(t) with the obtained approximate solutions of Example 7.2.

Figure 14.  Error graph of z1(t) for different orthogonal neural networks with different numbers of neurons for 
Example 7.2.
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The results in the section (6), (7) demonstrate that the proposed method is simple to implement and a pow-
erful mathematical technique for obtaining the approximate solution of the higher order NDDEs as well as the 
system of DDEs.

Figure 15.  Error graph of z2(t) for different orthogonal neural networks with different numbers of neurons for 
Example 7.2.

Table 13.  Comparision of maximum relative error of z2(t) for Example 7.3 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

7 0.007 1.60e−07 0.004 3.18e−07 0.002 3.17e−05 0.001 2.93e−07

10 0.019 1.05e−09 0.004 5.71e−07 0.004 5.03e−10 0.004 3.70e−10

13 0.019 1.05e−09 0.069 5.24e−07 0.017 8.04e−09 0.022 3.11e−10

Table 14.  Comparision of maximum relative error of z3(t) for Example 7.3 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

7 0.007 1.31e−07 0.004 1.76e−07 0.002 1.78e−07 0.001 1.74e−07

10 0.019 2.82e−08 0.004 4.05e−07 0.004 1.27e−08 0.004 3.91e−09

13 0.019 5.18e−08 0.069 5.65e−07 0.017 4.23e−08 0.022 5.74e−09

Table 12.  Comparision of maximum relative error of z1(t) for Example 7.3 with different numbers of neurons. 
Significant values are in bold.

n

Legendre Laguerre Hermite Chebyshev

Time(s) Error Time(s) Error Time(s) Error Time(s) Error

7 0.007 5.41e−07 0.004 6.20e−07 0.002 6.17e−07 0.001 6.16e−07

10 0.019 9.87e−08 0.004 6.97e−07 0.004 1.45e−09 0.004 1.53e−10

13 0.019 9.11e−11 0.069 5.79e−07 0.017 1.23e−09 0.022 1.98e−11
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Figure 16.  Error graph of z1(t) for different orthogonal neural networks with different numbers of neurons for 
Example 7.3.

Figure 17.  Comparison of the exact solution z1(t) with the obtained approximate solutions of Example 7.3.
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Figure 18.  Comparison of the exact solution z2(t) with the obtained approximate solutions of Example 7.3.
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Figure 19.  Comparison of the exact solution z3(t) with the obtained approximate solutions of Example 7.3.

Figure 20.  Error graph of z2(t) for different orthogonal neural networks with different numbers of neurons for 
Example 7.3.
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Data availability
The data that support the findings of this investigation are accessible from the authors upon reasonable request. 
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