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Exact Gaussian processes 
for massive datasets 
via non‑stationary 
sparsity‑discovering kernels
Marcus M. Noack 1*, Harinarayan Krishnan 1, Mark D. Risser 2 & Kristofer G. Reyes 3

A Gaussian Process (GP) is a prominent mathematical framework for stochastic function 
approximation in science and engineering applications. Its success is largely attributed to the GP’s 
analytical tractability, robustness, and natural inclusion of uncertainty quantification. Unfortunately, 
the use of exact GPs is prohibitively expensive for large datasets due to their unfavorable numerical 
complexity of O(N3) in computation and O(N2) in storage. All existing methods addressing this 
issue utilize some form of approximation—usually considering subsets of the full dataset or finding 
representative pseudo‑points that render the covariance matrix well‑structured and sparse. These 
approximate methods can lead to inaccuracies in function approximations and often limit the user’s 
flexibility in designing expressive kernels. Instead of inducing sparsity via data‑point geometry and 
structure, we propose to take advantage of naturally‑occurring sparsity by allowing the kernel to 
discover—instead of induce—sparse structure. The premise of this paper is that the data sets and 
physical processes modeled by GPs often exhibit natural or implicit sparsities, but commonly‑used 
kernels do not allow us to exploit such sparsity. The core concept of exact, and at the same time sparse 
GPs relies on kernel definitions that provide enough flexibility to learn and encode not only non‑zero 
but also zero covariances. This principle of ultra‑flexible, compactly‑supported, and non‑stationary 
kernels, combined with HPC and constrained optimization, lets us scale exact GPs well beyond 5 
million data points.

A Gaussian Process (GP) is the most prominent member of the larger family of stochastic processes and provides 
a powerful and flexible framework for stochastic function approximation in the form of Gaussian Process Regres-
sion (GPR). This is because a GP is characterized as a Gaussian probability distribution over a function space {

f : f (x) =
∑N

i αik(x, xi; h) ∀x ∈ X

}

 , where k(x, xi; h) is the kernel function and h is a set of hyperparameters. 
The mean and the covariance of the Gaussian probability distribution can be learned by constrained function 
optimization from data D = {xi , yi} and conditioned on the observations yi to yield a posterior probability density 
function. Throughout this paper, we will refer to this optimization often as training or learning to emphasize the 
link to machine learning (ML). GPs assume a model of the form y(x) = f (x)+ ǫ(x) , where f (x) is the unknown 
latent function, y(x) is the noisy function evaluation (the measurement), ǫ(x) is the noise term, and x is an ele-
ment of the input space (or index set) X  . Learning the hyperparameters h of a GP and subsequent conditioning 
leads to a stochastic representation of a model function which can be used for decision-making, visualizations, 
and interpretations. This paper deals with the example of regression (GPR), but the proposed methodology can 
easily be applied to other GP-related tasks; we will therefore simply use the more-general acronym “GP” through-
out this paper.

In comparison to neural networks, GPs can scale better with the dimensionality of the input space—since 
the number of weights or parameters does not depend on it—and provide more exact function  approximations1. 
Additionally, GPs provide highly-coveted Bayesian uncertainty quantification on top of such function approxi-
mations. While some neural-network-based methods can estimate errors, these are most often not the result 
of rigorous Bayesian uncertainty quantification. Even so, GPs come with one difficult-to-circumvent problem: 
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due to their unfavorable scaling of O(N3) in computation and O(N2) in  storage2, the applicability of GPs has 
largely been limited to small and moderate dataset sizes (N), which prevents the method from being used in 
many fields where large datasets are common and is a major disadvantage compared to other ML methods, e.g., 
neural networks. Those fields include many machine learning applications, earth, environmental, climate and 
materials sciences, and engineering. The numerical complexity of GPs stems from the need to store and invert a 
typically-dense covariance  matrix2. While the direct inversion can be replaced by iterative linear system solves, 
the speedup is rather modest for dense covariance matrices.

Methods to alleviate the GP’s scaling issues exist but are largely based on approximations. These workarounds 
fall into a few broad categories:

• A set of local GP experts: The dataset is divided into subsets, each of which serves as input into separate GPs, 
and the resulting posteriors are then  combined3–5. This can also be interpreted as one large GP with a sparse 
(block-diagonal) covariance matrix. It is common to divide the dataset by locality, leading to the name “local 
GP experts”.

• Inducing-points methods: Instead of inducing a sparse covariance matrix by picking subsets of the dataset, 
inducing-points methods place new points inside the domain, inducing a favorable data structure that trans-
lates into sparsity. The function values at those points are calculated via standard interpolation techniques. 
Popular examples of this approach include KISS-GP6, the predictive  process7,8, and fixed-rank  Kriging9,10. 
Generally, inducing-points methods are not agnostic to the kernel definition and therefore limit which kernels 
can be used. This limitation is a major drawback given that recent applications are increasingly using flex-
ible non-stationary kernel functions (for  instance11), which are generally incompatible with inducing-points 
methods.

• Structure-exploiting methods: These methods are a special kind of inducing-points method that places 
pseudo-points on a grid so that the covariance matrix has Toeplitz algebra, which leads to fast linear algebra 
needed to train and condition the GP. Again, the success of those methods is not agnostic to the kernel defi-
nition.

• Vecchia approximations: Instead of calculating the full conditional probability density function of a GP 
prior, the Vecchia  approximation12,13 is used to pick a subset of the data to condition on. This method is also 
kernel-dependent and has largely been applied using stationary kernels.

The statistics literature contains a variety of other related approaches;  see14 for a recent summary of both tradi-
tional and state-of-the-art approaches with a direct comparison of the methods on a common dataset. Another 
outstanding review is  by15. All of the existing methods introduced above have one thing in common: sparsity or 
exploitable structure in the covariance matrix is introduced by operating on the data points—either by consid-
ering subsets of the full dataset or by utilizing representative pseudo-points that allow for a favorable structure 
(e.g. Toeplitz) in the covariance, and sparsity. This commonality leads to one major issue of all existing meth-
ods: they are approximations of exact  GPs16, which leads to poor prediction performance for highly non-linear 
functions—i.e. functions exhibiting large first and second-order derivatives with frequently changing signs. For 
high-fidelity approximations, the number of sub-selected data points or pseudo points must approach the size of 
the original  dataset3, which eliminates the methods’ advantages. More fundamentally, the sparsity and structure 
of the covariance matrix should be dictated by the nature of the problem and the data, not by our computational 
constraints. This leads us to consider kernels that can take advantage of naturally occurring—problem and data 
dictated—sparsity.

Instead of operating on the input points—by selecting subsets or pseudo-points—an alternative approach is to 
let the kernel find the most expressive and sparse structure of the covariance matrix. In principle, a very flexible 
kernel could discover—not induce—naturally occurring sparse structure in the covariance matrix without acting 
on the data points at all. In that case, there is no approximation taking place (compared to inducing-points, local-
experts, and Vecchia methods) and no ad-hoc point selection is required. Additionally, we shall see that there are 
no restrictions on the used problem-specific kernel functions as long as they are combined with our proposed 
sparsity-enabling, and therefore, sparsity-discovering kernels. An added advantage is that the kernel-discovered 
sparsity is entirely independent of spatial relationships of data points, meaning, very distant data points can be 
discovered to have high covariances while points in close proximity might be independent; there is no ad-hoc 
dependency of covariances on Euclidean point distance in X—in contrast to local GP experts for instance.

As we outline below, creating an exact GP that learns and utilizes naturally-occurring sparsity shall require 
three main building blocks: (1) ultra-flexible, non-stationary, compactly-supported kernel functions, specially 
customized to learn and encode zero-covariances, (2) a high-performing implementation that can compute 
sub-matrices of the covariance matrix in a distributed, parallel fashion, and (3) a constrained or augmented 
optimization routine to ensure the learned covariance matrix is sparse (or at least enforce a preference for 
sparsity). This last point is important for large problems to protect the computing system from over-utilization. 
In the extreme case, in which naturally-occurring sparsity is insufficient or non-existent, having a sparsity-
inducing optimization routine would seamlessly result in an optimal approximate GP. The contributions of this 
paper can be summarized as follows. We show that, by combining tailored kernel designs, HPC implementa-
tion, and constrained optimization, exact GPs can be scaled to datasets of any size, under the assumption of 
naturally-occurring sparsity. The core idea, that allows such scaling, is a sparsity-discovering kernel design and 
an optimization that learns which data points are not correlated, independent of their respective locality in the 
input space X  . The sparse structure is not artificially “induced” as in all state-of-the-art methods; instead, we 
allow the GP to discover the natural sparsity in the dataset. This principle is visualized in Figure 2. For reference 
we have included a table comparing and contrasting different existing methods and our proposed method (see 
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Figure  1). While an in-depth quantitative comparison of our proposed method versus existing state-of-the-art 
approaches would be illuminating, we argue that such an exercise is beyond the scope of this manuscript due to 
the fact that performance depends on a variety of subjective choices: data application, kernel functions, comput-
ing architecture, and prior mean functions, among other things.

Contributions of this Paper at a Glance: (1) We propose a new non-stationary, flexible, and compactly-sup-
ported kernel design that allows a Gaussian process to discover sparsity; (2) We show how to use the new kernel 
design in concert with distributed computing to scale GPs to millions of data points; and (3) We draw attention 
to the hyperparameter optimization process so that solutions that allow sparsity are preferred.

Method
Basics. A Gaussian Process (GP) is characterized by a Gaussian probability density function over function 
values f

and a Gaussian likelihood

where V is the observation-noise matrix, which is most often diagonal, K is the covariance matrix defined by 
the kernel function Ki,j = k(xi , xj) , and m is the prior-mean vector. Training the GP is done by maximizing the 
marginal log-likelihood (ignoring an additive constant)

with respect to the hyperparameters h. After the hyperparameters are found, the posterior is defined as

(1)p(f) = 1
√

(2π)dim|K|
exp

[

−1

2
(f −m)TK−1(f −m)

]

,

(2)p(y|f) = 1
√

(2π)dim|V|
exp

[

−1

2
(y − f)TV−1(y − f)

]

,

(3)ln(L(h)) = −1

2
(y −m(h))TK(h)−1(y −m(h))− 1

2
ln(|K(h)|)

(4)
p(f0|y) =

∫

RN

p(f0|f , y) p(f |y) df

∝ N

(

m0 + κκκT (K + V)−1
(

y −m0

)

,KKK− κκκT (K + V)−1 κκκ

)

,

Dimensionality of the 
Input Space

Point Geometry Allowed Kernel 
Designs

Local GP Experts no restrictions best if points naturally 
occur in clusters

stationary

Inducing-Points 
Methods

often limited to 
low-dimensional 
spaces

point geometry is 
adjusted, sometimes to 
a grid

mostly stationary

Structure-Exploiting 
Methods

no restrictions points on grid stationary

Vecchia 
Approximations

no restrictions no restrictions only derived for 
stationary kernels

Proposed Method no restrictions no restrictions no restrictions

Figure 1.  Table comparing the existing approximate methods for large-scale Gaussian processes and the 
proposed method. The proposed method is the only one with no restrictions on the dimensionality of the input 
space, kernel design, or data-point geometry.
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where κκκ = k(x0, xj) , and KKK = k(x0, x0) . This basic framework can be extended by ever-more flexible mean, noise 
and kernel functions. Our proposed method is entirely agnostic and even symbiotic—in the sense that there is 
mutual support—to those extensions and we will therefore omit the dependencies thereof.

The bottleneck of training GPs, that is, optimizing (3) with respect to h, is the O(N3) numerical complexity 
of calculating K(h)−1y—or equivalently solving a linear system—and ln(|K(h)|) , and the storage of K , which 
scales O(N2) . However, if K is very sparse, both problems would be avoided. This is the goal of all approximate 
methods, which work by synthetically inducing this sparsity. In contrast to approximate techniques, we propose 
to achieve sparsity purely by flexible kernel design, and not through approximations, leading to a sparse but exact 
GP. The sparsity, in this case, is discovered, not induced. However, if the problem does not have natural sparsity, 
the constrained optimization described below used to optimize (3) shall guarantee the minimal approximations 
needed to satisfy system-dictated minimum-sparsity constraints.

Consider, as a simple example, the squared exponential kernel

which is used in approximately 90% of GP  applications17; even if data points were naturally uncorrelated, the 
squared exponential kernel would not be able to learn this independence because its global support will always 
return covariances > 0 . This is true for all commonly used stationary kernels and most non-stationary kernels. 
Instead of formulating kernels that learn well what points are dependent, we propose to consider kernels that are 
tailored to be capable of learning independence. Such a non-stationary, flexible, and compactly-supported kernel 
is the first building block of the proposed framework. Even if such a kernel can be defined, the covariance matrix 
still has to be computed and stored which is time-consuming and often prohibitive due to storage requirements. 
Distributed computing on HPC compute architecture—as the second building block—can help by splitting up 
the computational and storage burden. The third building block, augmented and constrained optimization can 
guarantee that sparse solutions are given preference, or are even a requirement.

Building Block 1: Non‑stationary, ultra‑flexible and compactly‑supported kernel func‑
tions. For natural sparsity to be discovered, a kernel function k(x1, x2) should be designed such that it can 
flexibly encode correlations between data points, including instances where no correlations  exist18. The kernel 
has to meet three requirements: 

1. Compact Support: This is the most obvious necessary property. Since we are attempting to discover zero 
covariances, the kernel has to be compactly supported.

2. Non-Stationarity: Compactly-supported kernels have been used before, but mostly in the stationary case. 
However, in the stationary case, sparsity is only taken advantage of in an entirely local way—i.e. only if a 
point happens to be far away from all other points can the covariance be zero. Such kernels are not able to 
learn more complicated distance-unrelated sparsity-exploiting dependencies.

3. Flexibility: To pick up on sparsity across geometries and distances, a kernel has to be flexible to recognize 
that neighboring points may be correlated and some points in the distance are not, and vice versa.

Combining compact support, non-stationarity and flexibility yields kernels that are tailored to learn existing and 
non-existing covariances. Below we examine a few examples to solidify this idea. The kernel

is a rather well-known example of a non-stationary kernel. The subscript “s” stands for “sparsity” since this is 
the kernel that will allow us later to discover sparsity. The kernel k̃ is assumed to be compactly-supported and 
stationary (for  instance18); the non-stationarity is produced by the term g(x1)g(x2) . The flexibility of this kernel 
depends entirely on the parameterization of g. In the most flexible case, g could be a sum of Kronecker-δ func-
tions centered at a subset the data points D̂ ⊆ {xi}Ni=1 , i.e.,

where the |D̂| binary coefficients hi ∈ {0, 1} are hyperparameters that may be optimized during training. If we 
allowed D̂ to include all data points, we would obtain a GP that has learned which such points can safely be 
ignored (hi = 0) without impacting the marginal log-likelihood.

The kernel (6) is very flexible but has two issues. First, it explicitly depends on potentially millions of binary 
hyperparameters. Second, it is unable to encode varying covariances between data points; points are either 
turned “on” or “off ”. An even more flexible kernel, that can in fact turn on and off selected covariances instead 
of just points, can be defined as

where

(5)k(x1, x2) = σ 2
s exp

(

−0.5 ||x1 − x2||2/l2
)

,

(6)ks(x1, x2) = k̃(x1, x2) g(x1)g(x2),

g(x) =
∑

xi∈D̂

hiδ(x, xi),

(7)ks(x1, x2) = k̃(x1, x2)
(

g1(x1)g1(x2)+ g2(x1)g2(x2)
)

,

(8)
g1(x) =

∑

xi∈D̂

h
g1
i δ(x, xi)
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where the hg1i  and hg2i ∈ {0, 1} or ∈ [0,∞] . This kernel can effectively discover that certain covariances (perhaps 
most) are zero. If we include all data points in D̂ , then this kernel has 2N hyperparameters to optimize, which 
can be an overwhelming optimization if N is large.

To alleviate the challenge of a large number of hyperparameters, we can trade some of the flexibility and there-
fore sparsity for a parameterization with fewer hyperparameters. For this purpose, we propose the kernel function

where

Equation (11) is a sum of, so-called, bump functions, where χ is the indicator function which is 1 if rij>||x − x
ij
0 ||2 

and 0 otherwise, xij0  are the bump function locations, rij are the radii, and βij are shape parameters. Bump func-
tions are ∈ C∞ and compactly supported; precisely the properties we need to create sparsity-discovering kernel 
functions. The kernel function (10) allows us to seamlessly choose between flexibility, which directly impacts the 
ability to discover sparsity, and the number of hyperparameters (compare (10) with (7) for n1 = 2 and n2 = 1 ). 
See Fig. 3 for a visualization of this kernel. For our test, we will combine the above kernel with a compactly-
supported stationary kernel given by

where d = ||x1 − x2||2 , and r is the radius of support. Kernel function (12) is a rather well-known compactly-
supported stationary kernel. Since kernels can be multiplied, we can combine our sparsity-discovering kernel 
ks (10) with any other kernel ( kc · ks ), leading to no restrictions on the core kernel kc . The bump functions in 
ks can be normalized and shaped in order to equal one within its support and zero otherwise, which can then 
be understood as a mask that leaves the core kernel kc untouched in areas of support. Since the bump function 
only appears in the kernel in g, any shape will lead to positive semi-definiteness of the kernel. The kernel ks also 
gives us the opportunity to estimate the sparsity of the covariance matrix. In the limit of adding infinitely many, 
uniformly distributed data points inside the fixed domain, the discrete covariance matrix becomes the covariance 
operator (the kernel) and the number of non-zero entries becomes an integral. In that case, the sparsity s of the 
covariance matrix is bounded from above such that

which we can use to formulate objective functions that allow us to give preference to sparse solutions, or to 
formulate sparsity constraints; note that a small s here means high sparsity. Sk in (13) is the set of support of the 
kernel, i.e., Sk ⊂ X × X  , which, in our case is the Cartesian product of two balls B ⊂ X—the volume of the 
Cartesian-product set of two balls embedded in Rn , B1 × B2 is the product of their respective volumes. Therefore, 
for kernel (10), the sparsity can be bounded from above—assuming entirely disjoint support since any overlap 
increases sparsity (lowers s)—so that

where Vols(dim, r) is the volume of a dim-dimensional sphere with radius r, defined as

where Ŵ is the gamma function, and dim is the dimensionality of X  . As β → 0 in Eq. (11), the kernel’s effect on 
kc in regions of support vanishes (see Fig. 3 for an example). β can therefore be seen as a shape parameter. As 
β → ∞ , the bump functions become delta functions and kernel (7) is obtained.

Building Block 2: High‑performance computing to take advantage of sparse kernels. While 
flexible non-stationary and compactly-supported kernels are the core building block of our algorithm for 
extreme-scale GPs, the covariance matrix has to be computed in a dense format first to take full advantage 

(9)
g2(x) =

∑

xi∈D̂

h
g2
i δ(x, xi)

(10)ks(x1, x2) = k̃(x1, x2)

n1
∑

i

gi(x1)gi(x2),

(11)gi(x) =
n2
�

j=1

aij exp









−βij

1− ||x−x
ij
0 ||22

r2ij

+ βij









χ

�

rij>||x − x
ij
0 ||2

�

.

(12)k̃(x1, x2) =















√
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√
π
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 if d < r,

0 else

(13)s = number of non-zero covariances

N2
≤

∫

Sk
dxdx

∫

X×X
dxdx

,

(14)sup

{∫

Sk

dxdx

}

=
n1
∑

i

n2
∑

j

n2
∑

k

Vols
(

dim, rij
)

Vols(dim, rik),

(15)Vols(dim, r) = πdim/2

Ŵ

(

dim
2 + 1

) rdim,
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of multi-threading, however, this could violate RAM restrictions for large datasets; computing the covariance 
matrix in a sparse format in place would be prohibitively inefficient. To avoid slow computations or going beyond 
the RAM limit, we define a “host” covariance matrix (on one host machine) as sparse in the first place, com-
pute dense sub-matrices in a distributed way and cast them into a sparse format, and only communicate sparse 
sub-matrices back to the host machine, where they are inserted into the host covariance matrix. Through this 
strategy, we address RAM limitations by distributing the covariance matrix across many computing resources—
and could even exploit out-of-core methodologies such as utilizing disk storage if needed. Additionally, the 
computation time is sped up by leveraging heterogeneous architectures such as GPUs, efficient at data-parallel 
operations, and threading-task-parallel CPU operations. The combination of distributing memory and exploit-
ing parallelism across cores allows our algorithm to operate on datasets of practically-unlimited size—given 
enough distributed workers and sufficient natural sparsity. The procedure is illustrated in Fig. 4 and shown in 
pseudo-code 1.

We split up the dataset of length |D| into batches of size b. For large |D| , the only way the covariance matrix can 
be computed is by distributing the computational burden by dividing the host covariance matrix into block sub-
matrices, each representative of a unique data-batch pair (see Fig. 4). The batch pairs are transmitted to different 
workers (often a few per node) via the Python library DASK; we denote the number of parallel-executed tasks by 
n (one task per worker). In each task, the exact batch-covariance is computed. Because of the specifically-designed 
kernel, many elements of each sub-matrix will be zero. That way, theoretically, any-size covariance matrix can 
be computed and stored in a distributed way. As the sub-matrices are transferred back, they will be translated 
into a sparse representation and injected into the sparse host covariance matrix on the host machine. While this 
matrix is |D| × |D| in size, its sparsity avoids problems with storing or computations. The computation of a batch 
of the covariance matrix can be accelerated by taking advantage of the many parallel threads a GPU or CPU has 
to offer. Future work will compare the compute performance of different implementations and architectures.

The proposed algorithm, given more resources, is able to compute solutions faster, exhibiting the strong 
scaling properties inherent in the design (see Fig. 5). Furthermore, as the problem size increases, the algorithm 
matches the set of resources also highlighting weak scaling. In summary, our formulation speeds up computa-
tion, reduces memory burden, and provides an ability to exploit heterogeneous architectures (CPUs/GPUs/
TPUs), providing future compatibility of the proposed framework since future architectures can be leveraged.

The theoretical computing time of the covariance matrix can be calculated as

where tb is the compute time for one sub-matrix, whose scaling depends on the exact implementation, and avail-
ability and number of parallel CPU or GPU threads. Equation (16) suggests that, as the number of tasks n, the 
number of parallel workers, approaches |D|

b  , the scaling becomes linear in |D| , i.e. complexity O(|D|) . By exten-
sion, as the number of workers approaches the total batch number, the scaling becomes constant. The linear-
system solution can be accomplished by the conjugate gradient method which has numerical complexity 
O
(

m
√
k
)

 , where m is the number of non-zero entries in the covariance matrix and k is the condition number. 
The log-determinant computation can be done via Cholesky factorization whose scaling depends on the exact 
structure of the matrix. Furthermore, since for most intents and purposes |D|

b >> 1 , we can approximate

which can help estimate the optimal batch size given a particular architecture. For sequential computations, tb 
scales O

(

b2
)

 and the batch size drops out of the equation. For the other extreme, perfect parallelization, tb scales 
O(b) and we, therefore, want to maximize the batch size up to the point where the linear scaling stops. That 
number depends on the particular architecture.

(16)Tc =
|D|
2nb

( |D|
b

+ 1

)

tb,

(17)Tc ≈
|D|2tb
2nb2

,
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Building Block 3: Augmented and constrained optimization. The proposed kernel definition (10) 
can be paired with constrained

or augmented optimization

where s is the estimated sparsity (Eq. 13) (not a Lagrange multiplier). The constraint means that this formulation 
will only be exact up until the RAM restriction is hit, then the GP will turn itself into an approximate GP, but 
without the need for the user to make decisions on which points are being considered. The augmented (or biased) 
optimization will always prefer sparse covariance matrices. However, caution has to be exercised to ensure the 
optimization is not dominated by the need for sparsity. The formulation in Eq. (19) gives priority to the likeli-
hood, since s ∈ [0, 1] , which means the objective function is bounded by [ln(L), 2 ln(L)].

A note on solving linear systems, log‑determinants, and optimization strategies. After com-
puting the sparse covariance matrix in a distributed fashion, all that is left to do to enable GP training is to opti-
mize the marginal log-likelihood. For this, we need to solve

and compute

A common approach in the dense and the sparse case is to use Cholesky or LU factorization. Given the factoriza-
tion, both the linear-system solution and the log-determinant computation is trivial. However, even for a sparse 
input matrix, both Cholesky and LU might have large memory requirements depending on fill-in and pivoting 
options. In addition, for those decomposition methods to be successful, the matrices have to be extremely sparse 
with only a handful of non-diagonal non-zero entries; a level of sparsity we might not be able to guarantee for 
matrices originating from a GP. In our experience, it is better to use iterative methods (e.g. conjugate gradients) 
to solve the linear system. This leaves us with the problem of estimating the log-determinant accurately. For this 
work, we have employed random linear algebra (RLA). More specifically, we have implemented the method 
presented  in19. Since we are training the GP via Markov-Chain Monte-Carlo the random noise induced by RLA 

(18)
argmax

h

ln(L)

subject to s < sparsity requirement

(19)argmax
h,s

(ln(L)+ (1− s) ln(L)),

(20)Kx = y

(21)log(|K|).
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won’t affect the training. As we move to more deterministic optimizers, especially derivative-based optimizers, 
this discussion will have to be revisited.

A moderately‑sized example to verify error convergence
To demonstrate the functionality of the method, we investigate the error convergence of the GP-predicted model. 
Our proposed method is only viable if the ground truth can be recovered. The data we use is the United States 
topography. Of the 25000 points, we choose 24000 points as the training dataset and 1000 points as the test 
dataset 

{

xtesti , ytesti

}

 . While this dataset is only moderately large, it is outside of the capabilities of most exact-
GP algorithms. We chose a smaller dataset to be able to calculate the root-mean-square error (RMSE) in each 
iteration of the training somewhat efficiently. For this example, we used kernel (10) with n1 = n2 = 1 . We are 
employing a Markov-Chain-Monte-Carlo (MCMC) algorithm for the training. The RMSE is defined as

where ytesti  are the test measurements (elevations) and fi are the calculated posterior means (Eq. (4)). The result 
is presented in Fig. 6. From this result, we conclude that the error converges toward zero as the hyperparameter 
search progresses.

A climate example with over 5 million data points
We demonstrate the proposed methodology on a temporal extension of the dataset shown in Fig. 2. The dataset 
contains daily maximum temperatures from 1990 to 2019 from circa 7500 gauge-based weather stations across 
the continental United  States20,21; after accounting for missing daily measurements, these stations yield over 51.6 
million data points across this approximately 10000-day (30-year) period. Due to computing constraints, while 
writing this paper, we randomly extracted a dataset of 5165718 points to use for our example. For reproducibility 
purposes, the dataset can be found online at

ftp://ftp.ncdc.noaa.gov/pub/data/ghcn/daily/. For our tests, we used the gp2Scale library that is part of the 
fvGP Python package, available from GitHub (https://github.com/lbl-camera/fvGP) and pypi (pip install fvgp).

A Gaussian process is needed to analyze these data for a variety of reasons. First, while in situ measurements 
of daily weather variables provide the most realistic data source for understanding historical climate, users of such 
data often require geospatially-interpolated datasets that account for irregular sampling density and provide a 
complete picture of how temperatures vary over space. Daily maximum temperatures furthermore exhibit strong 
spatial autocorrelations due to their driving physical mechanisms in the ocean and atmosphere, which GPs are 
particularly well-suited to model statistically. In the temporal domain, autocorrelations are also generally quite 
strong in daily temperatures due to, e.g., seasonality imposed by the solar cycle, and as such GPs are needed to 
appropriately impute missing measurements at the gauge locations.

For this example, we defined the kernel as

where k̃ is defined in Eq. (12), and g1 and g2 are defined in Eq. (11) with n2 = 4 , giving rise to 42 hyperparameters.
To deliver a proof-of-concept of the proposed strategy, we are again employing a Markov-Chain-Monte-Carlo 

(MCMC) training up to 160 function evaluations. Since the total compute time scales linearly with the number 
of function evaluations, it is straightforward to estimate the compute time for many other training strategies. 
For this test, we chose two different architectures, namely Nersc’s Cori Haswell Nodes (https://www.nersc.gov/
systems/cori/) and Perlmutter’s GPU nodes (Perlmutter Phase 1: https://www.nersc.gov/systems/perlmutter/). Due 
to challenges with allocating DASK workers on Cori, the result shown was calculated on 256 of Perlmutter’s A100 
Nvidia GPUs. Computing a batch of size 10000 can be accomplished in circa 0.6 seconds on each GPU node. 
See Fig. 7 for the visualization of the result.

Due to early-access constraints, we split up this run into 4 separate runs, storing the hyperparameters and 
therefore the state of the training. Therefore, the total run time of 24 h contains 4 initializations. Each iteration of 
the MCMC took circa 460 sec, leading to a total estimated run time of 72384 sec. We also included information 
about error convergence in the figure using a smaller subset of the full dataset.

Summary, discussion, and conclusion
In this paper, we have proposed a new methodology and algorithm for extreme-scale exact Gaussian processes 
(GPs) based on flexible, non-stationary, and compactly-supported kernels, and distributed computing. Our 
method is not another approximate GP but is designed to discover—not induce—naturally occurring sparsity 
and use it to alleviate challenges with numerical complexity in compute time and storage. It is our strong belief 
that this natural sparsity is very common in many modern datasets. The fundamental assumption in this work is 
that GPs often give rise to sparse covariance matrices naturally if given enough flexibility, through non-stationary 
kernel designs, to discover the sparsity. This can only be achieved for kernels that are very flexible, non-stationary, 
and compactly supported. For efficiency reasons, the covariance still has to be computed in a dense format first 
which is accomplished by distributing the workload over many CPU or GPU nodes. Constrained or augmented 
optimization is used to give sparse solutions priority or to constrain sparsity. These constraints only take effect 
when RAM or computing restrictions of the system are exceeded and would then turn the exact GP into an 
optimal sparse GP.

(22)RMSE =

√

√

√

√

1

M

M
∑

i=1

(

ytesti − fi
)2
,

(23)k(x1, x2) = k̃(x1, x2) ·
(

g1(x1)g1(x2)+ g2(x1)g2(x2)
)

,
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Figure 2.  Figure illustrating the premise of our proposed algorithm. Panel (a) shows the test data, measured 
daily maximum temperatures ( ◦ C) from April 10th, 1990 across the United States ( N = 4718 ). This problem 
size is still well within the capabilities of a standard GP, whose posterior mean is shown in (b). If we employ 
a flexible, non-stationary, and compactly-supported kernel, we can learn through optimization of the 
marginal log-likelihood that only a few covariances are of essence for the prediction. Our sparse result is 
shown in (c). Panels (d) and (e) show the covariance matrix of the dense and sparse GP, respectively, where the 
sparse covariance only has 1.5% of the non-zero entries of the full dense matrix. The sparsity in this problem 
is discovered, not induced, leading to an exact GP. This principle, in combination with HPC, for truly large 
covariance matrices, and constrained function optimization enables GPs to be scaled to tens of millions of data 
points.
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Figure 3.  Figure showing a very flexible, non-stationary and compactly-supported kernel function k(x, y) 
(panel a, ks Eq. (10)), and a “sparsified” squared-exponential core kernel kc (panel b). Only for a one-
dimensional input domain, we can visualize the kernel as a function over X × X ⊂ R× R . The kernel uses a 
set of compactly-supported bump functions to naturally discover sparsity through optimization of the bump 
functions’ positions, heights, radii, and shapes.Since any multiplication of kernels is a valid kernel, our sparsity-
discovering kernel ks (panel a) can be combined with any kernel; therefore, compared to most approximate 
methods, it does not limit the user’s ability to design and employ arbitrary kernel functions. Panel (b) shows that 
concept; where the kernel ks has support, the covariance function becomes the squared-exponential kernel.
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Figure 4.  Figure illustrating the computational building block of the proposed algorithm. The dataset is divided 
into batches (panel a). Pairs of batches are sent to the compute nodes where the associated sub-matrices of the 
covariance matrix are calculated using the presented sparse kernels (Eq. (10), panel b). The sub-matrices are 
cast into a sparse format on the compute nodes before being sent back to the host. There, they get assembled to 
obtain the full sparse master covariance matrix (panel c). All subsequent mathematical operations needed for a 
GP, namely calculating the log-determinant and solving a linear system, are performed efficiently on the sparse 
covariance matrix.
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This work is at a proof-of-concept stage; therefore, there are several challenges with the current form and 
these will be addressed in future work: 

1. The sparsity-discovering kernel for our examples was relatively simple. It has to be shown that much more 
flexible bump-function-based kernels can be formulated and their hyperparameters can be found robustly. 
However, there is a trade-off to consider; a more flexible kernel will lead to better detection of sparsity, but 
a more costly optimization of the hyperparameters. More hyperparameters also mean possible ill-posed 
optimization problems.

2. We have used MCMC for training, which means only having to evaluate the marginal log-likelihood. The 
proposed method should be extended for gradient-based optimization of the hyperparameters.

3. While our covariance matrix is computed in a distributed manner, the linear-system solutions and log-
determinant computations are serialized even though most workers are idle and should be used for that task. 
However, the observed sparsity was found to be so substantial that the computations were not a bottleneck.

8

16

32

64 128

(a)

8

32

215821

(b)

Figure 5.  Figure illustrating theoretical and measured strong and weak scaling of the distributed covariance 
computation. (a) The computation time of a problem of fixed size as a function of the number of workers. (b) 
Computation time as a function of the number of workers while the problem dataset size is increased (from the 
left 2e5, 4e5, 8e5, 16e5, also see label). The figures suggest that there is a strong case to be made for the favorable 
scalability of exact Gaussian processes. The exact number of workers in each run is indicated as numbers 
adjacent to the dots.
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Despite those shortcomings, the method has shown its strength by training a Gaussian process on more than 
five million data points. This is, to our knowledge the largest exact GP ever trained. Given the strong and weak 
scaling shown in Fig. 5 and predicted by Eq. (16), we are confident that exact GPs on 100 million data points are 
currently possible. The code is available as part of the open-source python packages fvGP and gpCAM.

Figure 6.  To verify the functionality of the proposed methodology, we present the error convergence between 
the GP posterior-mean prediction and the test data. Panel (a) shows the full data set, the topography of the 
United States (meters above sea level) evaluated at 25000 points. From that set, we selected 24000 data points 
for training and 1000 test points randomly and calculated the RMSE as the hyperparameter search via MCMC 
progressed. Panel (b) shows the error convergence. We can confirm that the proposed methodology leads to 
error convergence as we approach the final hyperparameters.
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Figure 7.  The result of a Gaussian process trained on over 5 million data points. While this paper is best 
understood as a proof-of-concept, we want to ensure that we show the readers that the resulting model is 
reasonable by the end of our training (a, b). (Panel a) The distributions of the climate stations with temperatures 
from the first day of the dataset (Jan 1st, 1990); the axes are normalized. (Panel b) The GP interpolation over a 
subdomain in the northeast at a time slice in June 2004. The noise of the measurement was estimated ad-hoc, 
which explains the somewhat rough appearance of the posterior-mean function. We trained the GP via MCMC 
for 160 iterations. While this does not reach convergence, it is enough to demonstrate the feasibility of such 
an extreme-scale GP. Panel (c) shows the marginal log-likelihood as a function of training time. The GP was 
trained in under 24 h, on 256 GPUs, opening the doors for much larger GPs. To verify error convergence, we 
also extracted a smaller dataset of 103315 points from the full climate dataset. The RMSE with respect to 1000 
test points as a function of MCMC iteration number is visualized in panel (d).



14

Vol:.(1234567890)

Scientific Reports |         (2023) 13:3155  | https://doi.org/10.1038/s41598-023-30062-8

www.nature.com/scientificreports/

Data availability
The topography dataset is available at https:// drive. google. com/ file/d/ 1BMNs dv168 PoxNC HsNWR_ znpDs wjdFx 
XI/ view. The climate datasets analyzed during the current study are available from NOAA, https:// www. ncei. 
noaa. gov/ data/ global- histo rical- clima tology- netwo rk- daily/.
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