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Fast calculation of hydrogen‑bond 
strengths and free energy 
of hydration of small molecules
Gian Marco Ghiandoni 1* & Eike Caldeweyher 2

Hydrogen bonding is an interaction of great importance in drug discovery and development as it may 
significantly affect chemical and biological processes including the interaction of small molecules 
with other molecules, proteins, and membranes. In particular, hydrogen bonding can impact drug‑
like properties such as target affinity and oral availability which are critical to developing effective 
pharmaceuticals, and therefore, numerous methods for the calculation of properties such as 
hydrogen‑bond strengths, free energy of hydration, or water solubility have been proposed over time. 
However, the accessibility to efficient methods for the predictions of such properties is still limited. 
Here, we present the development of Jazzy, an open‑source tool for the prediction of hydrogen‑
bond strengths and free energies of hydration of small molecules. Jazzy also allows the visualisation 
of hydrogen‑bond strengths with atomistic resolution to support the design of compounds with 
desired properties and the interpretation of existing data. The tool is described in its implementation, 
parameter fitting, and validation against two data sets of experimental hydration free energies. 
Jazzy is also applied against two chemical series of bioactive compounds to show that hydrogen‑
bond strengths can be used to understand their structure–activity relationships. Results from the 
validations highlight the strengths and limitations of Jazzy, and suggest its suitability for interactive 
design, screening, and machine‑learning featurisation.

Abbreviations
11β-HSD1  11β-Hydroxysteroid dehydrogenase type 1
CACTUS  CADD group chemoinformatics tools and user services
CDK2  Cyclin-dependent kinase 2
EMBL  European molecular biology laboratory
IUPAC  International union of pure and applied chemistry
MAE  Mean absolute error
MD  Molecular dynamics
MMFF94  Merck molecular force field 94
PDB  Protein data bank
RMSE  Root-mean-square error
SAR/SPR  Structure–activity/property-relationship
SMILES  Simplified molecular input line entry system

Hydrogen bonding plays a key role in the natural world due to its ubiquitous presence. It is responsible for many 
of the properties of water that are fundamental to life and represents the most significant type of non-covalent 
interaction in biological systems resulting in phenomena such as base-pair formation in the DNA double helix, 
protein folding, and molecular  recognition1–3.

Hydrogen bonding also affects the interactions of small-molecule drugs at different levels of complexity, 
going from those with other small molecules up to the highest supramolecular assemblies, e.g., proteins and 
 membranes4. These interactions may significantly impact the biological activity, pharmacokinetics, and physico-
chemical properties of drugs, hence making hydrogen bonding an important subject of study in drug discovery 
and  development5. In particular, understanding this topic is key to the design of orally available drugs, which 
remains a major challenge in pharmaceuticals as achieving optimal bioactivity and bioavailability often involves 
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balancing lipophilicity and water  solubility6–8. Interestingly, the lack of such a balance has been found to be a 
prime factor for the attrition of highly potent compounds in both pre-clinical and clinical development stages, 
hence suggesting that the evaluation of drug-like properties should follow more rigorous  criteria9.

Drug-like properties are often predicted using computational methods to reduce the number of cycles neces-
sary to obtain candidates with suitable profiles. Several methods for the estimation of hydrogen-bond strengths 
and water solubility have been proposed in the last decades, ranging from cut-off guidelines (e.g., the “rule 
of five”10) to highly accurate quantum mechanics models for the quantitative prediction of free energies of 
 hydration11–17. However, despite the large variety of techniques described in the literature, the accessibility to 
efficient methods for the prediction of such properties is still restricted.

Herein, we present an open-source reimplementation of the method proposed by Gerber for calculating 
hydrogen-bond strengths and free energy of hydration of  molecules18. Our tool, referred to as Jazzy, relies 
on the calculation of atomic partial charges and van der Waals radii from a molecule conformation using the 
method proposed by Caldeweyher, which are then used to produce three contribution terms to the free energy 
of  hydration19,20. These terms, namely, polar, apolar, and interaction, are finally summed up to yield the total 
free energy of hydration. Hydrogen-bond strengths are calculated as part of the process at both the atomic and 
molecular levels. Strengths and free energies can be either used for screening purposes or as features for model-
ling more complex molecular properties including pharmacokinetics. In addition, Jazzy enables the visualisa-
tion of atomic hydrogen-bond strengths as molecule renderings, where donors and acceptors are labelled and 
highlighted with different colour gradients, to support the design of compounds with desired properties or the 
interpretation of existing data.

We have reported the details of the implementation of Jazzy, parameter fitting, and validation against two data 
sets of hydration free energies from Gerber’s and Guthrie’s and colleagues’  works21. We have also described the 
retrospective application of our method in medicinal chemistry: First, we have applied Jazzy against a chemi-
cal series of inhibitors from Chen et al.22, which were suggested to share the same donor interactions with the 
receptor, and have shown that our method can support understanding the structure–activity relationship of 
compounds. Second, we have applied Jazzy against a series of inhibitors from Robb et al.23, which were suggested 
to share the same acceptor interactions with the target, and shown that our method produced results correlated 
with both experimental activities and acceptor strengths calculated with a quantum mechanics-based method. 
The simplicity of Jazzy does not allow modelling solvent, intramolecular, and supramolecular effects; however, 
its implementation enables the calculation of hundreds of structures per minute on a standard laptop, and the 
results presented in this publication suggest that it can be used as an alternative to heavy computational tools 
in drug discovery and development. The use of Jazzy for molecular modelling using machine learning will be 
described in a future publication.

Implementation
Jazzy is a simplified reimplementation of the method described by Gerber, where the Free Energy of Hydra-
tion of a small molecule is given as the sum of three quantities, namely, polar, apolar, and interaction terms. 
Hydrogen-bond strengths are generated as adimensional values as a part of the calculation process as described 
as follows. Jazzy depends on  kallisto19, an open-source method proposed by Caldeweyher for the calculation of 
partial charges and other quantum mechanical features. The electronegativity equilibration equations used to 
calculate partial charges in kallisto incorporate atomic parameters which were fitted to reproduce PBE0/def2-
TZVP Hirshfeld partial  charges24. The selection of kallisto was motivated by its accuracy, speed, and licensing 
model. In addition, the calculation of charges from kallisto has also been shown to be applied effectively to physi-
cal modelling including the correction of London dispersion in density functional  theory24. The source code, 
fitting, validation, and usage of Jazzy can be found in the repository https:// github. com/ Astra Zeneca/ jazzy. The 
version of Jazzy described in this work was implemented in Python 3.8, uses RDKit 2021.09.0425 and kallisto 1.0.7.

Polar term. Our method consists of calculating the partial charges of a molecule using kallisto to produce 
hydrogen-bond donor of hydrogens and acceptor strengths of atoms with lone pairs according to Eqs. (1) and 
(2), then using those strengths to derive the polar contribution to the hydration free energy. As shown in the 
equations, the donor (sd) strength is obtained by summing the partial charges of a hydrogen (qH) to a corrective 
term (δqH), and the acceptor (sa) strength comes from summing the partial charges of an atom with lone pairs 
(qa) to another corrective term (δqa). Both corrective terms (δqH and δqa) account for the influence of charges 
from neighbour atoms as shown in Eq. (3). The donor and acceptor sums are then adjusted by multiplying them 
against coefficients (D and A) obtained from the calibration of our method to yield donor and acceptor strengths 
equal to 1.0 for the hydrogens and oxygen in a water molecule, respectively. The calibration against water was 
deliberate as it facilitates the understanding of those strengths when analysing compounds in biological systems, 
i.e., atoms with strengths greater than 1.0 can form hydrogen bonds that are stronger than those formed by a 
water molecule and vice versa. D and A are set to 63.7 and − 4.4362 for a water molecule minimised using the 
MMFF94 method implemented in RDKit. While Eq. (1) is identical to that described by Gerber, Eq. (2) was 
intentionally simplified by removing the hybridization dipole  (phi), quadrupole moment  (wi), and the corrective 
term  (A0) defined in the original paper. These modifications were introduced to increase the performance and 
generalisability of the model, hence resulting in a simplified reimplementation.

(1)sd = D
(

qH + δqH
)

(2)sa = A
(

qa+ δqa
)

https://github.com/AstraZeneca/jazzy
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The corrective term δq is described in Eq. (3), which shows that the effect of the charges of proximal neigh-
bours is accounted as a sum of sums of partial charges multiplied by a bond reduction factor T that is expo-
nentially decreased as the topological distance increases, i.e., the sum of the charges of the alpha neighbours is 
multiplied by T, the sum of the charges of the beta neighbours is multiplied by  T2, and the sum of the charges 
of the gamma neighbours is multiplied by  T3. The value of T is set to 0.274 and was taken from Gerber’s work. 
Note that alpha, beta, and gamma, represent the number of covalent bonds present between the atom of which 
the strength is calculated and a neighbouring atom (e.g., alpha identifies all atoms covalently linked to the atom 
in question; beta identifies all atoms that are two covalent bonds away from the atom in question).

The polar contribution (ΔGp
hydr) to the free energy of hydration is then calculated as described in Eq. (4), 

which consists of producing sums of atomic donor  (sdi) and acceptor strengths  (sai) adjusted by their corre-
sponding number of hydrogens  (nH) and lone pairs  (nLP) elevated by the exponential parameters  expd and  expa. 
The sums of donor and acceptor strengths are then further corrected by the free parameters  gd and  ga and finally 
summed up to yield ΔGp

hydr. The parameters  expd,  expa,  gd and  ga, were set to 0.50, 0.34, 0.908, and −16.131, 
respectively. These parameters were determined by fitting against the data from Gerber’s work (See Model fit-
ting and validation).

Apolar term. Our method calculates the apolar contribution (ΔGa
hydr) to the free energy of hydration using 

the linear equation proposed by Gerber, as described in Eq. (5), using kallisto as an atomic featurizer. The apo-
lar contribution consists of a constant term  (g0), a surface term that incorporates a free parameter  (gs) and the 
topological surface area  (Ns), a ring term that incorporates a free parameter  (gr) and the ring count  (Nr), and two 
π-orbital dependent terms, each one incorporating a free parameter  (gπ

2 and  gπ
1), and the π-orbital count inside 

 spk-hybridized (k = 1, 2) atoms  (Nπ
2 and  Nπ

1).

The topological surface area  (Ns) is calculated as a sum of atomic contributions as described in Eq. (6). Each 
contribution is calculated by incorporating the atomic van der Waals radius  (ri

vdW) as obtained by kallisto, the 
number of non-hydrogen ligands connected to each non-hydrogen atom  (ni

l), and a hybridization number 
 (hi

sp1 = 1,  hi
sp2 = 2, and  hi

sp3 = 3) as defined in Eq. (7).

The ring  (Nr) and both π-orbital counts  (Nπ
2 and  Nπ

1) are calculated using RDKit, where the π-orbital count 
is increased by two for  sp1-hybridized atoms and by one for  sp2-hybridized atoms. The parameters  g0,  gs,  gr,  gπ

2, 
and  gπ

1, were set to 1.884, 0.0467, − 3.643, − 1.174, and − 1.602, respectively. These parameters were determined 
by fitting against the data from Gerber’s work (See Model fitting and validation).

Interaction term. Our method reimplements the interaction contribution term (ΔGi
hydr) originally 

described by Gerber. This empirical correction accounts for interactions between proximal hydrogen-bond 
acceptors (origin atoms) which may influence the free hydration energy of the molecule and is evaluated over 
their neighbours (n), their nearest-neighbours (nn), and their nearest-nearest neighbours (nnn) as described in 
Eq. (8), which includes atomic contributions and two free parameters  (gi and F). The atomic contributions are 
calculated as shown in Eq. (9) by multiplying the acceptor strength (sa) of a given atom by its number of lone 
pairs  (nLP) elevated to the exponential parameter for hydrogen-bond acceptors  (expa). The parameters  gi and F 
were set to 4.9996 and 0.514, respectively. These parameters were determined by fitting against the data from 
Gerber’s work (See Model fitting and validation).

Advantages and limitations of the method. Our model, as for that of Gerber, describes the polar term 
of the hydration free energy as simply coming from the partial charges of atoms summed and adjusted by cor-
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rective factors, and the apolar term as a five-parameter equation derived from a small set of hydrocarbons. The 
solvent is not modelled; the conformational, steric, and intramolecular interaction effects are not accounted for; 
the interaction between proximal functional groups is only estimated empirically within the interaction term. 
In addition, donors and acceptors of hydrogen bonding are simply considered as atoms bonded to hydrogens 
or with one or more lone pairs, respectively, and the bond directionality is not modelled. These generalisations, 
however, come with some advantages: First, this logic allows the calculation of the free energy of hydration 
in centiseconds, enabling interactive design, analysis, or featurisation for more complex modelling techniques 
(e.g., machine learning); and second, the model includes the contributions of halogens as acceptors of hydrogen 
bonds, which can be used to understand further the relationship between compound structures and their activi-
ties/properties.

Results and discussion
Model fitting and validation. The parameters used by Jazzy to calculate the Free Energy of Hydration were 
fitted using the experimental data from Gerber’s work. The correlation plot between predicted and experimental 
values is reported in Fig. 1 along with the mean absolute error (MAE), root mean squared error (RMSE), and 
the coefficient of determination  (r2). Figure 1 shows that the model predicted very accurately compounds with 
free energies between − 10 and + 10 kJ  mol−1, then the accuracy of the predictions becomes poorer as energies 
become more negative. The inspection of the results revealed that the model could predict with high accuracy 
molecules prevalently apolar or with only one or two polar groups. Compounds with higher flexibility, particular 
mesomeric systems, or groups that could interact with each other produced the lowest accuracies. An interest-
ing example is that of the compounds 2-, 3-, and 4-nitro phenols which produced absolute errors of ~ 20, ~ 1.5, 
and ~ 2 kJ   mol−1, respectively. Similar errors are also reported for Gerber’s method (~ 20, ~ 1, ~ 3.5 kJ   mol−1). 
These results suggest that the implementation does not take into account the intramolecular interaction between 
the hydroxyl and nitro group in the 2-nitrophenol, for which both methods produced an error ten times higher 
compared to those of the 3- and 4- nitrophenols.

The metrics obtained for Jazzy (RMSE = 5.24 kJ  mol−1, MAE = 3.82 kJ  mol−1,  r2 = 0.83) were compared to those 
from Gerber (RMSE = 4.07 kJ  mol−1, MAE = 2.47 kJ  mol−1,  r2 = 0.90) to differentiate the two implementations: 
A potential explanation for the slightly worse metrics obtained for Jazzy could rely on the lack of the equation 
terms accounting for higher-order charge effects (dipole and quadrupole) which were not implemented in our 
method to increase its computational efficiency and decrease the model complexity (See “Implementation”). The 

Figure 1.  Correlation plot between predicted and experimental Hydration Free Energies from the data set 
described by Gerber. MAE and RMSE values are given in kJ  mol−1.
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errors produced by Jazzy and Gerber could not be further investigated due to the lack of error measures on the 
experimental data, which did not allow us to assess whether or not predictions produced reasonable deviations 
from their corresponding measured values. The prediction of the free energy of hydration of 292 compounds 
from Gerber’s data set took 20.4 s on a laptop (0.06 s per compound).

The fitted model was validated externally against a subset of the Guthrie database of Free Energies of Hydra-
tion (GuthrieSolv). This validation was motivated by the need to determine whether the fitting of Jazzy produced 
overfit to the training data and to compare its errors to those from the experiments. Note that, the data set used 
in the external validation contains ten times (~ 3000) the number of data points used to fit Jazzy—with an aver-
age experimental error of 2.6 kJ  mol−1 and a maximum of 10 kJ  mol−1—and with a wider range of free energies 
from − 100 to + 40 kJ  mol−1. The correlation plot between predicted and experimental values is reported in Fig. 2 
with the same average metrics used in the fitting.

Figure 2 describes trends that are less clear compared to those reported for the validation against Gerber’s 
data as the accuracy of predictions remains similar across the entire interval of free energies. The inspection of 
the results revealed that Jazzy maintained high accuracy for compounds with groups not interacting with each 
other and rigid structures. A wider range in discrepancy between experimental and predicted values in this 
experiment is likely to be a consequence of the heterogenicity of the sources of data in the Guthrie set compared 
to that of Gerber which was created from the same data source. The compound that produced the highest errors 
were those containing phosphonate groups or long aliphatic chains and polar groups, i.e., compounds that are 
likely to form supramolecular aggregates in solution. The metrics from this validation (RMSE = 9.19 kJ  mol−1, 
MAE = 5.89 kJ  mol−1,  r2 = 0.61) show that Jazzy still produced an average error in the range of one kcal  mol−1 
(4.2 kJ  mol−1) although double than the average error from the experiments. The lack of public accessibility 
to Gerber’s method did not allow us to benchmark Jazzy against it for this data set. The prediction of the free 
energy of hydration of 3,313 compounds from Guthrie’s data set took 175.6 s on a laptop (0.05 s per compound).

Hydrogen‑bond donor strengths. Six cyclin-dependent kinase 2 (CDK2) inhibitors from Chen et al. 
which share the same aminothiazole scaffold were inspected using our method to rationalise the effect of their 
substituents on their binding affinity. The selection of these compounds was motivated by the presence of two 
hydrogen-bond donors interacting consistently with two key residues within the receptor which could be ana-
lysed on their strengths using Jazzy. The selection was also motivated by the availability of their protein–ligand 
complexes (PDB ligand IDs: X02, X35, X36, X44, 20Z, 26Z) in the Protein Data Bank (https:// www. rcsb. org/), 

Figure 2.  Correlation plot between predicted and experimental Hydration Free Energies from a subset of the 
Guthrie database. MAE and RMSE values are given in kJ  mol−1.

https://www.rcsb.org/
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and their activities in ChEMBL (https:// www. ebi. ac. uk/ chembl/), which range from 15 to 0.07 nM. The com-
pound structures, their identifiers, and activities are summarised in Table 1.

Jazzy was applied against the active conformations of the selected inhibitors to produce atomic and molecular 
hydrogen-bond strengths which are reported in Table 2. An example of atomic donor strength depiction pro-
duced by Jazzy is reported in Fig. 3 for the compounds X02 and X35. The atomic strengths are also reported as 
image renderings for each individual molecule in the Supplementary Information.

The atomic strengths were specifically generated for the hydrogens involved in the interactions with the 
residues E81  (sdNH2a-E81) and L83  (sdNH-L83) which Chen et al. suggested to be preserved across the ligands using 
molecular dynamics. Table 2 also includes the strengths of the hydrogen on the primary amine that is not inter-
acting with E81  (sdNH2b).

The differences in values for the two symmetric hydrogens  (sdNH2a-E81 and  sdNH2b) on the primary amine are 
due to the implementation of Jazzy: Strengths are calculated from partial charges that depend on atomic elec-
tronegativities scaled by the coordination numbers of donors/acceptors and their neighbours, which in turn are 
impacted by the proximity of other atoms in the molecule as described by Caldeweyher and  colleagues20. This 
feature allows Jazzy to capture the effect of conformations on the individual hydrogen-bond donors/acceptors in 
a molecule, which can potentially be used in combination with other scoring methods to discriminate between 
active from inactive conformers.

The pIC50s and strengths from Tables 1 and 2 were correlated to yield the correlation coefficients ‘r’ in Table 3, 
which show moderate and strong positive correlations between the inhibition of CDK2, the strengths of the 

Table 1.  The aminothiazole scaffold shared across the selected ligands, their R1 and R2 substituents, PDB 
ligand identifiers, and CDK2 pIC50s from ChEMBL. The aminothiazole scaffold also describes the primary 
and secondary amine hydrogens responsible for the interaction with the residues E81 and L83, respectively. 
The interaction between these hydrogens and the CDK2 receptor is suggested to be shared across all the 
selected  ligands22.

 

PDB Ligand ID R1 R2 pIC50 (M)

X02 Vinyl Phenyl 4.82

X35 Vinyl 3-pyridine 5.51

X36 Phenyl Phenyl 6.03

X44 4-Phenyl sulfonamide 4-Phenyl sulfonamide 7.15

20Z 4-Phenyl sulfonamide 2-Naphthalene 4.07

26Z 4-Phenyl sulfonamide 3-Aniline 7.15

Table 2.  Atomic and molecular strengths calculated using Jazzy against the active conformations of the 
selected inhibitors:  sdNH2a-E81 and  sdNH2b refer to the hydrogens of the primary amine, where NH2a-E81 
interacts with the residue E81 and NH2b does not;  sdNH-L83 refers to the hydrogen of the secondary amine; 
 sdxmol is the sum of X–H donor strengths where X is any non-carbon atom;  sdcmol is the sum of C–H donor 
strengths;  sdmol is the sum of X–H donor and C–H donor strengths.

Ligand sdNH2a-E81 sdNH2b sdNH-L83 sdxmol sdcmol sdmol

X02 0.86 1.04 0.71 2.61 5.34 7.95

X35 0.89 1.07 0.74 2.70 5.49 8.18

X36 0.84 1.03 0.71 2.59 5.60 8.19

X44 0.98 1.14 0.82 6.96 6.75 13.71

20Z 0.92 1.09 0.76 4.67 7.31 11.98

26Z 0.96 1.12 0.88 6.28 5.59 11.86

https://www.ebi.ac.uk/chembl/
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hydrogens NH2a-E81, NH-L83, and the molecular X–H donor strength  sdxmol, respectively. Slightly less positive 
correlations are found for NH2b and the total molecular donor strength  sdmol, and finally, a negative correlation 
is reported for the molecular C–H donor strength  sdcmol. Given these results, a qualitative inspection was car-
ried out to get more insights into the effect of the substituents structures: For example, the increase in activity 
between X02 and X35 can depend on the replacement of the phenyl substituent with a pyridine, which due to its 
electron-withdrawing effect, may increase  sdNH2a-E81,  sdNH2b, and  sdNH-L83. The increase in activity between X02 
and X36 can be related to an increase in the hydrophobic surface from the replacement of the vinyl group with 
a phenyl since  sdNH-L83 and  sdxmol are almost the same for those compounds.

The decrease in activity between 26Z and 20Z could be explained by the greater steric hindrance of the 
naphthalene substituent over the sulfonamide—although the decrease of  sdNH-L83 could also be an indicator of 
lower affinity with the target. These results are in agreement with those of Chen et al., and suggest that X–H 
donor strengths, in particular those of the hydrogens interacting with E81 and L83, can potentially be used to 
rationalise existing data and identify more active compounds against CDK2. However, the number of data points 
(i.e., sample size) on this molecular series may not be sufficient to underpin the dominance of hydrogen bonding 
over other types of interactions as well as to provide prospective information on the interaction between other 
chemical series and the CDK2 receptor.

Hydrogen‑bond acceptor strengths. A similar experiment to that described in the previous section 
was applied to the 11β-hydroxysteroid dehydrogenase type 1 (11β-HSD1) inhibitors from Robb et  al. These 
inhibitors share the same pyrazolo[1,5-a]pyrimidine scaffold and were designed by modulating the strengths 
of two hydrogen-bond acceptors to optimise their potency and other properties of pharmaceutical interest. In 
particular, Robb and colleagues designed these compounds using a quantum mechanics method based on the 
calculated molecular electrostatic potential, given the knowledge a priori of the compounds’ binding mode and 
key hydrogen-bonding interactions. The selection of these compounds for our experiment was motivated by the 
availability of a greater number of data points compared to those from Chen et al. and the presence of hydrogen-
bond acceptors responsible for shifts in bioactivity that could be analysed using Jazzy. Specifically, the acceptors 
are the nitrogen in position 1 of the pyrazole ring, which produces an intermolecular interaction with the residue 
G216, and its γ-neighbour, the nitrogen on the pyrimidine ring, which is involved in an intramolecular hydrogen 
bonding that can stabilise the compounds into their bioactive conformations, hence affecting their potency. The 
compound structures, identifiers, and activities are summarised in Table 4.

Figure 3.  Atomic donor strength depictions for the compounds X02 (left) and X35 (right) produced by Jazzy. 
Donor strengths are annotated with their corresponding values and highlighted using a red gradient, where 
more intense colours indicate greater strengths. The difference in strength between the two symmetrical 
hydrogens (NH2a and NH2b) of each amine group denotes the ability of Jazzy of capturing the effect of 
conformations on the hydrogen-bond donor/acceptor strengths.

Table 3.  Correlation coefficients ‘r’ calculated between pIC50s and hydrogen-bond donor strengths for the 
individual hydrogens (NH2a-E81, NH2b, NH-L83) and the molecule by accounting for only X–H  (sdxmol), 
only C–H  (sdcmol), or both  (sdmol). The formula used for the calculation of ‘r’ is reported in the Supplementary 
Information.

Correlation coefficients ‘r’

rpIC50/sdNH2a-E81 rpIC50/sdNH2b rpIC50/sdNH-L83 rpIC50/sdxmol rpIC50/sdcmol rpIC50/sdmol

0.59 0.53 0.69 0.60 − 0.21 0.39
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Table 4.  The pyrazolopyrimidine scaffold shared across the selected ligands, their R1, R2, and R3 substituents, 
ligand identifiers and 11β-HSD1 pIC50s from Robb et al. The pyrazolopyrimidine scaffold also describes the 
intramolecular (int) and intermolecular (ext) hydrogen-bond acceptors. aThe compound contains an imidazo-
pyridazine scaffold, which is different to the others in the analysis but sufficiently similar to be included.

 

Ligand ID R5 R6 R7 pIC50 (M)

2 H H H 7.0

3a H H H 6.0

4 CH3 H H 7.7

5 H CH3 H 7.2

6 H H CH3 7.5

7 CH3 H CH3 8.2

8 CH3 H CH2OCH3 7.6

9 CH3 H CHF2 7.6

10 CH3 H CF3 7.3

11 H H CF3 6.7

12 Cyclopropyl H CHF2 8.0

13 CH2OCH3 H CH3 7.8

14 H CH2CH3 H 7.5

15 H Cl H 7.3

16 H Cyano H 6.6

17 H OCH3 H 7.2

18 H CH2CH2OH H 6.5

Table 5.  Atomic and molecular strengths calculated using Jazzy against energy-minimised conformations 
of the selected inhibitors  (saint,  saext,  samol) and the acceptor strengths calculated by Robb and colleagues (Log 
kβint, Log kβext). Internal (int) and external (ext) strengths represent those associated with the intra- and 
intermolecular hydrogen bonds, respectively.  samol represents the sum of all atomic acceptor strengths.

Ligand Log kβint saint Log kβext saext samol

2 1.56 0.68 1.49 0.63 4.36

3 0.54 0.57 2.58 0.70 4.20

4 1.64 0.69 1.70 0.64 4.36

5 1.66 0.72 1.68 0.63 4.40

6 1.84 0.78 1.42 0.66 4.50

7 1.90 0.78 1.62 0.66 4.55

8 1.82 0.68 1.46 0.68 5.25

9 1.20 0.76 0.70 0.48 4.99

10 0.98 0.65 1.34 0.49 5.04

11 0.88 0.61 1.11 0.48 5.01

12 0.85 0.68 0.81 0.51 5.00

13 1.69 0.66 1.70 0.67 5.14

14 1.69 0.73 1.70 0.65 4.48

15 0.92 0.76 1.09 0.59 4.60

16 0.41 0.63 0.42 0.59 4.90

17 1.56 0.66 1.68 0.62 5.02

18 1.84 0.67 1.97 0.64 5.28
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Jazzy was applied to the MMFF94 energy-minimised conformations of these compounds due to the lack of 
availability of their active conformations. Atomic strengths were generated for the nitrogen atoms involved with 
the intra- and intermolecular hydrogen bonds. The strengths produced by our method and those from Robb 
et al.23 are reported in Table 5.

The pIC50s and strengths from Tables 4 and 5 were correlated to yield the coefficients in Table 6, which shows 
strong positive correlations between the inhibition of 11β-HSD1 and internal strengths; weaker negative cor-
relations between inhibition and external strengths; and a slight positive correlation for the molecular acceptor 
strength. These results are in agreement with those from Robb and colleagues which suggest that the intramo-
lecular hydrogen bond in this compound series plays the role of biasing the compounds towards assuming their 
active conformations over a potential inactive ensemble, hence reducing the enthalpic penalty that affects their 
bioactivity in solution. Our results also align in suggesting that increasing the strength of the intermolecular 
hydrogen bond produces a negative effect on the activity against 11β-HSD1 as the formation of such a hydrogen 
bond may result in a larger desolvation penalty. The agreement between our method and the calculations pro-
duced by Robb et al. and the consensus produced by the correlation of a higher number of data points suggest 
that Jazzy can produce meaningful estimations for both intra- and intermolecular hydrogen-bond modelling.

Conclusions and future outlook
We have implemented an open-source tool referred to as Jazzy that allows the fast calculation of hydrogen-bond 
strengths, either at the atomic or molecular level, and hydration free energies. We have reported the implemen-
tation of our method, its parameter fitting, and validation against two data sets of experimentally measured 
free energies of hydration. We have also shown that our method compares to that of Gerber and pointed out its 
strengths and limitations. Jazzy can also produce depictions of compounds and their strengths in real time to 
enable the elucidation of compound SAR/SPR in contexts where hydrogen bonding is known to play a critical 
role. We have demonstrated such an application by running Jazzy against a chemical series of CDK2 inhibitors, 
and have shown that our method can be used to understand the relationship between experimental activities 
and hydrogen-bond donor strengths. We have also described a similar experiment on a series of 11β-HSD1 
inhibitors, rationally designed by a team of chemists by modulating the strengths of two hydrogen-bond accep-
tors using quantum mechanics, and shown that Jazzy could produce correlated strengths for both intra- and 
intermolecular acceptors. While the simplistic approach implemented in Jazzy may not allow capturing solvent 
and intramolecular effects or the tendency to form supramolecular architectures, results suggest that it can be 
used as an alternative tool to computationally intensive methods for interactive design, screening, or machine-
learning featurisation. With regard to these applications, we strongly believe the selection of an open-source 
license for Jazzy will promote its adoption, enable improvements of the method, and deliver value in the field 
of molecular modelling.

Methods
Model fitting and validation. The fitting and validation against Gerber’s data were carried out as follows: 
The IUPAC names and free energy measures were obtained from the original paper by Gerber. Names were 
converted into SMILES using the Chemical Identifier Resolver by  CACTUS26. SMILES were read using RDKit, 
hydrogens were added, coordinates were initialised using a fixed seed, and conformations were minimised using 
the MMFF94 force-field method implemented in RDKit. Protonation states, tautomeric forms, and major spe-
cies in water for the selected compounds were not evaluated in this experiment due to the lack of open-source 
tools for such a purpose, and to allow direct comparison with the results from Gerber’s validation. Jazzy was 
then applied to yield the predicted free energies. Experimental and predicted free energies were used to produce 
the mean absolute error as a loss measure for the model. The parameter fitting was operated by the Optuna 
 framework27 implementing an early stop policy after 300 cycles of no improvement. The best model’s parameters 
are reported in the Implementation.

The validation against Guthrie’s data was performed as follows: The complete database was obtained from 
Guthrie et al. then a data set was created from it by selecting only compounds associated with measures in the 
units of kJ  mol−1 or kcal  mol−1. The excluded measures were expressed in heterogeneous units including M/
atm and Pascal. In addition, all compounds described in Gerber’s data were removed from the set. A series of 
histograms reporting the distribution of a selection of molecular descriptors is included in the Supplementary 
Information. The SMILES in the resulting data set were then processed as described in the validation using 
Gerber’s data to produce the predicted free energies using the parameters obtained from the fitting.

Table 6.  Correlation coefficients ‘r’ calculated between pIC50s and hydrogen-bond acceptor strengths 
generated by Jazzy  (saint,  saext,  samol) and Robb and colleagues (Log kβint, Log kβext) for the acceptor nitrogens 
of the pyrazolopyrimidine. The formula used for the calculation of ‘r’ is reported in the Supplementary 
Information.

Correlation coefficients ‘r’

rpIC50/Log kβint rpIC50/saint rpIC50/Log kβext rpIC50/saext

rpIC50/
samol

0.48 0.67 − 0.27 − 0.08 0.10



10

Vol:.(1234567890)

Scientific Reports |         (2023) 13:4143  | https://doi.org/10.1038/s41598-023-30089-x

www.nature.com/scientificreports/

Hydrogen‑bond donor strengths. Individual SD files were obtained from the Protein Data Bank for the 
ligands X02, X35, X36, X44, 20Z, and 26Z. The ligand files were read using RDKit, and hydrogens were added to 
them by preserving the ligand active conformations. Jazzy was then run against the ligands without minimising 
their conformational energies to produce molecular strengths and atomistic strength depictions. Atomic donor 
strengths were calculated as described in Eq. (1). Molecular strengths were calculated by summing up all the 
atomic donor strengths.

Hydrogen‑bond acceptor strengths. The IUPAC names of the compounds described by Robb et  al. 
were obtained from the literature and converted into SMILES strings using the Chemical Identifier Resolver by 
 CACTUS28. SMILES were read using RDKit, hydrogens were added, coordinates were initialised using a fixed 
seed, and conformations were minimised using the MMFF94 force-field method implemented in RDKit. Jazzy 
was then run against the minimised ligands to produce their atomic acceptor strengths as described in Eq. (2). 
Molecular strengths were calculated by summing up all the atomic acceptor strengths multiplied by their cor-
responding number of lone pairs.

Data availability
The data used to train and validate Jazzy, its source code, and Jupyter notebooks containing the experiments 
described in this manuscript, are freely available without any restriction on GitHub https:// github. com/ Astra 
Zeneca/ jazzy. Project name: Jazzy. Project home page: https:// github. com/ Astra Zeneca/ jazzy, https:// pypi. org/ 
proje ct/ jazzy/. Operating system(s): Linux, macOS, and Windows. Programming language: Python. License: 
Apache License 2.0.
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